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Abstract: Pearl millet (Pennisetum glaucum L.) is affected by drought stress, affecting crop productivity
and survival. Long non-coding RNAs (lncRNAs) are reported to play a vital role in the response
to drought stress. LncRNAs represent a major part of non-protein coding RNAs and are present
prevalently. These are involved in various biological processes, which may functionally act as RNA
rather than getting transcribed as protein. We targeted genome-wide identification of lncRNAs in
pearl millet from root and leaf tissues subjected to drought stress. A total of 879 lncRNAs were
identified, out of which 209 (leaf control, root control), 198 (leaf treated, root treated), 115 (leaf
control, leaf treated) and 194 (root control, root treated) were differentially expressed. Two lncRNAs
were found as potential target mimics of three miRNAs from the miRBase database. Gene ontology
study revealed that drought-responsive lncRNAs are involved in biological processes like ‘metabolic
process’ and ‘cellular process’, molecular functions like ‘binding’ and ‘catalytic activities’ and cellular
components like ‘cell’, ‘cell part’ and ‘membrane part’. LncRNA-miRNA-mRNA network shows
that it plays a vital role in the stress-responsive mechanism through their activities in hormone
signal transduction, response to stress, response to auxin and transcription factor activity. Only
four lncRNAs were found to get a match with the lncRNAs present in the plant lncRNA database
CANTATAdb, which shows its poorly conserved nature among species. This information has been
cataloged in the pearl millet drought-responsive long non-coding RNA database (PMDlncRDB).
The discovered lncRNAs can be used in the improvement of important traits, as well as CISPR-Cas
technology, in the editing of ncRNAs in plants for trait improvement. Such a study will increase our
understanding of the expression behavior of lncRNAs, as well as its underlying mechanisms under
drought stress in pearl millet.

Keywords: lncRNAs; pearl millet; drought; miRNAs; web resource

1. Introduction

The advent of advanced high-throughput genomic platforms has provided us with var-
ious insights into biological gene regulation. It opines that the expansion of the regulatory
potential of the noncoding parts of the genome leads to the evolution of developmental pro-
cesses that regulate the organism’s complexity [1,2]. Only a portion of the genomes (~1–2%)
is found to be responsible for protein coding, while many of the regulatory elements get
transcribed into non-coding RNA (ncRNA). Among these ncRNAs, long non-coding RNAs
(lncRNAs) represent the most prevalent, involved in various biological processes, which
may functionally act as RNA rather than getting translated into protein [3].
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Noncoding RNAs which include microRNAs (miRNAs) and lncRNAs are the func-
tional transcripts for gene regulation that are not translated into proteins. The lncRNAs
are generally longer than 200 nucleotides and are involved in DNA methylation, chro-
matin remodeling or enhancing the expression of mRNA targeted by miRNA [4]. The
ncRNAs can be divided into two categories: lncRNAs and ncRNAs (those being smaller
than 200 nucleotides). LncRNAs are the RNA transcripts that act as either primary or as
spliced transcripts, independent of their length threshold [5]. This definition supports the
presence of some lncRNAs like BC1 and snaR in the lncRNAdb having a length of less than
200 nucleotides.

Different research shows lncRNAs to be involved in several important regulatory and
functional roles [6,7] such as splicing, transcription, translation, cell cycle, protein localiza-
tion, flowering, development of pollens, sex differentiation, cellular structure integrity, heat
shock response, cancer progression, exhibit cell-specific expression and stress responses [8],
chromatin regulation [9], development of floral organ and root [10], etc. In addition, LncR-
NAs are poorly conserved among different species as compared to mRNAs, snoRNAs
(small nucleolar) and miRNAs (micro RNAs). Similar to mRNAs, lncRNAs are transcribed
by RNA polymerase II, 3′ polyadenylated, 5′ capped and found to be multi-exonic [11].

