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Abstract: Milk-derived bioactive peptides (BAPs) possess several potential attributes in terms of
therapeutic capacity and their nutritional value. BAPs from milk proteins can be liberated by bacterial
fermentation, in vitro enzymatic hydrolysis, food processing, and gastrointestinal digestion. Previous
evidence suggested that milk protein-derived BAPs have numerous health-beneficial characteristics,
including anti-cancerous activity, anti-microbial activity, anti-oxidative, anti-hypertensive, lipid-
lowering, anti-diabetic, and anti-osteogenic. In this literature overview, we briefly discussed the
production of milk protein-derived BAPs and their mechanisms of action. Milk protein-derived
BAPs are gaining much interest worldwide due to their immense potential as health-promoting
agents. These BAPs are now used to formulate products sold in the market, which reflects their
safety as natural compounds. However, enhanced commercialization of milk protein-derived BAPs
depends on knowledge of their particular functions/attributes and safety confirmation using human
intervention trials. We have summarized the therapeutic potentials of these BAPs based on data from
in vivo and in vitro studies.

Keywords: milk proteins; bioactive peptides; anti-inflammation; anti-diabetic; anti-hypertensive;
therapeutic potentials

1. Introduction

Milk is considered a vital part of the diet of several populations, with an estimated
600 million people worldwide as regular consumers [1]. Buffaloes and dairy cows are the
primary sources of commercial milk in addition to minor sources such as camels, mare,
goat, donkey, sheep, mithun, yak, etc. [2]. In 2019, the global dairy yield (cow milk 81%,
buffalo milk 15%, and camel, sheep, and goat combined 4%) surged by approximately
1.3% to nearly 852 million tons (Mt). In contrast, the yield increased by 4.2% to nearly
192 Mt in India, the world’s leading milk-producing country [3]. Epidemiological findings
have suggested that milk consumption and the inclusion of its products in the human
diet can lead to a decline in the frequency of metabolic disorders [4]. This is because milk
proteins contain significant contents of bioactive peptides (BAPs) with several vital health-
promoting properties like anti-oxidative, antithrombotic, anti-hypertensive, anti-microbial,
immunomodulatory, and infrequently, multifunctional activity [5]. Amino acid valine has
(89 Da) the lowest molecular weight (MW), and tryptophan has (204 Da) the highest MW.
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BAPs are unambiguous fragments of parent proteins and are smaller than 6 kDa in
terms of MW with an average length of 2–20 amino acids. Studies suggest that BAPs
consisting of 2–6 amino acids are readily assimilated compared to free amino acids and
longer-chain proteins. Once absorbed, they facilitate biological activities in various tissues
as they transit through the body [6,7]. BAPs that are encrypted in the primary sequences of
proteins can be released by the actions of exogenous and endogenous proteolytic enzymes
or microbial fermentation or during food processing. Although enzymatic hydrolysis is the
most common approach to generating BAPs from whole food proteins, fermentation is pri-
marily relevant to the products that naturally contain precursor proteins such as milk, soy
milk, and other aqueous products. After protein hydrolysis, peptides need to be separated,
purified, and characterized using empirical approaches, and finally, obtained peptides
are tested for the targeted bioactivities using in vitro, in vivo, and human studies [8,9]. A
significant impact has been observed on the host epigenome by the functioning of bioactive
compounds produced due to microbial activities during fermentation [10]. These compact
BAPs have high bioavailability, low molecular weight, and flexible molecular structure,
which facilitate interactions with various receptors in vitro as well as inside the human
body [4]. Considering their potential to block enzymatic activities of α-amylase, dipep-
tidyl peptidase IV (DPP-IV), and α-glucosidase, BAPs can act as messengers against type
2 diabetes. BAPs can also induce an anti-hypertensive effect as they have an affinity for the
angiotensin-converting enzyme (ACE), thus competing for substrate binding. BAPs can
downregulate cholesterol synthesis and metabolism pathways to produce a hypocholes-
terolemic effect [11]. In addition, a recent study reviewed the potential of milk-derived
BAPs to modulate the gut microbiome, which leads to regulating gut-brain functioning,
gut health, and immune system activity [12]. Several studies have been published on milk-
derived bioactive compounds, although they are primarily related to the identification,
characterization, and curative utilization of a functional food [13–15]. This review provides
the current status of milk-derived BAPs in managing lifestyle disorders such as type 2 dia-
betes, hypertension, obesity, cancer, inflammation, bone health, and hypercholesterolemia
and their possible mechanism of action. Although, it also contains major milk protein
compositions in different species, primary BAPs’ production methods, their purifications
and identification methods, use in dairy products application, and the necessity of BAPs’
safety. There is a dearth regarding updated reviews which contain all these sections; here,
we cover all the possible parts of milk-derived peptides and describe them critically, which
make it different from other reviews.

2. Brief Comparison of Milk and Milk Proteins Composition

For all mammals, milk is considered a good and primary source of nutrients. The
major milk constituents, such as proteins, fats, carbohydrates, vitamins, and minerals,
fulfill an organism’s basic nutritional requirements [16]. Table 1 shows the major milk
composition in the different species.

Table 1. Composition of human and animal milk.

Species Energy (KJ/Kg)
Ash Fat Proteins Lactose Dry Matter Water

References
Percent

Camel 2745.80 0.85 1.80 1.80 2.91 11.30 90.60

[17–20]

Cow 2983.00 0.78 3.46 3.43 4.71 12.38 87.62

Donkey 1939.40 0.43 1.21 1.74 6.23 9.61 90.39

Goat 3399.50 0.73 4.62 3.41 4.47 13.23 86.77

Human 2855.60 0.22 3.38 1.64 6.69 12.43 87.57

Dairy milk primarily contains two varieties of proteins named casein (β, κ, αs1, αs2),
which consists of about 80% of the total milk proteins and 20% of whey proteins such
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as α-lactalbumin, β-lactoglobulin, bovine serum albumin, and immunoglobulins [21,22].
Table 2 shows the major proteins present in the milk of different species.

Table 2. Major proteins present in the milk of different species.

Species
Protein Total

Casein
αS1-

Casein
αS2

Casein κ-Casein β-Casein Total
Whey

α-
Lactalbumin

β-
Lactoglobulin References

(g/L)

Camel 25–45 26.4 5 2.2 0.8 12.8 6.6 3.5 -

[17,20,23,24]

Cow 31–38 27.2 10–15 3–4 3–4 9–11 4.5 1–1.5 3.3–4

Donkey 13–28 27.2 0.2–1 0.2 - 3.9 7.5 1.8–3 3.2–3.7

Goat 25–39 25 0–7 4.2 4–4.6 11–18 6 1.2 2.1

Human 9–17 5.6 0.3–0.8 - 0.6–1 1.8–4 8 1.9–2.6 -

However, the milk’s minor and major constituents vary depending on genetic, nutri-
tional, and environmental factors across different animal species. The suitability of milk
as a primary substance for several dairy products, its physicochemical and organoleptic
characteristics, and its nutritive value are determined by the composition [25]. Furthermore,
non-ruminant and ruminant milk are usually different, depending on their constituents.
For example, ruminant milk is defined by a high level of total solids along with higher
protein, fat, and ash contents [26,27]. Ruminant milk also contains casein as the primary
protein fraction; however, the whey protein fraction is greater than the casein fraction
in non-ruminant milk. The ratio of casein protein to whey protein largely differs among
various species of mammals [2]. Based on this vast diversity in protein types, milk is a
valuable source of BAPs with diverse biological activities.

