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Abstract
In this article, we use exponentiated exponential distribution as a suitable statisti-
cal lifetime model for novel corona virus (covid-19) Kerala patient data. The suit-
ability of the model has been followed by different statistical tools like the value of 
logarithm of likelihood, Kolmogorov–Smirnov distance, Akaike information crite-
rion, Bayesian information criterion. Moreover, likelihood ratio test and empirical 
posterior probability analysis are performed to show its suitability. The maximum-
likelihood and asymptotic confidence intervals for the parameters are derived from 
Fisher information matrix. We use the Markov Chain Monte Carlo technique to gen-
erate samples from the posterior density function. Based on generated samples, we 
can compute the Bayes estimates of the unknown parameters and can also construct 
highest posterior density credible intervals. Further we discuss the Bayesian predic-
tion for future observation based on the observed sample. The Gibbs sampling tech-
nique has been used for estimating the posterior predictive density and also for con-
structing predictive intervals of the order statistics from the future sample.

Keywords  MLE · Bayes estimate · Bayes prediction · LR test · Empirical posterior 
probability

1  Introduction

In December 2019, a novel corona virus was recognized from China, in Wuhan 
city, Hubei province, see Arshad Ali et al. [4], Li et al. [20]. More importantly, the 
epidemic of covid-19 has occurred in most of the countries. At the international 
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level, WHO has declared the covid-19 as a epidemic, it has affected more than 215 
countries, areas or territories as a pandemic, see WHO [31]. But in India the first 
covid-19 case was reported on 30-01-2020, from a student, and then spread gradu-
ally in each state and increased the number of covid-19 cases. The virus has spread 
through respiratory droplets. The coughing, fever and sneezing are found to be the 
main symptom of covid-19, and for more see Chen et al. [9] and Paules et al. [23], 
etc. Further the transmission patterns of covid-19 based on age-specific social con-
tact characterization and countries with different social structures and lifestyles 
effects have been studied by Liu et  al. [21] and Shi et  al. [25] respectively. Chen 
et al. [9] has been discussed in the form of global health concern. Recently, Kumar 
[18] has discussed cluster analysis for covid-19 data set of different states and union 
territories (UTs) in India. While Khakharia et al. [17] have developed an outbreak 
prediction system for covid-19 of the top ten high densely populated countries in 
worldwide. Using machine learning and a suitable statistical model for predicting 
the rise in the new cases has highlighted for most of the countries. Moreover, on 
the outbreak of covid-19, many researchers have started investigating and using the 
covid-19 data for various perspectives. Therefore for statistical inference purpose, 
we have considered covid-19 data during 09-03-2020 to 23-04-2020 from Kerala 
state in India. The data have shown in further section. The collected data has been 
modeled with distribution and analyzed. Authors refer to see in detail, for modeling, 
prediction, big data analytics by Shi et al. [25], longitudinal data analysis by Temes-
gen et al. [29] and real-time decision analysis by Tien [30]. We know that the expo-
nential model has the most exploited distribution for lifetime data analysis. But its 
suitability has been restricted with a constant hazard rate, which is very difficult to 
verify in many practical problems. This led to the development of other distribu-
tions. The Weibull and gamma distribution have been extensively used for analysing 
lifetime data, particularly, in those situations where the hazard rate has monotoni-
cally increasing, decreasing and constant. The exponentiated exponential distribu-
tion was developed by Gupta et al. [13], which has an alternative to two parameters 
(shape and scale) as the Weibull and gamma distribution, see Gupta and Kundu [14].

1.1 � The Model

The probability density function (pdf) of the exponentiated exponential distribution 
or model (EED) is given by

where � and � are the shape and scale parameters, when � = 1 , it reduces 
to the one parameter exponential distribution. Figure  1 shows EED for 
� = 0.5, 2, 5, 10, 15;� = 1 . The cumulative density function (cdf) of EED with two 
parameters are given as

(1)f (x|𝛼, 𝜆) = 𝛼𝜆(1 − e−𝜆x)𝛼−1e−𝜆x; x > 0, 𝛼 > 0, 𝜆 > 0.