Literature reports the discovery of lncRNAs in plants, such as Arabidopsis [12],
rice [13], wheat [14], maize [15], rapeseed [16] and cassava [17], suggesting the role of
lncRNAs in many biological processes contributing to the development of plants and
their response to various stresses. Various research works have shown the evidence of
the role of lncRNAs in abiotic stress, including drought stress but these are very few in
number [17]. There have been instances where lncRNAs are reported to control drought
stress tolerance, both in monocots and dicots. Drought-responsive lncRNAs are evident
in monocots like rice [18], maize [19], foxtail millet [20], and switchgrass [21]. These lncR-
NAs mediate response to drought stress through mechanisms based on eTM, antisense
transcription-mediated modulation, chromatin modulation, etc. They may directly regulate
the transcription of drought-responsive genes as well [22–24].

Owing to the gaining importance of lncRNAs discovery, many lncRNA repositories
and databases have been launched during the last 6–7 years. There exist many lncRNA
databases, like PLncDB V2.0 which contains 1,246,372 lncRNAs for 80 plant species based on
13,834 RNA-Seq datasets [25]. A total of almost 200,000 putative lncRNAs from 50 species
have been cataloged in Green Non-Coding Database (Gallart et al., 2016) [26]. Other
existing lncRNA databases are EVLncRNAs [27], lncRNAdb [28], PLNlncRbase [29], CAN-
TATAdb [30] and RNAcentral [31].

Pearl millet (Pennisetum glaucum L.) is the world’s sixth most important cereal crop
and is mostly grown by the poor and marginal farmers in arid and semi-arid tropics of
Asia and Africa, due to its less intensive agronomic practices like less fertilizers and limited
irrigation input [32]. It is cultivated mainly for its grains but also used as feed material for
cattle, poultry, fish, etc. Pearl millet has multifarious applications as fodder for animals,
feed for poultry, as bread/cookies ingredient (ICRISAT, 2003), as probiotic fermented
food [33], vegetable salad (http://sprigandvine.in/modern-millet-salad/) (accessed on
4 August 2021), nutraceutical industry [34] and as a biofuel crop. The crop is able to
perform well in drought conditions where most of the cereals like wheat, rice and maize
fail. So, understanding the molecular mechanism of the responses of pearl millet to adverse
conditions is important. Key candidate genes controlling drought response in Indian pearl
millet have been discovered and reported [35] but lncRNA still remains uncovered. The
expression of candidate genes is controlled by microRNA, TFs and lncRNA. The study
aims at the identification of drought-responsive lncRNAs and the development of a web of
genomic resources for user-friendly access to the investigation findings, which is otherwise
lacking in this crop. The discovered lncRNAs can be used in the improvement of important
traits as in the case of rice [36]. Such studies can further be used by integrating CISPR-Cas
technology in the editing of ncRNAs in plants for the improvement of their trait [37]. All of
this information has been cataloged in the pearl millet drought-responsive long non-coding
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RNA database (PMDlncRDB) accessible freely at http://webtom.cabgrid.res.in/pmdlncrdb
(accessed on 10 January 2021). The study aims at the identification of drought-responsive
lncRNAs and the development of a web of genomic resources for user-friendly access to
the investigation findings, which is otherwise lacking for this crop. This information can
be used for pearl millet improvement programs in endeavors of higher production and
combating drought in pearl millet.