3. Production of Milk-Derived BAPs

BAPs are encoded in the native parent protein amino acid sequence, showing bioac-
tivity only when released from the original root source. BAPs are produced by hydrolysis
of proteins utilizing gastrointestinal tract (GIT) digestive enzymes, maturation of food,
natural fermentation, fermentation using starter organisms, or food-grade microbial en-
zymes. In addition to the breakdown of food in the biotic system, GIT enzymes such as
trypsin, pepsin, peptidases, and chymotrypsin are tools in BAPs’ production [28–30]. Even
though BAPs have been obtained conventionally using enzymes extracted from natural
sources, several attempts have been made to mass-produce BAPs using recombinant DNA
technology [31,32]. Furthermore, other methods, such as the whole expression in the host
cells using recombinant DNA, solvent extraction, and peptide synthesis using single amino
acids, can be used to obtain BAPs [33]. Figure 1 shows the methods of production of BAPs
derived from milk proteins and their possible therapeutic uses.

3.1. Fermentation and Enzymatic Hydrolysis Are the Two Most Common Methods Widely Used to
Produce BAPs
3.1.1. Fermentation

Fermentation is considered an economical approach for obtaining BAPs. Yeast or
various bacteria have been utilized to hydrolyze or ferment proteins into peptides. Mi-
croorganisms such as the lactic acid bacteria (LAB) are used frequently in the manufacture
of fermented dairy products (cheese, cultured milk, yogurt, etc.). During fermentation,
the microbial proteolytic enzymes act upon the parent proteins to release peptides [16,34].
The proteolytic systems of LAB have cell envelope proteinase (CEP), which can hydrolyze
milk protein into peptides (4 to 30 residues) [34]. Earlier reports have shown the prepa-
ration of several BAPs, including immunomodulatory, antioxidative, antimicrobial, and
ACE-inhibitory, using microbial proteolysis [21,35–38]. Various investigators have also
reported LAB’s ability, especially lactobacilli, to produce BAPs. A recent study by Gaspar-
Pintiliescu et al. [39] reported the potential functional attributes of bioactive peptides
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produced through fermentation of Candida lipolytica MIUG D67 and C. lipolytica MIUG D99
yeast strains. A 10% (w/v) mixture of bovine colostrum powder containing 2.5% (w/v) kefir
grains was fermented with C. lipolytica MIUG D99 (104 cfu/mL) and C. lipolytica MIUG
D67 (104 cfu/mL) for 48 and 72 h, respectively. Consequently, the fermented colostrum
powder was incubated at 1% (w/w) in water at 4 ◦C overnight, and then water-soluble
extracts (containing peptides) were collected for further use. The extracts were filtered
through Ultra centrifugal filters with a 10 kDa nominal molecular weight cut-off mem-
brane. Results found that free radicals scavenging activities of C. lipolytica MIUG D99
extract (peptide containing) were more potent than those of C. lipolytica MIUG D67 extract.
For example, Lactobacillus casei Shirota ferments casein, and Streptococcus thermophiles
produce ACE-inhibitory and antithrombic peptides. L. helveticus facilitated casein hydrol-
ysis has been used to produce important ACE-inhibitory peptides like VPP and IPP [40].
Wu et al. [41] have also used the milk fermented with L. delbrueckii QS306 to isolate ACE-
inhibitory peptides. Tonolo et al. [42] produced a peptide with antioxidant properties using
starter organisms like L. delbrueckii subspp. Bulgaricus, L. acidophilus, and S. thermophiles.
Fan et al. [43] have also produced various BAPs from casein fermentation using L. hel-
veticus. Rubak et al. [44] used the indigenous LAB to generate ACE-inhibitory peptides
from fermented milk. These results suggest selective fermentation is an excellent way
to generate peptides with biological activities. Therefore, implementing such selective
fermentation with better proteolytic strains in the production of fermented products would
also improve their functional attributes and accelerate the milk utilization rate. Table 3
shows milk-derived peptides produced using the fermentation method.
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Table 3. Milk-derived peptides produced using fermentation.

Source Sequence/Peptide/Fragment Fermenting Microorganisms References

Colostrum powder (bovine) Peptides lower than 10 kDa MW
(P1 and P2 fractions) Candida lipolytica [39]

Milk LPYPY peptide Lactobacillus delbrueckii [41]
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Table 3. Cont.

Source Sequence/Peptide/Fragment Fermenting Microorganisms References

Casein protein DELQDKIHPF peptide Lactobacillus helveticus [43]

Milk (bovine) MKLFVPALLSLGALGLCLAA peptide Lactobacillus fermentum [45]

Milk (camel) MVPYPQR peptide Leuconostoc lactis [46]

Whey protein Peptides lower than (<7 kDa) Pediococcus acidilactici [47]

3.1.2. Enzymatic Hydrolysis

BAPs obtained using in vitro enzymatic hydrolysis of various food proteins have
shown possible uses as health-promoting factors against various conditions related to
human health and diseases such as inflammation, cancer, and cardiovascular disorders.
Following selecting a suitable food protein, peptides of interest are obtained by performing
enzymatic hydrolysis either using single or multiple specific or nonspecific proteases [29].
Appropriate food-grade enzymes are practically employed during hydrolysis to increase
the nutritional, functional, and physicochemical properties or decrease the allergenicity of
the native protein. The potential of the enzymes to produce various peptides with different
bioactivities might depend on several factors such as enzyme-substrate concentration or
enzyme type and, to a certain degree, on the reaction conditions such as temperature and
pH [16]. After hydrolysis, the soluble portion containing a mixture of peptides is centrifuged
to obtain BAPs in the supernatant fraction. To perform further processing and separate
or purify the peptides, the supernatant is subjected to membrane ultrafiltration, desalting
using gel filtration, cross-flow membrane filtration, and various column chromatography
techniques [48]. Digestive enzymes such as chymotrypsin, alcalase, pepsin, thermolysin,
and several other enzymes from bacterial and fungal sources have also been utilized either
alone or in different combinations to generate BAPs from various proteins [21]. However,
pepsin and trypsin are commonly used enzymes since they are involved in the GIT digestion
of proteins.