(2)F(x|𝛼, 𝜆) = (1 − e−𝜆x)𝛼; x > 0, 𝛼 > 0, 𝜆 > 0.
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The survival and hazard function for the EED are given by

and

respectively. The hazard function shown in Fig. 2 for � = 0.2, 0.8, 1, 2, 5; � = 1.
It may be noted here that the hazard function is monotone increasing if 𝛼 > 1 

and 𝜆 > 0 ; monotone decreasing if 𝛼 < 0 and 𝜆 > 0 ; and constant shaped if � = 1 
and � = 1 . The EED can be reduced to exponential distribution (ED) having a shape 
and scale parameter one. For more detailed about the EED, readers are referred 
to see Gupta et  al. [13], Gupta and Kundu [14]. Most of the studies on the EED 
and ED have focused on estimation of the parameters, reliability and hazard func-
tions see Singh [26]. In Bayesian paradigm, the prior distribution of the parameters 
have used to derive the posterior density of the parameters. This method has also 
used to obtain predictive inference for future observations. To learn more about the 
Bayesian inferences and model selections, readers are referred to Gelman et al. [11], 
Baklizi [5], Bernardo and Smith [7], Berger [6] and Geisser [10]. But no one has 
attempted to work on empirical posterior probability based inference for EED. Thus, 
in this manuscript our main goals are (i) to obtain the Classical and Bayes estimate 
of the parameter; (ii) to utilize the predictive models with a Kerala covid-19 data to 
obtain the predictive inference for future observations; (iii) to justify that the given 
sample follow the EED by using AIC, BIC and empirical posterior probability of 
model selection criteria and goodness-of-fit tests.

(3)S(x|𝛼, 𝜆) = 1 − (1 − e−𝜆x)𝛼; x > 0, 𝛼 > 0, 𝜆 > 0

(4)h(x|𝛼, 𝜆) = 𝛼𝜆(1 − e−𝜆x)𝛼−1e−𝜆x

(1 − e−𝜆x)𝛼
; x > 0, 𝛼 > 0, 𝜆 > 0,

Fig. 1   The probability model of 
the exponentiated exponential 
for different values of � and �
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Fig. 2   Hazard function on 
the probability model of the 
exponentiated exponential for 
different values of � and �
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Hence, the purpose of this paper is to present a systematic inference of EED. 
In Sect. 2, the maximum likelihood estimation of the parameter, asymptotic confi-
dence interval of EED. Bayes estimators of EED parameter using non informative 
prior is derived in Sect. 2.4. The Bayes prediction of EED for future observations 
explained in Sect.  3. In Sect.  4 mainly focused on the model selection criteria. 
Kerala covid-19 real data analysis report and discussion are mentioned in Sect. 5. 
In Sect. 6 shown the conclusion of this study.

2 � Estimation of Parameters

2.1 � The Likelihood Function

Let x1, x2,… , xn be a random sample of size n are drawn from EED, and 
� = (x1, x2,… , xn)

� forms an observed sample. Then for given a set of data 
� = (x1, x2,… , xn)

� from Eq. (1), the likelihood function is given by

The log-likelihood function of EED specified in Eq. (5) is given by

2.2 � MLE of ̨  and �

The maximum likelihood estimate (MLE) of � and � are the solution of the fol-
lowing normal equation (obtained by equating the partial derivative of Eq. (6) w. 
r. t. � and � to zero). Now, obtain the MLE of � and � from above Eq. 5. We can 
solve the two non linear normal equation given as,

It may be noted here that the normal equations thus obtained do not have explicit 
or closed solutions. Therefore, we have used the Newton–Raphson method for its 
numerical solution.

(5)L(�, ���) = �n�ne−�
∑n

i=1
xi

n�

i=1

(1 − e−�xi )�−1.

(6)ln (L(�, �|�)) = n ln(�) + n ln(�) + (� − 1)

n∑

i=1

ln(1 − e−�xi ) − �

n∑

i=1

xi.