2. Material and Methods
2.1. Data Pre-Preprocessing

Pennisetum glaucum J-2454 variety, which is drought tolerant, was grown in green-
houses during the summer season at Junagarh Agriculture University, Gujarat, India.
About 25–30 seeds were sown per polythene bag in three replications with control and
water stress. The tissues (leaf and root) were collected on the 29th day after sowing
(withdrawal of irrigation for 6 days after the 23rd day of sowing) from control and
drought-treated plants and stored in liquid nitrogen at −80 ◦C. Tissues were frozen in
liquid nitrogen and stored at −80 ◦C. RNA was extracted using the standard protocol
of TRIZOL RNA isolation in accordance with the manufacturer’s protocol (Life Tech-
nologies, Grand Island, NY, USA) as described in Jaiswal et al., 2018. Experimental de-
tails and data generation is described by Jaiswal et al., 2018. Data are available at SRA
NCBI with SRR5839373 (Leaf control), SRR5839374 (Leaf treated), SRR5839375 (Root con-
trol), SRR5839376 (Root treated). The reference genome of Pearl millet was downloaded
from NCBI (https://www.ncbi.nlm.nih.gov/bioproject/PRJNA294988) (accessed on 10
January 2021). The raw reads were checked for quality using the FastQC tool [38]. Poor
quality reads were trimmed using Trimmomatic [39] at default parameters and rechecked
for quality by FastQC.

The clean and trimmed reads were aligned with the reference genome using HISAT2
aligner [40] and assembled by the StringTie v1.3.5 program, which is part of the “new
Tuxedo” suit [41,42]. We used a reference annotation file to improvise the quality of the
result and assembly of less abundant genes, which would have been missed otherwise.
After getting all assembled reads, gffcompare tool (v0.11.2, https://ccb.jhu.edu/software/
stringtie/gffcompare.shtml) (accessed on 15 February 2021) was employed to assemble all
files in a single gtf file for further downstream analysis.

2.2. Candidate lncRNA Prediction

The pipeline used for the identification and development of lncRNA with annota-
tion and their development of web genomic resources has been described in Figure 1.
The gffcompare tool classifies all the four gtf (gene transfer format) assembly files into
various class codes viz. i (transcript falling in the intronic region), o (exonic overlap), u
(unknown/intergenic), x (overlapping an exon on opposite strand), r (repeats), etc. [43].
The transcripts corresponding to class codes i, u and x only were extracted. The transcript
smaller than 200 nucleotides in length were removed using an in-house perl script. Then,
transcripts with FPKM values < 0.5 were discarded, and transcripts with a single exon
having < 2 FPKM values were also removed.

http://webtom.cabgrid.res.in/pmdlncrdb
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA294988
https://ccb.jhu.edu/software/stringtie/gffcompare.shtml
https://ccb.jhu.edu/software/stringtie/gffcompare.shtml
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> 100 amino acids were discarded. The coding potential calculator (CPC2) tool 
(http://cpc2.cbi.pku.edu.cn/) (accessed on 10 April 2021) was used to predict the coding 
potential of the transcripts [45] and the sequences with those with coding potential prob-
ability values >0.5 were discarded on the account of being coding. The house-keeping 
genes (including tRNAs, rRNAs, snRNAs and snoRNAs) were removed by aligning the 
lncRNAs at different lncRNA databases (http://noncode.org, http://gtrna, http://silva) [46] 
(accessed on 27 April 2021). While searching novel transcripts, BLAST [47] was performed 
with NCBI non-redundant database and homologous pairs were removed. The protein-
coding transcript was eliminated by scanning against the Pfam protein family database 

Figure 1. Schematic diagram for identification of lncRNAs, annotation of target mRNAs and devel-
opment of web genomic resource.

OrfPredictor tool [44] was used to predict the ORFs. The transcripts with ORF
length > 100 amino acids were discarded. The coding potential calculator (CPC2) tool
(http://cpc2.cbi.pku.edu.cn/) (accessed on 10 April 2021) was used to predict the coding
potential of the transcripts [45] and the sequences with those with coding potential proba-
bility values >0.5 were discarded on the account of being coding. The house-keeping genes
(including tRNAs, rRNAs, snRNAs and snoRNAs) were removed by aligning the lncRNAs
at different lncRNA databases (http://noncode.org, http://gtrna, http://silva) [46] (ac-
cessed on 27 April 2021). While searching novel transcripts, BLAST [47] was performed
with NCBI non-redundant database and homologous pairs were removed. The protein-
coding transcript was eliminated by scanning against the Pfam protein family database [48]

http://cpc2.cbi.pku.edu.cn/
http://noncode.org
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using HMMER [49] to exclude any of the possibility of known protein domains. The unique
transcripts were considered as potential lncRNAs.