Moreover, most known antimicrobial peptides (AMP) have resulted from trypsin or
pepsin hydrolysis [49]. However, trypsin and chymotrypsin-treated milk proteins also
yielded peptides with immunomodulatory, antibacterial, opioid, mineral binding, and ACE-
inhibitory activities [50,51]. Shazly et al. [52] have used enzymes such as alcalase, trypsin,
pepsin, and papain to hydrolyze buffalo casein to generate antioxidant peptides. Fajardo-
Espinoza et al. [53] hydrolyzed bovine colostrum whey using pepsin and pancreatin to
generate BAPs. Table 4 shows milk-derived peptides produced using the in vitro enzymatic
hydrolysis method.

Table 4. Milk-derived peptides produced using enzymatic hydrolysis methods.

Source Sequence/Peptide/Fragment Enzymes Used References

Whey protein (bovine colostrum) Three fractions obtained having >30,
10 to 30 and <10 kDa MW Pepsin and pancreatin [53]

Buffalo casein (CB)
Highest degree of hydrolysis

obtained in molecular weights
<3.5 kDa using alcalase

Alcalase, trypsin, pepsin, or papain. [52]

Buffalo casein hydrolysates (BCH) RELEE, MEDNKQ, and TVA,
EQL peptides Trypsin and alcalase [54]

Milk casein (buffalo) VLPVPQK peptide Pepsin, trypsin, chymotrypsin [55]

Skimmed milk (buffalo) PGPIPK, IPPK, IVPN, and
QPPQ peptides Papain, pepsin or trypsin [56]
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4. BAPs’ Purification and Identification

BAPs with unique structural properties obtained during post-translational modifica-
tions can be easily identified using omics techniques such as metabolomics, genomics, and
proteomics for assessing toxicity and other peptide functions. Additionally, advancements
in peptide databases and bioinformatics are important for identifying the actions or func-
tions of such small peptide molecules in different organisms [57,58]. Therefore, knowledge
of the amino acid sequence of BAPs is essential in elucidating structure-function properties
and predicting new peptides with novel functions. Generally, crude peptides are obtained
by the practices commonly used in the production of BAPs, which requires additional
purification processes. This is because the crude peptide preparations consist of a combina-
tion of peptides, other by-products of reactions, and residues of reagents [59]. Therefore,
various separation techniques have been employed to purify such crude peptides. In one
of the primary steps used for crude peptides purification, the protein hydrolysates are
subjected to ultrafiltration, which utilizes molecular weight cut-off membranes to separate
peptides into fractions of a narrow size range [60]. Subsequently, the ultrafiltration frac-
tions are subjected to additional separation by one or more of the following techniques:
ion-exchange chromatography, reversed-phase high-performance liquid chromatography,
affinity chromatography, size exclusion chromatography, or capillary electrophoresis. In ad-
dition, electrodialysis-ultrafiltration (EDUF) can be performed to separate anionic, cationic,
and neutral peptides of specific molecular sizes [61]. This EDUF technique has shown
high efficacy in separating and concentrating small molecular-sized BAPs with net charges.
Previous works reported that net positively and negatively charged BAPs with low molec-
ular weights (300 to 700 Da) were successfully separated from snow crab by-product
hydrolysates using the EDUF technique [62,63]. Different techniques are utilized to verify
peptide purity, especially mass spectrometry like fast atom bombardment mass spec-
trometry, electrospray ionization, or ionization mass spectrometry/matrix-assisted laser
desorption [59,64].

For the identification of BAPs, several phases need to be passed, i.e., (1) protein
isolation from food sources, (2) extraction, (3) digestion/separation, and (4) identification
and quantification. Several methods have been used for the isolation of proteins and
peptides. The most frequently used method is the aqueous-based extraction process due
to protein’s high stability and solubility in alkaline water [65]. For separation of BAPs,
the most frequently used techniques involve a variety of chromatography techniques. In
terms of recovery and selectivity, the most powerful technique which is used is affinity
chromatography [66]. Size-exclusion chromatography (SEC) is also regularly used to
purify multidimensional BAPS’ fractionations. SEC is a liquid chromatographic method in
which the sample is injected into the column generally made of silica, moved through the
column using an aqueous solution, and finally separated by pore permeation differentiation.
SEC provides an easy and rapid detail of the molecular weight of peptides. To identify
BAPs’ sequence, various techniques are used connected with mass spectroscopy. Due to
high sensitivity and accuracy, chromatographic methods, mainly LC-MS/MS techniques,
have been used for the last decade because of their high sensitivity accuracy. MS is a
method (analytical) that gives essential data of targeted analytes in a sample related to
its concentration and structure after its conversion to ions [67]. Mass spectroscopy (MS)
uses high-energy electrons to ionize the analytes, which causes molecular fragmentation
that further passes via the mass-to-charge analyzer followed by detection as a function of
mass-to-charge or mass-to-time ratio (m/z) [68]. MS methods are generally used to analyze
peptides using matrix-assisted laser desorption/ionization (MALDI) and electrospray
ionization (ESI), working through the ionization of analytes. ESI transfers the initial
solution ions into the gas stage using electrical energy before its detection with MS. ESI-MS
is a highly reliable, robust, and sensitive technique to detect the quantities of multiple
compounds [69].
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Advantage of AAs Identification

Amino acids (AAs) composition identification plays a crucial role in predicting the
specific attributes of that peptide. For example, leucine at the N-terminal position of peptide
had shown immense activity in relation to ACE inhibition, as reported by Wu et al. [70].
A recent study by Sonklin et al. [71] reported that peptide LRLESF had the most potent
antihypertensive activity due to leucine’s synergistic effect at the N-terminal and pheny-
lalanine at the C-terminal. Results of the study concluded that amino acid positions are
a significant contributor to deciding the ability and potential activity of BAPs. A recent
study also reported the enhanced antioxidant potential of the peptide due to aromatic
acids such as tryptophan and histidine because of their hydrogen donation ability [72].
Therefore, identifying the amino acid composition is beneficial to selecting the best BAPs to
use further as ingredients for functional food product/supplement development.

Figure 2 briefly overviews the purification and identification techniques used for
milk-derived BAPs.
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5. Therapeutic Potentials of Milk-Derived BAPs

BAPs provide essential amino acids and energy, and have been confirmed for their
several health promotion characteristics such as osteoprotective, anti-inflammatory, im-
munomodulatory, anti-microbial, anti-oxidative, hypocholesterolemic, anti-hypertensive,
anti-cancerous, and anti-diabetics attributes. To fight against health disorders, pharma-
cological treatments with drugs have been proven effective but with several unwanted
or adverse side effects. In this regard, BAPs derived from milk have been assessed as an
adjunct remedy for regulating lifestyle disorders [9,16]. Recently, Li et al. [73] reviewed the
mechanism of action and health-promoting attributes of two lactotripeptide (IPP and VPP)
against metabolic syndrome, bone health, hypertension ailments, etc.
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5.1. Anti-Osteoporotic Effect