(7)
n

�
+

n∑

i=1

ln(1 − e−�xi ) = 0,

(8)
n

�
+ (� − 1)

n∑

i=1

xie
−�xi

1 − e−�xi
−

n∑

i=1

xi = 0.
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2.3 � CI of ̨  and �

The confidence interval (CI) of � and � for EED can be derived by the Fisher’s infor-
mation matrix, which is given by

where

The observed Fisher’s information matrix is

Therefore, the observed variance–covariance matrix becomes I−1
(
𝛼̂, 𝜆̂

)
 . Here,

and where the elements of

A two-sided normal approximate 100(1 − �)% CI for the parameters � and � are �
𝛼̂ ± z𝜓∕2

√
Var(𝛼̂)

�
 and 

(
𝜆̂ ± z𝜓∕2

√
Var(𝜆̂)

)
 respectively, and where z�∕2 is the 

upper (�∕2)th percentile of the standard normal distribution.

2.4 � Bayes Estimate

In order to obtain the Bayes estimate of the parameters � and � based on Kerala 
covid-19 data set. We assume that these parameters are independently uniformly dis-
tributed over the interval (0, �) and (0, �) respectively. Berger [6] discussed an esti-
mation theory under uncertain prior information, see Jeffreys et al. [16] and Jeffreys 
[15]. The joint prior distribution of � and � are given by

�

[
�

�

]
= E

[
−

�2 ln (L(�,�|�))
��2

−
�2 ln (L(�,�|�))

����

−
�2 ln (L(�,�|�))

����
−

�2 ln (L(�,�|�))
��2

]
,

�2 ln (L(�, �|�))
��2

= −
n

�2
,

�2 ln (L(�, �|�))
����

=
�2 ln (L(�, �|�))

����
=

n∑

i=1

xie
−�xi

1 − e−�xi
,

�2 ln (L(�, �|�))
��2

= −
n

�2
− (� − 1)

n∑

i=1

x2
i
e−�xi

(1 − 2e−�xi)

(1 − e−�xi )2
.

�

[
𝛼̂

𝜆̂

]
= E

[
−

𝜕2 ln (L(𝛼,𝜆|�))
𝜕𝛼2

−
𝜕2 ln (L(𝛼,𝜆|�))

𝜕𝛼𝜕𝜆

−
𝜕2 ln (L(𝛼,𝜆|�))

𝜕𝜆𝜕𝛼
−

𝜕2 ln (L(𝛼,𝜆|�))
𝜕𝜆2

]

𝛼=𝛼̂,𝜆=𝜆̂

=

[
�11 �12
�21 �22

]
.

�

[
𝛼̂

𝜆̂

]
∼ N

([
𝛼

𝜆

]
, �−1

[
𝛼̂

𝜆̂

])
,

�−1
(
𝛼̂, 𝜆̂

)
=

[
�11 �12
�21 �22

]−1
.
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Using the joint prior density of Eq. (9) and likelihood of Eq. (5), the posterior den-
sity of � and � is given by

where ��(�) is a normalizing constant. Hence, the respective marginal posterior pdfs 
of � and � are given by

and

The Bayes estimator 𝛼̂B and 𝜆̂B of � and � comes out to be

and

respectively, provided the posterior expectation exist. The above integrals in Eqs. 
(13) and (14) are not obtainable in closed form. Therefore, Markov Chain Monte 
Carlo (MCMC) method are used for their calculation. In this method, first we gener-
ate samples from posterior distributions, through the Gibbs sampler via the Metrop-
olis–Hastings algorithms, then this sample is used to compute Bayes estimates. The 
Gibbs algorithm are used for simulating the samples from the full conditional pos-
terior distributions while the Metropolis–Hastings algorithm generate samples from 
an arbitrary proposal distribution (i.e. a Markov transition kernel). For details about 
this method, see Singh et al. [28]. Hence, conditional posterior distributions of the 
parameters � and � can be written as

and

(9)g(𝛼, 𝜆) =
1

𝛼𝜆
; 𝛼 > 0, 𝜆 > 0.

(10)�(�, ���) = ��(�)�
n−1�n−1e−�

∑n

i=1
xi

n�

i=1

(1 − e−�xi )�−1,

(11)�1(�|�) = ∫
∞

�=0

�(�, �|�)d�

(12)�2(�|�) = ∫
∞

�=0

�(�, �|�)d�.