2.3. Identification of Differentially Expressed lncRNAs, Their Characterization and Annotation

For the differential expression of lncRNAs, analysis of four pairs of combinations
viz., leaf control root control (LC:RC), leaf treated root treated (LT:RT), leaf control leaf
treated (LC:LT) and root control root treated (RC:RT) was done. We used the “new Tuxedo”
protocol [42]. The reads were aligned by HISAT, followed by transcripts assembly using
StringTie. This was followed by StringTie—merge to merge GTF files. The read count
matrix was generated through python script (prepDE.py). To identify the differentially
expressed lncRNA, NOISeq [50] of the R Bioconductor package was used with an adjusted
p-value < 0.05.

Homology search of the differentially expressed lncRNAs of pearl millet was per-
formed against the known plant lncRNA database, that is, CANTATAdb [51] with the
threshold e-value of 0.001 and sequence coverage and identity > 90%. To know if the
predicted lncRNAs act as a precursor of miRNA (pre-miRNA), they were subjected to a
BLAST search against the known miRNAs available in miRbase (release 22.1) [52]. The
secondary structures were predicted and plotted using the Vienna RNA package RNAfold
web [53]. Characterization of the identified mRNAs was performed using the Blast2GO
tool (https://www.blast2go.com/) (accessed on 12 May 2021) thereby classifying them into
subcategories like biological process, molecular function and cellular component.

2.4. Identification of miRNAs Targeting the lncRNAs and Their Target mRNAs

LncRNAs are known to be very poorly conserved among species, but miRNAs on
the other hand are known to be conserved throughout the plant species. To identify the
miRNAs targeting lncRNAs, the lncRNAs transcripts were BLAST against the miRBase
database using the blastn program with stringent parameters like e-value < 0.001, percent
identity > 90% and coverage > 80%.

LncRNAs can also function as target mimics of the miRNAs imitating the correspond-
ing mRNAs. Potential targets of miRNAs against mRNAs were predicted by psRNATar-
get [54], with an expectation of <3 and unpaired energy (UPE) < 25.

2.5. Development of Pearl Millet lncRNAs Database (PMDlncRDB)

A web genomic resource, the Pearl millet lncRNAs database (PMDlncRDB) was
developed which contains the information about identified lncRNAs in response to drought
stress in pearl millet. The database also contains the publicly available lncRNAs of the
pearl millet crop. The developed web transcriptome database is based upon the “three-tier
architecture” of a database system consisting of the client tier, the middle tier and the
database tier. The client layer was developed using HTML and JavaScript for browsing the
database and defining queries. The middle tier was made using PHP, which functions in
database connectivity, executing queries and fetching data from the database. The last tier,
database tier was made using MySQL, which will be having the data about the identified
lncRNAs, publicly available lncRNAs in pearl millet, GO (gene ontology) terms, etc.

3. Results
3.1. Data Pre-Preprocessing

The single-end RNASeq data used in this study comprised a total of 12.14 million
raw reads. After trimming and adapter removal, the clean reads were mapped over the
pearl millet reference genome using HISAT2 software to get the overall aligned rate of
73.46%, 73.53%, 69.81% and 72.95% for LC, LT, RC and RT samples (Table 1). and recovered
3.35 million mapped reads Table 1. A total of 39,978 transcripts were generated assembly
by StringTie. Table 2 delineates the summary statistics of transcriptome assembly.

https://www.blast2go.com/
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Table 1. Summary statistics of read alignment over the reference pearl millet genome.