Due to the increase in aging populations and life expectancy, it could be expected
that the occurrence of osteoporosis will rise considerably in the future [60]. Milk is an
immense source of nutrients and minerals such as potassium, magnesium, phosphate,
calcium, and proteins, which are crucial for bone development. Casein and whey are the
two important proteins found in milk and reported as substrates for the production of BAPs
with immense health benefits [74]. Studies confirmed that milk BAPs have the ability to
improve bone health through enhancing marker gene (proliferation) expression (i.e., cyclin
A and cyclin-dependent kinase 2) [75], by inducing differentiation of osteoblast via Akt
signaling cascade [76], and through increasing RUNX2, OCN, ALP, and COL1A1 osteoblast
differentiation marker genes expression [77,78]. Previous evidence reported that BAPs
derived from milk proteins could be used as active dietary complements to regulate bone-
linked ailments such as osteoporosis. In a recent study, VLPVPQK (already validated for its
osteoanabolic action), a heptapeptide from milk, was tested, including its 14 novel variants
designed in silico. Using calvarial osteoblasts, these variants’ functional attributes were
assessed through in vitro assays. Results confirmed that Peptide7 (VLYVPQK) showed the
highest response compared to VLPVPQK. Moreover, further results indicated that Peptide7
significantly improved the expression of the osteogenes such as Runx2, Bmp2, Opg, and
Osterix [79]. Another study by Reddi et al. [75] confirmed the four BAPs from buffalo casein
hydrolysates using pepsin-trypsin hydrolysis, which had an impactful osteoblast prolifer-
ation ability. In previous work, researchers investigated the ACE-inhibitory tetrapeptide
(YLLF) bone remodeling attributes and antioxidative pentapeptide (YVEEL) whey-derived
BAPs using ovariectomized osteoporotic rats. In the study, animals were administered
(oral gavage) 50 µg YLLF/kg/day and 500 µg YVEEL/kg/day for 28 consecutive days.
Results of the study confirmed that YVEEL showed more osteoprotective properties than
YLLF by improving bone formation markers and suppressing inflammation [80].

5.2. Anti-Hypertensive

Hypertension is considered one of the foremost causes of death due to cardiovascular-
related disorders. As a result of its severe consequences and high occurrence, it is now
considered a global health problem. The rising rate of adults facing hypertension increases
the necessity for developing new pharmacological treatments [81,82]. Two systems, renin-
angiotensin, and kinin nitric oxide, primarily regulate the blood pressure in the body.
Renin-angiotensin system controls the angiotensinogen activation and changes it into
angiotensin-I through renin proteolytic activity. After that, the angiotensin-I converting
enzyme (ACE) cleaved the C-terminus histidyl residue of angiotensin-I and converted it
to angiotensin-II. Another system is kinin-NO, which mainly takes part in the bradykinin
production, which stimulates the reaction to enhance the Ca2+ concentration that leads to
stimulation of NO production that is a very excellent vasodilator [29]. ACE is a dipeptidase
enzyme that cleaves the carboxyl end of the substrate and converts angiotensin-I to the
active vasoconstrictor angiotensin-II [83]. A study by Chen et al. [84] assessed the potential
of peptides derived from bovine casein against hypertension. Response surface methodol-
ogy was used with pH 9.01, 61.81 ◦C, and 6.5% enzyme to substrate ratio, the hydrolysis
model showing the best ACE inhibition capability of 85.2%. Further results found two
novel peptides, VAPFPE and VLPVPQ, using Q-Exactive LC–MS/MS. Moreover, molecular
docking results suggested that these two peptides interact well with the S1 and S2 active
sites and Zn (II) of ACE. Previous several studies have shown that milk-derived BAPs
possess the capability to regulate hypertension through blood pressure reductions. A recent
study used buffalo milk casein to isolate novel peptides after hydrolysis with different
enzymes such as chymotrypsin, trypsin, pepsin, and their combinations. Results confirmed
that hydrolysates from pepsin-trypsin digestion showed the highest ACE-inhibitory ac-
tivity. Furthermore, 15 peptides were isolated using the <1 kDa permeate, out of which
VLPVPQK is a novel peptide with significant ACE-inhibitory property [85]. A previous
systematic review and meta-analysis study reviewed the anti-hypertensive effects of IPP
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and VPP (lactotripeptides) in Japanese subjects. A total of 18 studies were included in this
review, and the study analysis found that IPP/VPP consumptions decrease systolic blood
pressure compared to placebo groups. Results of this meta-analysis study suggested that
these peptides could efficiently control the blood pressure in the Japanese populations [86].
Previous research investigated the ACE-inhibitory peptides using a couple of complex pro-
teases to hydrolyze bovine milk. Espejo-Carpio et al. [87] reported that goat milk proteins
contain encrypted ACE-inhibitory peptides in their primary structure. Therefore, trypsin
and subtilisin (individually and in combination) were used to digest goat milk’s whey and
casein protein fractions. Results showed that the hydrolyzed casein fraction had the highest
ACE-inhibitory property. Furthermore, results confirmed that size exclusion chromatog-
raphy fraction F2 (<2.3 kDa) possessed the highest activity and concentration of peptides.
A long-term clinical study by Jauhiainen et al. [88] evaluated the function of milk drinks
with IPP and VPP on augmentation index, endothelial function, and arterial stiffness in
human subjects. Eighty-nine hypertensive subjects were supplemented with a low peptide
dose (5 mg per day) for twelve weeks and a higher peptide dose (50 mg per day) for the
following twelve weeks. At the completion of the second (higher dose) intervention, the
augmentation index decreased considerably in the peptide-taking group compared to the
placebo. Results confirmed that long-term supplementation of fermented milk (L. helviticus)
containing IPP and VPP peptides decreases the stiffness (arterial) in terms of augmentation
index in subjects (hypertensive). A recent study by Soleymanzadeh et al. [46] reported
the ACE-I inhibitory potentials of BAP fractions derived from camel milk fermented by
Leuconostoc lactis PTCC 1899. Camel milk was fermented for 24 h at 37 ◦C, and milk’s
final bacterial population (L. lactis) after inoculation was 107 cfu mL−1. Results found that
the <3 kDa fraction showed ABTS radical scavenging (1883.39 µM TE mg−1 protein) and
ACE-inhibitory (IC50 = 1.61 ± 0.18 mg mL−1) properties. This fraction was further puri-
fied using RP-HPLC followed by identification through MALDI TOF/TOF MS. The most
active peptide, i.e., MVPYPQR had ACE-inhibitory IC50 values of 30 µM in addition to
antioxidant activity (8933.05 µM TE mg−1 peptide) Inhibition of ACE activity is considered
an active therapy to reduce hypertension concerns. Still, several factors such as enhanced
antioxidative response, nitric oxide-mediated vasodilation, and renin inhibition are as-
sessed in several animals and in vivo trials in relation to the anti-hypertensive properties
of BAPs [4,11].