(13)𝛼̂B = ∫
∞

0

𝛼𝜋1(𝛼|�)d𝛼

(14)𝜆̂B = ∫
∞

0

𝜆𝜋2(𝜆|�)d𝜆,

(15)�∗
1
(�|�) ∝ �n−1

n∏

i=1

(1 − e−�xi )�−1

(16)�∗
2
(���) ∝ �n−1e−�

∑n

i=1
xi

n�

i=1

(1 − e−�xi )�−1,
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respectively. The Bayes estimate for � and � , the required sample from Eqs. (15) and 
(16) are generated using MCMC procedure. For the details of the algorithm used, 
see Singh et al. [27].

3 � Bayes Prediction

Let us consider a future sample � = (y1, y2,… , ym)
� of size m, inde-

pendent of the informative sample � = (x1, x2,… , xn)
� and let 

y(1) < y(2) < ⋯ < y(r) < ⋯ < y(m−1) < y(m) be the sample order statistics. Suppose 
that we are interested in the posterior predictive density of the future order statistic 
y(r) given the informative set of data x1, x2,… , xn . If the pdf of the rth order statistic 
in the future sample is denoted by h(r)(.|�, �) , then

here f (.|�, �) and F(.|�, �) are same as above Eqs. (1) and (2), respectively. The pre-
dictive density of y(r) is denotes as h∗

(r)
(.|�) , then

where �(�, �|�) is the joint posterior density of � and � as given Eq. (10). It is note 
that h∗

(r)
(y|�) cannot be expressed in closed form and hence it cannot be evaluated 

analytically. When r = 1 & m = 1 in Eq. (18), it becomes the one sample prediction 
given below

Therefore, the consistent solution of h∗
(r)
(y|�) can be obtained by using the Gibbs 

sampler via the Metropolis–Hastings algorithm. Hence, the consistent estimator of 
h∗
(r)
(y|�) is given by

where (�i, �i), i = 1,…M are obtained from �(�, �|�) using the MCMC technique. 
Along the same line, if we want to estimate the predictive distribution of y(r) , say 
H∗

(r)
(.|�) , then a consistent estimator of H∗

(r)
(y|�) can be obtained as

Where H(r)(y|�, �) denotes the distribution function of h(r)(y|�, �) , which is given by

(17)h(r)(y|�, �) =
1

Beta(r,m − r + 1)

[
F(y|�, �)

]r−1[
1 − F(y|�, �)

]m−r
f (y|�, �),

(18)h∗
(r)
(y|�) = ∫

∞

�=0 ∫
∞

�=0

h(r)(y|�, �)�(�, �|�)d�d�,

(19)h∗(y|�) = ∫
∞

�=0 ∫
∞

�=0

f (y|�, �)�(�, �|�)d�d�.

(20)ĥ∗
(r)
(y|�) = 1

M

M∑

i=1

h(r)(y|𝛼i, 𝜆i),

(21)Ĥ∗
(r)
(y|�) = 1

M

M∑

i=1

H(r)(y|𝛼i, 𝜆i).
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It may also noted here that the same MCMC sample (�i, �i), i = 1, 2,… ,M can be 
used to compute ĥ∗

(r)
(y|�) or Ĥ∗

(r)
(y|�) for all y. Further an important problem to 

establish a two sided predictive interval of the rth order statistic Y(r) drawn from a 
future sample {Y1,… , Ym} of size m, and it does not depend on the informative sam-
ple {x1,… , xn}.

Now we construct a 100�% predictive interval for Y(r) . In symmetric case, the 
100�% predictive interval for Y(r) can be obtained by

and

for the lower bound L and upper bound U respectively, see Al-Jarallah and Al-Hus-
saini [3]. While in asymmetric case, the predictive interval of the form (L,∞) and 
(0, U) with the coverage probability � can be obtained by

and

for L and U respectively. It is very difficult to obtain the analytical solutions. There-
fore, we may apply some right numerical techniques for solving these nonlinear 
equations.

4 � Model Selection Methods

4.1 � Information Criterion

Entropy as an information criteria in the statistics and tells us that estimate of 
parameter is the disorder or lack of information about the sampling of distribution. 
The modeling process can be judged by Akaike’s information criterion (AIC) and 
Bayesian information criterion (BIC).

4.2 � AIC

This is a tool for model selection, it was developed by Akaike [2]. The estimated sta-
tistical models and the goodness of fit are measured through AIC. For the considered 

(22)

H(r)(y|�, �) =
1

Beta(r,m − r + 1) ∫
F(y|�,�)

0

[F(t|�, �)]r−1[1 − F(t|�, �)]m−rf (t|�, �)dt.