Sample Total Raw
Reads

Unique Mapped
Reads

Multiple
Mapped Reads

Overall Aligned
Rate

Leaf-Control 3,406,324 346,223 (68.58%) 24,342 (4.82%) 73.46%

Leaf-Treated 3,103,247 1,011,944 (67.86%) 84,531 (5.67%) 73.53%

Root-Control 2,272,632 762,761 (65.64%) 48,489 (4.17%) 69.81%

Root-Treated 3,360,164 775,850 (52.66%) 298,994 (20.29%) 72.95%

TOTAL 12,142,367 2,896,778 (62.54%) 456,356 (9.85%) 72.39%

Table 2. Assembly statistics.

Sample Transcripts Multi Exon Multi Exon/Transcripts

Leaf-Control 4872 2159 44.31%

Leaf-Treated 12,076 6855 56.76%

Root-Control 13,506 7507 55.58%

Root-Treated 9524 4988 52.37%

TOTAL 39,978 21,509 53.80%

3.2. Candidate lncRNA Prediction

All the transcripts were subjected to the Gffcompare tool, which, on further filtering
and differentiating into various class codes, leaves 4834 transcripts having 288 intronic,
4458 intergenic and 88 transcripts with exonic overlap on the opposite strand. After
discarding the sequences smaller than 200 nucleotides using perl scripts and predicting the
ORFs in the transcripts using the OrfPredictor tool, a total of 3170 sequences were having
ORF lengths less than 100 amino acids and 9 sequences with no ORFs were retained for
further filtering. CPC2 online tool classified the 3179 input sequences into 36 coding and
3143 non-coding sequences, keeping 0.5 as the threshold value of the coding probability.
Blast search against Housekeeping RNAs (rRNA, tRNA, etc.), Pfam, NCBI-nr helps in
retaining 879 sequences that did not match with any sequences in the database. Expression
of 57 lncRNAs (6 from the intronic region and 51 from the intergenic region) was observed
under leaf control condition, 285 lncRNAs (33 from intronic region, 246 from intergenic
region and 6 from exonic overlap of opposite strand) was observed under leaf treated,
494 lncRNAs (67 from intronic region, 408 from intergenic region and 19 from exonic
overlap of opposite strand) was observed under root control and 210 lncRNAs (30 from
intronic region, 179 from intergenic region and 1 from exonic overlap of opposite strand)
was observed under root treated.

It was observed that 195 lncRNAs (22.2%), 393 (44.7%), 34 (3.9%) and 126 (14.3%)
lncRNAs were unique for leaf treated, root control, leaf control and root treated, respectively.
It was also found that 3 (0.3%) lncRNAs were common in all the conditions, which indicates
that these are expressed under all the conditions.

Low exon number and the short transcript length were the typical features of lncRNA [55].
The maximum number of lncRNAs belonged to the length range of 200–400 bp, followed by
400–600 bp under all four conditions. Most of the identified lncRNAs showed the involvement
of 1 to 4 exons, as also supported by Li et al., 2014 [15]; Shuai et al., 2014 [56]; and Pauli et al.,
2012 [57].

3.3. Identification of Differentially Expressed lncRNAs, Their Characterization and Annotation

Differential expression of the common lncRNAs was found using NOISeq [50], which
uses data-adaptive and non-parametric approaches to calculate the differential expressing
transcripts. NOISeq can control the rate of the false discoveries by combining the data
of fold change and real expression differences and making a null distribution and finally
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comparing this null distribution to the observed or actual data. NOISeq is preferably used
under low expression values and a lesser number of replicates.