5.3. Anti-Hypercholesterolemia

Hypercholesterolemia is one of the considerable health conditions that have been
implicated in the pathogenesis and disease progression of cardiovascular disorders. Due
to improper diets, fat and cholesterol-rich foods are primarily linked with frequently oc-
curring heart diseases [89]. BAPs are one of the possible strategies that can be used to
alleviate hypercholesteremia issues. For instance, a previous study reported the BAPs’
potential to improve hypercholesterolemic conditions might be through the inhibition of
lipase activity, inhibition of cholesterol micellar formation, as well as via strong binding to
bile acids [90]. It has also been explored that BAPs suppressed the total cholesterol in the
serum and inhibited the uptake of cholesterol in monolayer cells. In addition, cholesterol
absorption is reduced in the gut due to strong boundation with glycodeoxycholate, deoxy-
taurocholate, and taurocholate [91]. Previous research studies explored the potential of
goat milk casein to improve lipid homeostasis. For the investigation, hypercholesterolemic
rats were fed goat milk casein for 30 days. Rats fed with a cholesterol-enriched diet exhib-
ited higher plasma total cholesterol, low-density lipoprotein-cholesterol, and atherogenic
indices but lower plasma high-density lipoprotein-cholesterol levels than the standard
diet group. This effect was significantly decreased in the cholesterol-enriched diet con-
taining goat milk casein groups, and the high-density lipoprotein-cholesterol levels were
also restored [92]. Additionally, a study reported that cow milk-derived BAPs, i.e., lacto-
statin (IIAEK), had hypocholesterolemic potential in HepG2 human liver cell line, which
was more significant in comparison to “sitosterol”, a known anti-hypercholesterolemic
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drug [93]. Moreover, it has been shown that whey protein-derived BAPs may also have
anti-cholesterolemic activity. For example, a study by Nagaoka et al. [94] explored the
β-lactoglobulin potential for hypocholesterolemic effects. Results found that rats fed with
β-lactoglobulin hydrolysate had reduced liver and serum cholesterol levels. Previous
literature information recommended that hypocholesterolemic peptides target exogenous
(dietary) cholesterol via hindering absorption from the gastrointestinal tract. Instead of
targeting cholesterol, many peptides impede the distribution of bile acids and particularly
regulate the metabolism of cholesterol (endogenous) in tissues. BAPs’ hypocholesterolemic
ability has been confirmed via the HMG-CoA reductase inhibition, a major cholesterol
synthesis enzyme [95]. Furthermore, the study found a novel IIAEK peptide (lactostatin)
present in the β-lactoglobulin hydrolysate and was further clarified for its hypocholes-
terolemic mechanism using in vitro studies. The study utilized human liver cells for
screening signal transduction pathways and target genes using this novel IIAEK peptide.
Results found that IIAEK regulated intracellular calcium concentration and ERK phos-
phorylation. Moreover, findings demonstrated the connection of calcium-channel-related
MAPK pathways with the IIAEK-mediated cholesterol degradation [93]. A recent study by
Jiang et al. [96] reported anti-hypercholesteremic effects (in vitro) of milk-derived peptides,
VLPVPQ, VAPFPE, LQPE, and TDVEN via lowering the solubility of micellar cholesterol.
Results evaluated that among the peptides, the VLPVPQ peptide showed considerable
reduction in the mRNA expression of acetyl-CoA-acetyltransferase 2 (which plays a crucial
role in the absorption of cholesterol) using Caco-2 cell line.

5.4. Anti-Oxidative

Due to the excessive accumulation of free radicals, oxidative stress occurs in the body.
Highly active molecules, such as reactive nitrogen species (RNS) and reactive oxygen
species (ROS), are produced during the normal course of cellular metabolism, but reduced
intrinsic scavenging capacity can lead to accumulation. Hence, tissue damages occur
mainly due to an imbalance between cellular antioxidant capacity and the oxidative sys-
tems [97]. Therefore, dietary supplementation with external sources of antioxidants could
strengthen cellular capacity for neutralizing toxic free radicals and ameliorating oxidative
stress. The antioxidative potential of BAPs is enhanced by factors such as AAs sequence,
molecular weight, and their molecular characteristics, including hydrogen donating ability,
aromaticity, acid/base character, and hydrophobicity [16]. The presence of AAs (mainly
hydrophobic) in the peptides increases their mixing in lipid components and improves
availability to free radicals by endorsing antioxidant ability. For example, valine and leucine
at N-terminal and proline in the peptide sequence stimulate its antioxidant potential [98].
Additionally, peptides containing lysine have an antioxidant ability due to their capacity to
chelate Fe2+ and Cu2+ ions, and Fe2+ and Cu2+ ions in reduction ability [99,100].

Antioxidant peptides obtained from the enzymatic hydrolysis of milk proteins have
improved oxidative stress. For example, previous work reported the antioxidative potential
of casein-derived peptide VLPVPQK using rat osteoblastic cells, which were oxidatively
stressed by excess hydrogen peroxide (H2O2). The osteoblastic cells were pretreated with
different doses (50–200 ng/mL) of VLPVPQK for 2, 7, or 21 days, each followed by H2O2
(0.3 mM) treatment for 24 h [101]. Results found that the addition of VLPVPQK led to
reduced ROS production, lipid peroxidation, and improved catalase (CAT), superoxide
dismutase (SOD), and glutathione peroxidase activities. The most significant property of
antioxidative peptides is the presence of hydrophobic AA at the C-terminal or N-terminal.
AAs, for example, Y, W, H, M, C, and K, are the key determinants of BAPs’ antioxidative
ability [102,103]. Another study by Sowmya et al. [104] reported the antioxidative potentials
of YFYPQL derived from buffalo milk-casein. Results showed that pretreatment of Caco-2
cells with this peptide conferred protection against H2O2 induced oxidative cell death and
hindered ROS production. Furthermore, results confirmed that peptide treatment enriched
the anti-oxidative enzymes (glutathione peroxidase, SOD, and CAT) activities by exciting
the stress signaling pathway nuclear response factor-2 (Nrf-2). Another study confirmed
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the antioxidative potentials of YVPR and VPYPQR, which are also milk-derived peptides.
Furthermore, study demonstrated that pretreatment with RHPHPHLSFM and VLPVPEK
peptides improved the viability of oxidatively stressed Caco-2 cells. These milk-derived
peptides are synthesized via solid-phase procedure using automated synthesizer [105].