(23)
1 + 𝜓

2
= P

(
Y(r) > L|�

)
= 1 − H∗

(r)
(y|�) ⇒ H∗

(r)
(y|�) = 1

2
−

𝜓

2

(24)
1 − 𝜓

2
= P

(
Y(r) > U|�

)
= 1 − H∗

(r)
(y|�) ⇒ H∗

(r)
(y|�) = 1

2
+

𝜓

2

(25)P
(
Y(r) > L|�

)
= 𝜓 ⇒ H∗

(r)
(y|�) = 1 − 𝜓

(26)P
(
Y(r) > U|�

)
= 1 − 𝜓 ⇒ H∗

(r)
(y|�) = 𝜓
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data, all the considered competing models may be ranked according to their AIC, with 
the one having the lowest AIC being the best. This can be evaluated by

4.3 � BIC

BIC has developed by Schwarz et al. [24], for model selection among the considered 
statistical models with different number of parameters. The MLE method is used to 
estimate the model parameter, it is possible to increase the likelihood by adding param-
eters, which may result in over fitting. The BIC resolves this problem by introducing a 
penalty per parameter term for the number of parameters in the model. This led to the 
AIC, and can be evaluated by

The lower value of BIC is preferred among the estimated considered models. It may 
also noted that, k is the number of parameters in the model and n is the sample size.

4.4 � Nonparametric Empirical Posterior Probability

In Bayesian setup, we want to choose a most appropriate model from a bunch of r fully 
specified models. Let f1(�), f2(�),… , fr(�) be densities or models with underlying 
observation vector � = (x1, x2,… , xn)

� for � ∈ S . We want to extract most important 
and informative model for � ∈ S . For this, we assume that �1,�2,… ,�r be the subjec-
tive probabilities of each models with 

∑r

j=1
�j = 1 , where �j denotes the probability of 

the jth model. Although if there is no any further information to distinguish models, 
then the unbiased choices �j = 1∕r , for j = 1, 2,… , r are reasonable, and �j is referred 
as prior probabilities for jth model, see Leonard and Hsu [19]. Hence, empirical poste-
rior probability of the jth model is given by

The posterior mean value function of sampling density is

where S denotes the set of all possible realization of the observation vector 
� = (x1, x2,… , xn)

�.

AIC = 2k − 2 ln(L(�, �|�)).

BIC = k ln(n) − 2 ln(L(�, �|�)).

(27)�∗
j
=

�jfj(�)
∑r

i=1
�ifi(�)

, j = 1, 2,… , r.

(28)p∗(�) =

∑r

j=1
�j(�)fj(�)

∑r

j=1
�jfj(�)

, u ∈ S,
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5 � Kerala Covid‑19 Real Data Analysis

The covid-19 positive confirmed number of patients data are taken from Kerala 
state between 09-03-2020 to 23-04-2020. The daily bulletin of data has been 
issued by covid-19 outbreak control and prevention state cell, health and family 
welfare department, directorate of health services, government of Kerala. Avail-
able at https://​dhs.​kerala.​gov.​in/. The covid-19 confirmed number of patients data 
are reported as below

Between these date the total 447 persons have been tested covid-19 positive, and 
129 persons are considered under treatment.

According to an idea with associated failure rate, we considered, a graphical 
method based on total time on test (TTT) plot as a crude indicator see Aarset [1]. 
The empirical TTT is given as

where r = 1, 2,… , n and x(r) is the order statistics of the sample.

3, 6, 8, 2, 3, 2, 3, 1, 12, 12, 15, 28, 14, 9, 19, 39, 6, 20, 32, 7, 24, 21, 9,

11, 8, 13, 8, 9, 12, 7, 10, 2, 3, 8, 1, 7, 1, 4, 2, 6, 19, 11, 10.

T(r∕n) =

∑r

i=1
x(i) + (n − r)x(r)
∑n

i=1
x(i)

,

Fig. 3   TTT plot for Kerala 
covid-19 data
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Figure 3 shows the TTT plot, which is concave indicating that data relates to 
an increasing failure rate. Thus, it can be properly accommodated by a EED. The 
fitting of EED was checked using PP plot and CDF plot given in Fig. 4.