A total of 209, 198, 115 and 194 differentially expressed lncRNAs were discovered for
LC:RC, LT:RT, LC:LT and RC:RT, respectively. Out of these 67, 123, 46 and 116 lncRNAs
were upregulated and 142, 75, 69 and 78 lncRNAs were down-regulated for LC:RC, LT:RT,
LC:LT and RC:RT, respectively. An adjusted p-value cutoff of 0.05 was set to filter out
differential lncRNAs. The up and down-regulated differentially expressed lncRNAs are
represented with Volcano plots for all four comparisons (Figure 2). The dots show the
up and down-regulated lncRNAs under different combinations. Figure 3A shows the
distribution of identified lncRNAs along the pearl millet chromosomes where the red
dot represents intergenic lncRNA, the green dot is intronic lncRNA and the blue dot is
exonic overlap on the opposite strand lncRNA respectively. Figure 3B shows the graphical
representation of the distribution of lncRNAs over the pearl millet chromosomes which
can be used for designing different types of chemistry, multiplexing, etc. There is much use
for developed lncRNAs as markers for molecular-assisted breeding.
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The analysis showed 24 (5.6%), 76 (17.6%), 53 (12.3%), and 59 (13.7%) unique lncRNAs
expressed under LC:LT, RC:RT, LC:RC and LT:RT, respectively, while 2 (0.5%) lncRNAs were
commonly expressed in all the combinations (Figure 4). The top 50 differentially expressed
lncRNAs were represented as heatmap under LC:LT and RC:RT comparison (Figure 5).
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To test if these lncRNAs could regulate the expression of protein-coding genes as long
molecules, lncRNAs were tested for homology to CDS sequences by BLAST with >87%
percent identity and >83% query coverage. The result shows that one lncRNA could
pair with eight CDS sequences with a very good match, which suggests that this one
lncRNA might regulate the expression of eight proteins by inducing transcriptional or post-
transcriptional gene silencing. The detailed information of these lncRNAs when mapped
with the CDS sequences of pearl millet is presented in Table 3.

Table 3. Blast result of lncRNAs with the CDS sequences of pearl millet.

Query ID Seq ID Q Coverage P-Identity Length QStart QEnd SeqStart SeqEend E-Value

TCONS_00024950 Pgl_GLEAN_10035860 99 87.793 213 1 212 540 751 1.02 × 10−65

TCONS_00024950 Pgl_GLEAN_10005667 84 91.16 181 1 181 711 891 3.67 × 10−65

TCONS_00024950 Pgl_GLEAN_10005566 84 91.11 180 2 181 688 867 1.32 × 10−64

TCONS_00024950 Pgl_GLEAN_10016655 84 90.608 181 1 181 273 453 1.71 × 10−63

TCONS_00024950 Pgl_GLEAN_10032756 84 88.333 180 2 181 805 984 2.88 × 10−56

TCONS_00024950 Pgl_GLEAN_10030411 84 87.845 181 1 181 981 1161 3.72 × 10−55

TCONS_00024950 Pgl_GLEAN_10008530 83 88.202 178 2 179 529 706 3.72 × 10−55

TCONS_00024950 Pgl_GLEAN_10036781 83 87.079 178 2 179 55 232 8.06 × 10−52

Similarity search of predicted lncRNAs with the known plant lncRNA database
CANATAdb keeping e-value less than e-10 (http://cantata.amu.edu.pl/index.html) (ac-
cessed on 1 June 2021). showed 8 out of 879 (~0.001%) lncRNAs identified matched with

http://cantata.amu.edu.pl/index.html
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entries in the database which shows lncRNAs are poorly conserved among species. Oryza
nivara lncRNAs were found to be more closely related to pearl millet lncRNAs (Table 4).

Table 4. Significant blast results from CANATAdb.