5.5. Anti-Microbial

Anti-microbial capability is a vital hindering property against the growth of diverse
pathogenic bacterial strains. This antagonistic property occurs through several routes, in-
cluding the production of signaling molecules, antioxidants, and bacteriocins. The peptides
with antibacterial attributes have variable physiological and biochemical characteristics
that promote harmful interactions with target microbes [106]. These peptides comprise
hydrophobic and hydrophilic AAs at their terminals, and these are established as the
structural motifs used by these peptides to interact with microbes [48]. The possible mecha-
nisms through which these BAPs perform their anti-microbial action via either interrelating
with macromolecules inside the microbes or through forming pores in the membrane of
microbial cells [107,108]. The vital effective mechanisms through which anti-microbial
peptides work are a distortion of the cell membrane by electrostatic interactions, which
affect the cell permeability in addition to enhanced inhibition of protein, RNA, and DNA
synthesis [16]. For example, α-1 casein-derived peptides are active against a wide vari-
ety of Gram-positive bacteria, including Staphylococcus aureus [109]. In a recent study by
Abu-qatouseh et al. [110], the anti-microbial activity of camel milk-derived peptides was
evaluated against Propionibacterium acnes using the micro broth dilution method. Results
revealed that the peptidoglycan recognition proteins had higher anti-microbial potential
than lactoferrin. A comprehensive report identified 207 anti-microbial peptides from milk
proteins [111]. Furthermore, the findings suggested that out of the 207 peptides, 177 pep-
tides have unique sequences, and anti-microbial activities were against Gram-negative and
Gram-positive bacteria. Methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas
aeruginosa are the most virulent pathogens, producing long-lasting and severe human ill-
nesses. A recent study by Abdel-Hamid et al. [112] evaluated the antibacterial attributes
of camel milk whey proteins against MRSA and P. aeruginosa PAO1. Results showed that
camel milk-derived whey protein’s antibacterial activity against MRSA and P. aeruginosa
PAO1 was improved by papain hydrolysis. Furthermore, the highest antibacterial property
was reported for size-exclusion chromatography fraction 2 against MRSA and PAO1 with
0.3125 and 0.156 mg/mL minimal inhibitory concentrations, respectively.

5.6. Immunomodulatory/Anti-Inflammatory

Immunomodulatory functions of natural peptides have been recommended as a pos-
sible approach to regulating the immune system against immune-linked disorders and
infections [113]. Previous studies have reported immunomodulatory/anti-inflammatory
attributes of peptides derived from milk proteins. BAPs primarily regulate the inflamma-
tion/immune response by controlling the pathways such as peptide transporter 1, NF-κB,
(JAK-STAT), and MAPK by controlling the functioning of cytokines such as IL-10, IFN-
gamma, TGF-β, etc. [114]. In a recent study by Adams et al. [38], the immunomodulatory
properties of peptides produced by the LAB strains Lactocaseibacillus rhamnosus R0011 and
Lactobacillus helveticus R0389 were assessed. In the study, cell-free supernatants obtained
from milk fermentation cultures were used as the source of peptides and evaluated for
immune regulatory properties, especially inhibition of the production of pro-inflammatory
cytokines using human THP-1 monocytes. Results found that specific peptide fractions
from the fermented milk could induce interleukin 10 (IL-10) production. IL-10 is an anti-
inflammatory cytokine produced by diverse cell types comprising lymphoid and myeloid
cells, which mainly plays a significant role in regulating inflammation. It helps alleviate
several inflammatory concerns/diseases due to its inhibitory function on pro-inflammatory
cytokines [115]. Another study reported the anti-inflammatory attributes of buffalo casein-
derived YFYPQL using ex vivo conditions. Specifically, YFYPQL hinders the proliferation
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of mice splenocytes while improving the phagocytosis activity of peritoneal macrophages.
Furthermore, the findings showed a reduction in IFN-γ secretion and enhancement of
IL-10 level in the supernatants of splenocytes culture after peptide (buffalo casein derived
YFYPQL) treatment [104]. The phagocytosis property of macrophages is the ability to
capture and kill the pathogens to protect the host and stimulate innate and adaptive im-
mune actions. Peritoneal macrophages are generally found in the peritoneal cavity and
the organs present in the abdomen [116]. Interferon-gamma (IFN-γ) is a pro-inflammatory
cytokine that plays a significant role in autoimmune diseases and inflammation [117]. Pre-
vious findings by Marcone et al. [118] confirmed the anti-inflammatory potential of bovine
milk hydrolysate possessing bioactive peptides. Results found that the milk hydrolysate-
treated endothelial cells showed reductions in the expressions of monocyte chemoattractant
protein-1 (MCP-1), E-selectin (E-Sel), and vascular cell adhesion protein-1 (VCAM-1), in-
tercellular adhesion molecules-1 (ICAM-1), and IL-8. IL-8 and MCP-1 are inflammatory
chemotactic factors that enhance the inflammatory cell/factor expressions. VCAM-1 and
ICAM-1 are involved in the adhesion of cells, while VCAM-1 may play a role in the devel-
opment of rheumatoid arthritis and atherosclerosis. Moreover, lactoferrin-derived peptides
and lactoferrin also showed immunomodulation potentials through regulating antibody
production and granulopoiesis. The mechanism by which some of the milk-derived pep-
tides exhibit immunomodulatory attributes has been proposed to be facilitated by the
presence of arginine at the C- or N-terminal [119].

5.7. Anti-Cancer

Globally, cancer received much interest as part of the group of life-threatening non-
communicable diseases. It is considered one of the topmost causes of death in the
21st century, though more widespread in developed nations compared to developing
countries. Various BAPs have been scientifically verified as potential agents for cancer
prevention and therapeutic management [120]. Peptides having anti-cancer potential com-
prise a variation in the structural and geometric configuration and, on their surface, bear
the properties related to cationic charges along with hydrophobic parts used to attach to
specific cell membrane amphiphatically. Peptides’ hydrophobicity and charge are primarily
involved in their functionality against anti-cancer cells [121]. Some mechanisms have
been reported for peptides functioning as anti-cancer agents, i.e., initiation of necrosis or
apoptosis, angiogenesis process inhibition of cancer cells, immunity boost against tumor
cells, retardation of enzymatic activities associated with cancer growth, and distortion of es-
sential proteins related to the proliferation of cancer cells [122]. A previous review reported
that the anti-cancer potential of camel milk is fairly higher than that of bovine milk [123].
Moreover, a recent study reported the anti-cancer potential of lactoferrin-derived (LF)
peptides. Results confirmed that LFcinB bovine-derived peptide (RRWQWR) showed sig-
nificant anti-cancer capacity on Jurkat T-leukemia cells [124]. A previous study evaluated
the anti-cancer attributes of milk-derived anti-cancer fusion peptide (ACFP) using human
ovarian cancer cells [125]. The study collected fresh ovarian tumor tissues from 53 patients
and cultured them to produce primary cell lines. Results showed that ACFP treatment
hindered viability of the primary ovarian cancer cells through enhanced apoptosis but
with no or minimal cytotoxicity against normal ovarian cancer cells [125]. In another study
by Rafiq et al. [126], water-soluble peptides (WSP) were extracted from cow and buffalo
milk cheddar cheeses and further evaluated for anti-cancer attributes using colon cancer
model (HT-29) cells. Results indicated that at 400 and 500 µg WSP/mL concentrations, the
maximum inhibition of HT-29 growth was achieved. Parodi’s [127] study reported that
cysteine and cysteine-enriched proteins and peptides or c-glutamylcysteine dipeptides
could help suppress tumor growth/genesis. Thus, the anti-tumoric property of cheese
extracts may be due to the active components present in the cheese.
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5.8. Anti-Diabetic