5.1 � Goodness of Fit Test

5.2 � LR Test

By testing the hypothesis that � = 1 , we can see if the EED provides a better pre-
diction of the Kerala covid-19 data of the component compared with one param-
eter ED. Note that the graphical presentation of empirical and theoretical cdf can 
be verified in case that EED can explain the data well enough. The likelihood 
ratio (LR) test will be discussed here for theoretical justification purpose, see a 
recent work on LR test by Pathak et al. [22]. The test on the shape parameter � , 
the null hypothesis is H0 ∶ � = 1 , and the test statistic

is asymptotically with �2

1
 . Here L(𝛼̂, 𝜆̂|�) is the likelihood function of the 

EED, 𝛼̂, 𝜆̂ is the MLE, and 1, 𝜆̂ is the MLE under condition of H0 . The MLE of 
the parameters for Kerala covid-19 data are 𝛼̂ = 1.572179, 𝜆̂ = 0.126561 and 
ln(L(𝛼̂, 𝜆̂|�)) = −141.6486 . Hence, the observed Fisher’s information matrix � is

Thus, the inverse of � is given by

Now, we can obtained the asymptotic 95% intervals for the parameters as summa-
rized in Table 1.

Under H0 ∶ � = 1 , the MLE of � is 0.096196, and ln(L(1, 𝜆̂|�)) = −143.6784 . 
Thus, the ratio test statistic is Λ = 0.04391913 , and corresponding p value 
is 0.9560809. Hence, we have enough evidence (i.e., more than 95% level of 

Λ = −2 ln

(
L(1, 𝜆̂|�)
L(𝛼̂, 𝜆̂|�)

)
,

� =

[
17.39312 − 187.3144

−187.31445 3963.9184

]
.

�−� =

[
0.117074044 0.0055323187

0.005532319 0.0005137046

]−1
.

Table 1   The 95% confidence 
intervals for � and � based on 
MLE

Parameters MLE Confidence interval

� 1.572179 (0.9015562, 2.242802)
� 0.1265606 (0.0821379, 0.1709833)
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confidence) to reject our null hypothesis and conclude that the sub model ED 
(when � = 1 ) cannot give a good enough fit to Kerala covid-19 data.

5.3 � K–S Test

It is well known that Kolmogorov–Simirnov (K–S) test is applicable even in the 
case of very small samples as well as large samples. This test assumes continuous 
of the distribution function, to check difference between Fn(x) and F(x), see Gib-
bons and Chakraborti [12]. Since, to test

where Fn(x) is the sample (empirical) distribution function, F(x) is specified EED 
for all � . The test statistic

is less then tabulated value of K–S distance Dn,� then accept H0 otherwise reject. 
The statistic Dn is used to obtain the confidence bands on Fn(x) for all x, where Fn(x) 
is a consistent estimator for cdf F(x). The number Dn,� is obtain from the K–S table 
(critical value), such that

where, 0 ≤ F(x) ≤ 1, ∀x . Thus we define

and

where Ln(x) and Un(x) are lower and upper confidence band for the cdf F(x), with 
100(1 − �)% confidence coefficient. Of course, the F(x) lies completely within the 
limits if and only if the hypothesis cannot be rejected at �% level of significance. 
Hence, the K–S test has been applied on Kerala covid-19 data, and value of the test 
statistics 0.093023 < 0.207398 (critical value) and the K–S bound plot in Fig.  5, 
which shows that EED provides a satisfactory fit to the Kerala covid-19 data.

H0 ∶ Fn(x) = F(x),

H1 ∶ Fn(x) ≠ F(x),

Dn = sup|Fn(x) − F(x)|

P
[
sup|Fn(x) − F(x)| < Dn,𝜓

]
= 1 − 𝜓 ,

Ln(x) = max
[
Fn(x) − Dn,� , 0

]
,

Un(x) = min
[
Fn(x) + Dn,� , 1

]
,

Fig. 5   The K–S bound plot for 
Kerala covid-19 data
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5.4 � Discussions

By all the above criteria of goodness of fit as well as discussed above model suit-
ability for considered Kerala covid-19 data, we see that from the fitted density and 
empirical posterior probability plots in Fig. 6 and sample quantile plot in Fig. 7 of 
EED provide better fit than ED. Also, from Table 2, it can be seen that the quantiles 
of the EED and ED at various points of Kerala covid-19 data are very less similar 
to each. The quantiles value of the EED were found to be more than ED, and hence 
it covers significantly more information than ED. Moreover, the main advantage of 
taking EED over ED is that it has accommodate different types of hazard rate.