Sequence ID Cantana DB Seq ID Length QStart QEnd SStart SEnd Organism

TCONS_00000829 CNT2084344 236 1 232 524 758 Oryza nivara

TCONS_00000829 CNT2084343 236 1 232 524 758 Oryza nivara

TCONS_00012492 CNT20135897 207 7 213 14 220 Oryza rufipogon

TCONS_00012492 CNT2081201 207 7 213 1936 2142 Oryza nivara

TCONS_00012492 CNT20187813 207 7 213 1837 2043 Oryza sativa

TCONS_00012492 CNT20187804 207 7 213 434 228 Oryza sativa

TCONS_00012492 CNT2020493 195 7 201 188 6 Brachypodium
distachyon

TCONS_00009216 CNT2099321 220 7 224 229 11 Setaria italica

TCONS_00013098 CNT2099766 408 13 416 40 446 Setaria italica

3.4. Identification of miRNAs Targeting the lncRNAs

Blastn of the lncRNA transcripts against the miRBase database was done to find out the
miRNAs with lncRNAs as potential targets. A total of three miRNAs targeting the lncRNAs
were found, out of which two were unique. Among the identified differentially expressed
lncRNAs, only two lncRNAs (TCONS_00024337 and TCONS_00026046) were targeted by
the two miRNAs (dps-mir-2526 and oni-mir-10840). The total number of miRNAs target
sites was found to be eight (Table 5).

Table 5. MiRNAs targeting identified lncRNAs.

Mirna Lncrna Length Mismatch MiRNA
Start

MiRNA
End

LncRNA
Start

LncRNA
End

dps-mir-2526 TCONS_00024337 27 3 72 98 395 371

dps-mir-2526 TCONS_00024337 27 3 49 75 395 371

dps-mir-2526 TCONS_00024337 27 3 26 52 395 371

dps-mir-2526 TCONS_00024337 27 3 3 29 395 371

oni-mir-10840-1 TCONS_00026046 29 1 27 53 192 219

oni-mir-10840-1 TCONS_00026046 25 0 1 23 218 195

oni-mir-10840-2 TCONS_00026046 26 0 30 53 195 219

oni-mir-10840-2 TCONS_00026046 28 1 1 26 218 192

Identification of target mRNAs for the predicted miRNAs was also performed. It was
found that two of the three predicted miRNAs were found to target different mRNAs of
pearl millet. The number of unique mRNAs targeted was 14. The number of interactions
between predicted miRNAs and mRNAs was 16 and all the interactions were found to be
cleavage inhibitive in nature (Table 6).
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Table 6. Identified mRNAs for the miRNAs.