Universally, a significant ongoing public health problem has been caused by the
increasing incidence of diabetes along with major negative social and economic conse-
quences [128]. Diabetes is mainly associated with increased blood glucose levels and
inadequate energy derivation from food consumed. The body’s average blood glucose
levels, i.e., 4–6 mM, are regulated through the pancreas’s proper secretion of glucagon and
insulin [129]. Several artificial/synthetic medicines are available in the market to mitigate
blood sugar or diabetes. However, these drugs have adverse side effects on different
body organs, such as high blood sugar and liver damage. Therefore, more researchers are
investigating natural remedies or solutions such as BAPs due to their low/negligible side
effects. BAPs regulate blood glucose levels through several mechanisms, including inhibi-
tion of specific enzymes, especially dipeptidyl peptidase-4 (DPP-IV), α-glucosidase, and
α-amylase, as well as acting as receptor agonists of glucagon-like peptide-1 (GLP-1) [130].
Other possible factors through which BAPs regulate diabetes are altering glucose absorp-
tion and metabolism, stimulating insulin secretion by AAs that are released during peptide
generation, enhancing gut hormone (cholecystokinin, glucagon-like peptide 1, etc.) signal-
ing, and improving uptake of glucose by stimulating PI3K/Akt and AMPK pathways [131].
DPP-IV is found in cell membrane and blood, and this enzyme is responsible for incretin
degradation. Hence, DPP-IV inhibition improves the incretin hormone half-life, which
leads to enhanced glucoregulatory and insulinotropic capacity [11,132]. Previous evidence
has established the DPP-IV inhibitory potentials of peptides isolated from goat casein hy-
drolysate. In the study, goat casein was hydrolyzed with trypsin/chymotrypsin and further
fractionated using two-dimensional silica thin layer chromatography (2D-TLC), followed
by LC-MS/MS analysis of the amino acid sequence of peptides [133]. Findings from the
study reported five DPP-IV inhibitory peptides (AWPQYL, INNQFLPYPY, VMFPPQSVL,
SPTVMFPPQSVL, and MHQPPQPL). From these peptides, INNQFLPYPY was the most
active enzyme inhibitor with a DPP-IV IC50 value of 40.08 mM. Moreover, camel milk
proteins have been recently used to generate peptides with DPP-IV inhibiting properties.
Camel whey protein concentrate was prepared and hydrolyzed into fifteen hydrolysate
fractions using trypsin. Results found that fractions H6 and H8 possessed DPP-IV in-
hibitory IC50 values of 1.52 ± 0.16 and 0.55 ± 0.05 mg/L, respectively. Furthermore, three
β-casein-derived peptides, VPF, YPI, and VPV, had DPP-IV IC50 values of 55.1 ± 5.8,
35.0 ± 2.0, and 6.6 ± 0.5 µM, respectively [134]. Another recent study by Jia et al. [135]
confirmed the discovery of LDQWLCEKL from α-lactalbumin with DPP-IVIC50 value of
131 µM. Moreover, a previous study reported the anti-diabetic attributes of milk protein
and milk protein hydrolysate using type 2 diabetic rats. Results found that after six weeks
of feeding (milk protein or milk protein hydrolysate), the diabetic rats had reduced levels of
plasma glucose, very-low-density lipoprotein (VLDL), low-density lipoprotein (LDL), total
cholesterol, triglycerides, and total blood plasma lipids [136]. Inhibition of α-glucosidase
and α-amylase enzymes also contributes to reducing carbohydrates in the blood. These
enzymes are responsible for converting complex carbohydrates into simple sugars and are
frequently present in intestinal surface cells. α-amylase enhanced the glucose level in the
blood by converting glycogen and dietary starch into maltose and glucose. Similarly, α-
glucosidase increases the glucose level by breaking disaccharides into glucose in the small
intestine [137]. Another study reported the anti-diabetic attributes of peptides derived from
camel milk proteins. Results found that WNWGWLLWQL and DNLMPQFM inhibited
DPP-IV activity, while MPSKPPLL and KDLWDDFKGL were identified as the most potent
inhibitors of porcine pancreatic α-amylase [138]. Table 5 shows the health-promoting and
therapeutic attributes of milk-derived bioactive peptides.
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Table 5. Health-promoting and therapeutic attributes of milk-derived bioactive peptides.

Source Peptide Sequence/Fragment Model/Method Used Potential Attributes References

Casein-derived VPP and IPP THP-1 human monocytic
cell line Immunomodulatory effect [38]

Milk VLPVPQK/PepC Rat osteoblast cultures Anti-osteoporotic effect [79]

Whey-derived YVEEL and YLLF Ovariectomized (OVX)
osteoporotic rat model Anti-osteoporotic effect [80]

Bovine milk VLPVPQ and VAPFPE Molecular docking Anti-hypertensive effect [84]

Buffalo milk casein VLPVPQK In vitro methods Anti-hypertensive effect [85]

Goat milk protein WY In vitro methods Anti-hypertensive effect [87]

Goat milk Casein fraction Hypercholesterolaemic
rats Hypocholesterolemic effect [92]

Bovine milk
β-lactoglobulin IIAEK Male rats (Wistar strain) Hypocholesterolemic effect [94]

Bovine milk Lactostatin or IIAEK HepG2, a human liver
cell line. Hypocholesterolemic effect [93]

Casein-derived VLPVPQK Rat osteoblastic cells Anti-oxidative effect [101]

Buffalo casein-derived YFYPQL In vitro Caco-2
cell model Anti-oxidative effect [104]

Buffalo casein-derived YFYPQL Mice splenocytes culture Anti-inflammatory effects [104]

Milk-derived RHPHPHLSFM, VPYPQR,
HPHPHLSFM, YVPR

In vitro Caco-2
cell model Anti-oxidative effect [105]

Camel milk
Peptidoglycan recognition

proteins PGRPs
(PGRP), lactoferrin

Micro broth dilution
assay (in vitro) Anti-microbial effect [110]

Camel milk Whey hydrolysate
Biofilm inhibition, disc
diffusion assay, biofilm

reduction assay
Anti-microbial effect [112]

Milk Milk-derived hydrolysate Endothelial cells Immunomodulatory effect [118]

Bovine milk protein Anti-cancer fusion
peptide (ACFP) Ovarian cancer cells Anti-cancerous effect [125]

Buffalo and cow milk
cheddar cheeses

Water-soluble peptide
(WSP) extracts

Colon cancer model
(HT-29) cells Anti-cancerous effect [126]

Goat milk casein INNQFLPYPY In vitro assay (DPP-IV-
inhibitory activity) Anti-diabetic effect [133]

Camel milk proteins VPV, YPI, and VPF In vitro assay (DPP-IV-
inhibitory activity) Anti-diabetic effect [134]

Milk Milk protein hydrolysate Diabetic rat Anti-diabetic effect [136]

Camel milk protein KDLWDDFKGL, MPSKPPLL

In vitro assay
(DPP-IV-inhibitory

activity, porcine
pancreatic α-amylase)

Anti-diabetic effect [138]

Cheddar cheeses (cow
and buffalo milk)

Water-soluble peptide
(WSP) extracts

Lung cancer (H-1299)
cell line Anti-cancerous effect [139]

Milk IPP and VPP Vascular smooth
muscle cells Anti-hypertensive effect [140]

Milk (casein
hydrolysate) IPP and VPP 25 male subjects

(low hypertension) Anti-hypertensive effect [141]
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Table 5. Cont.