According to the results shown in Table  3, we observed that the value of 
-log(Likelihood), p value, and empirical posterior probability values of EED are 
larger than ED for Kerala covid-19 data. Also, the value of K–S distance, AIC 
and BIC are found lesser than ED. Therefore, on the basis of Table 3 we conclude 
that the EED satisfactorily modeled the Kerala covid-19 data.

Now, we obtained the MLE of � , � and corresponding Bayes estimates with 
non-informative priors for the Kerala covid-19 data. The MLE of � and � can 
obtained from above Eqs. 7 and 8 respectively. The computation of MLE of � and 
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Fig. 6   The fitted density and empirical posterior probability plot for Kerala covid-19 data
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� for Kerala covid-19 data samples, we used the Newton-Raphson method with 
the initial guess for � and � have been taken from contour plots, which is shown 
in Fig. 8 and their MLE are verified from Fig. 9.

For the calculation of Bayes estimate under the prior in Eq. 9, and are obtained by 
the expected value of � and � with respect to their marginal posteriors as stated above 
Eqs. (11) and (12) respectively. The Bayes estimate of � and � are obtained as 𝛼̂B and 
𝜆̂B , respectively, and corresponding 95% HPD intervals are summerise in Table 4.  

The highest predictive density interval (HPDI) is the interval that includes the 
most probable values of a given predictive density at a given significance level, sub-
ject to the condition that the density function has the same value at the end points. 
For more about HPD intervals, the reader is referred to Box and Tiao [8]. We have 
reported certain HPD intervals by using the Kerala covid-19 data, see Table 5.

Figure 10 represents the posterior predictive density and distribution function for 
the future observations. The graphs are displayed based on future observations.

6 � Conlusion

The EED studied in this article is flexible in modeling with increasing failure rate 
function. Based on different types of goodness of fit tests, we saw that EED provide 
better fit for Kerala covid-19 data. The MLE, Bayes estimates and nonparametric 
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empirical posterior probability are derived. Among various types of model selec-
tion criterion as well as proposed empirical posterior probability, we observe that 
EED has perform better than ED. The MLE, AIC, BIC, CIs and HPDs are reported 
in Tables  3 and 4, respectively. Since we have no prior information about data, 
the Bayesian estimation is done under non-informative prior. Moreover, we have 
also verified with the help of Table 5, the Bayes predictive inference for one sam-
ple future observations of a real data set that are positive skewed. Also, we have 
seen in Table 5, for next 43 days future covid-19 patients will be detected positive 

Table 4   The Bayes estimate and 95% HPD intervals for � and �

Parameters Bayes estimate HPD Interval

𝛼̂B 1.576098 (1.25246, 1.889621)

𝜆̂B 0.1262713 (0.08057642, 0.1699846)

Table 5   Summary results of the Bayes predictive inference for a future observations

Predictive results Row moments Corrected moments
Kerala covid-19 data

n = 43 �′
1
 = 12.70755 �2 = 116.4683

Mean = 12.70755 �′
2
 = 277.9502 �3 = 1846.827

SD = 10.91977 �′
3
 = 8338.947 �4 = 68950.5

𝛼̂ = 1.576098 �′
4
 = 301746.6 �1 = 1.469314

𝜆̂ = 0.126271 �2 = 5.083021

� (y) = 1.653819e−16
HPD Intervals Coefficient of Skewness and Kurtosis
90% HPDI: (1.575177, 27.8505) �1 =

√
�1 = 1.212153

95% HPDI: (1.054455, 28.6958) �2 = |�2 − 3| = 2.083021
97% HPDI: (1.054455, 41.36516)
99% HPDI: (1.054455, 49.81872)
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Fig. 10   The Posterior predictive density and distribution function based on future observations
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approximately 546 persons. Thus we recommend that EED may be used in future 
research for Bayesian inference with positive skewed data.
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