Source Peptide Sequence/Fragment Model/Method Used Potential Attributes References

Milk IPP and VPP Spontaneously
hypertensive rats (SHRs) Anti-hypertensive effect [142]

Milk (α-lactalbumin) STEYG Mice Improve bone health [143]

Goat milk casein
QEPVLGPVRGPFP,

SLSSSEESITH, NPWDQVKR,
and SDIPNPIGSE

Insulin-resistant
HepG2 cells Anti-diabetic effect [144]

Casein hydrolysate VPP and IPP 48 subjects Anti-hypertensive effect [145]

Milk Yogurts containing IPP
and VPP

64subjects (men
and women) Anti-hypertensive effect [146]

Milk Casein hydrolysate (VPP
and IPP)

70 subjects (men
and women) Anti-hypertensive effect [147]

L. helveticus
fermented milk VPP and IPP 94 subjects (men and

women) hypertensive Anti-hypertensive effect [148]

Milk Hydrolyzed whey peptide

76 consecutive adult
patients (underwent

living-donor liver
transplantation)

Reduce post-transplant
hyperglycemia [149]

6. Products from Dairy Peptides

Milk and its products have been used for a long time due to their immense health
potential, nutritional value, and long history of safety. Milk is the infant’s primary food
and is also considered a significant nutrient source for a regular daily diet. In addition, it
is also known for its potential bioactive components such as proteins, peptides, etc. [150].
BAPs are the current area of research that is continuously increasing due to their extended
health attributes. Dairy products, cheese, and bovine milk are some of the most prominent
food sources used to produce BAPs and bioactive proteins [74]. BAPs are often used as con-
stituents of particular nutritive foodstuffs, like infant formulas and functional foods [151].
These peptides may also be released during the milk product production process. Hypoal-
lergenic infant formulae contain a rich amount of peptides which is formed by the use
of hydrolyzed milk proteins [152]. BAPs derived from dairy foods are also available in
the commercial market, which claims antihypertensive attributes such as Biozate, Evolus,
Calpis, etc., which are majorly produced from casein. BAPs could be used to make func-
tional food ingredients, medicinal products, dietary supplements, and nutraceuticals, and
to develop new products to prove health benefits. In addition to that, BAPs could be a
good option for establishing personalized nutrition [153]. Although, BAPs from different
sources such as plants, meat, edible seeds, etc., show several promising attributes in relation
to several disorders such as cancer, diabetes, brain health, hypertension, etc. [7,154,155].
Table 6 represents the commercial dairy products containing peptides that potentially
reduce hypertension.

Table 6. Dairy products that contain peptides have the potential to reduce hypertension.

Product Name Protein Source Processing Method Peptide Company References

Evolus® Casein Fermentation IPP, VPP Valio, Helsinki, Finland

[150,156–158]

BioZate® Whey proteins Hydrolysis with trypsin Whey peptides Davisco, Minnesota, USA

Calpis® Casein Fermentation IPP, VPP Calpis Co., Tokyo, Japan

Danaten® Fermentation ND Danone, Paris, France

Ameal S® Casein Fermentation IPP, VPP Calpis Co., Tokyo, Japan
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Table 6. Cont.

Product Name Protein Source Processing Method Peptide Company References

C12 peptide® Casein Hydrolysis with trypsin FFVAPFPEVFGK DMV International,
Holland, Netherlands

ND: Not described.

7. Safety of BAPs

BAPs are growing much researcher interest due to their immense nutritional and
therapeutic characteristics. Despite their remarkable health-enhancing potential, there is
a question about their safety. The main point is that these BAPs are primarily produced
using food-grade enzymes, but their safety is not proven scientifically. Several methods are
used for the production of the peptides other than the digestive enzymes-based method,
such as using several enzymes, using existing or new cultures to new substrates, or new
methods, which are not subsisted for human digestion. Consequently, many peptides are
deliberated new to people and do not have any safe history of their use, even though they
are derivatives of food proteins. So, it is not very clear about their health concerns; newly
prepared peptides may contain sequences that cause toxicity or allergic issues [159]. Several
components are formed during the processing of peptides or proteins, which may cause
severe health concerns in humans, such as allergic constituents, lysinoalanine, D-amino
acids, and biogenic amines [160]. In silico study predicted that several AAs such as P,
N, H, C or motifs like CYCR, KWK, KKLL, LKL, FKK are commonly revealed in toxic
peptides; however, I, K, L, and R, are approved minimally [161,162]. The only method
used to form hypoallergenic milk formulas is enzymatic hydrolysis [163,164]. It was
reported that formula stimulates the reaction in infants who were allergic to cow milk due
to residual peptides [165,166]. Moreover, VRTPEVDDEAL, GAQEQNQEQPIRCELDERF,
NSAEPEQSLAC and allergic peptides, were found in hypoallergenic formula [167,168].
However, due to their ample health-promoting attributes, BAPs may be a new point of
attraction to making functional foods’ ingredients or nutraceuticals, and many of them
have been on the market. Although, there is a lack of BAPs safety studies, which is essential
for their commercialization or before their incorporation into food products. Consequently,
it must be considered that the duration of peptide use, frequency, and supplementation
doses are very useful in evaluating BAPs containing product safety.

8. Conclusions and Future Perspectives

Milk proteins are encrypted with several peptides that have potential beneficial activi-
ties, especially against human chronic diseases. These peptides can be released through
enzymatic hydrolysis of the parent milk proteins and collected for use in the formulation of
nutraceuticals and functional foods aimed at health promotion, and also for reducing the
overreliance on drugs in combatting diseases. Food-derived peptides are attractive and
gaining traction within the scientific community because they contain natural amino acids
that do not exhibit the same level of toxicity or side effects as many traditional chemothera-
peutics (drugs). However, despite the many benefits of bioactive peptide-based therapies,
their wide application in functional foods and nutraceuticals for healthcare delivery has
been delayed due to several factors [169]. For example, limited efforts have been made to
explore therapeutic or functional foods at the industrial scale due to the lack of advanced
technologies for production, structural identification, and product enrichment. Moreover,
commercializing BAPs with specific health claims requires studies of their allergenicity,
efficacy, and toxicity profiles at different experimental levels such as in silico, in vitro, ex
vivo, and in vivo [170]. Despite these limitations, milk protein-derived peptides have great
promise as therapeutic agents because of their proven efficacy in ameliorating various
metabolic disorders.
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