MiRNA_Acc. Target_Acc. UPE$ MiRNA
Start

MiRNA
End

mRNA
Start

mRNA
End Aligned mRNA Sequence Inhibition

dps-miR-2526-3p JT845468.1 −1 1 20 121 140 GCCGUCGGCGUGUUGCGGUG Cleavage

dps-miR-2526-3p JT845783.1 −1 1 20 308 327 GCCGUCGGCGUGUUGCGGUG Cleavage

dps-miR-2526-3p KR908724.1 −1 1 20 770 789 GCCGUCGGCGUGUUGCGGUG Cleavage

dps-miR-2526-3p CD725410.1 −1 1 20 187 206 GCCGUCGGCGUGUUGCGGUG Cleavage

dps-miR-2526-3p JT844189.1 −1 1 20 150 169 GCCGUCGGCGUGUUGCGGUG Cleavage

dps-miR-2526-3p CD725449.1 −1 1 20 20 40 GCCGUCGGCGUGUU-GCGGUG Cleavage

dps-miR-2526-3p CD725265.1 −1 1 20 346 365 GCCGUCGGCGUGUUGCGGUG Cleavage

dps-miR-2526-3p JZ681148.1 −1 1 20 359 378 GCCGUCGGCGUGUUGCGGUG Cleavage

dps-miR-2526-3p JZ681188.1 −1 1 20 375 394 GCCGUCGGCGUGUUGCGGUG Cleavage

dps-miR-2526-3p EB410974.1 −1 1 20 379 398 GCCGUCGGCGUGUUGCGGUG Cleavage

dps-miR-2526-3p JZ681109.1 −1 1 20 102 121 GCCGUCGGCGUGUUGCGGUG Cleavage

dps-miR-2526-3p CD724914.1 −1 1 20 47 66 GCCGUCGGCGUGUUGCGGUG Cleavage

oni-miR-10840 CD725654.1 −1 1 22 199 220 AAUGAGCUCAUUUUGAGAACUU Cleavage

oni-miR-10840 HQ214676.1 −1 1 22 1582 1603 AAUGAGCUCAUUUUGAGAACUU Cleavage

oni-miR-10840 CD725654.1 −1 1 22 199 220 AAUGAGCUCAUUUUGAGAACUU Cleavage

oni-miR-10840 HQ214676.1 −1 1 22 1582 1603 AAUGAGCUCAUUUUGAGAACUU Cleavage

To understand the functional role of mRNAs involved in the network, the GO analysis
was performed by employing the BLAST2GO software. The GO functional categorization
generated 10 annotations from the 14 predicted mRNAs that were targeted by miRNAs. In
that, a total of three, four, and three mRNAs were classified as the first level classification
of biological processes, molecular functions, and cellular components, respectively. Among
the genes involved in the biological process, three mRNAs each were classified into the
categories of “metabolic process (GO: 0008152)” and “cellular process (GO: 0009987)”. In
the classification of molecular functions, two main classes were “binding (GO: 0005488)”
and “catalytic activity (GO: 0003824)”, which had three and two predicted mRNAs, respec-
tively. When the predicted mRNAs were classified according to the cellular component
classification, categories “cell (GO: 0005623)” and “cell part (GO: 0044464)” both made up
the largest proportion of three predicted mRNAs, followed by “organelle (GO: 0043226)”
that had two predicted mRNAs. The GO analysis on predicted mRNAs showed that the
targets of lncRNAs under drought stress were associated with various functions involving
different cellular components, biological processes and molecular functions.

The potential functions of the mRNAs categorized in the GO terms were also found.
GO-based functions of mRNAs in pearl millet-drought were identified as Orcinol O-methyl
transferase activity, Lignin biosynthetic process, Melatonin biosynthetic process, flavone
and flavonoid biosynthesis process, phenylpropanoid biosynthesis pathway, Integral com-
ponents of membrane and Structural constituent of ribosome. These functions carried out
by the mRNAs are involved in the regulation of drought stress responsive mechanisms
in soybean. So, when the miRNAs that are responsible for silencing these mRNAs get
bind to the circRNAs, they remain no more available to regulate the mRNAs and so the
genes become free to carry out their functions and help the plants in tolerating the drought
stress conditions.

3.5. Development of Pearl Millet lncRNAs Database (PMDlncRDB)

The PMDlncRDb (URL: http://webtom.cabgrid.res.in/pmdlncrdb/ (accessed on
10 January 2021)) is a three-tier architecture database containing information about the
drought-responsive lncRNAs of pearl millet crop. It contains information on 879 lncR-
NAs from four samples, namely, leaf control, leaf treated, root control and root treated,
miRNAs targeting it, target mRNAs of the miRNAs, etc. Users can browse through the
submitted lncRNAs on several criteria like length, number of exons, FPKM values and

http://webtom.cabgrid.res.in/pmdlncrdb/
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their position with respect to the coding genes. The submitted lncRNAs have length values
between 200 and 1013 nucleotides. Figure 6 is the web interface of PMDlncRDb for various
search options.
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4. Discussion
4.1. Data Pre-Processing

Pre-processing of the Next Generation sequencing data before going down further in
the RNA-seq pipeline is very important as the raw data may contain low-quality reads,
noise, adaptor sequences, etc. which deteriorates the quality of assembly. RNA-seq data for
the four conditions of the pearl millet crop was downloaded from the SRA database of NCBI
and visualized using the FastQC tool [38] which gives out graphs and statistical figures
for the assessment of the sequence reads. Trimmomatic [39] software with single-end read
parameters was used to filter out the bad quality reads to finally give the cleaned trimmed
reads, which were further used in the analysis.

4.2. Candidate lncRNA Prediction

Although the role of lncRNAs in drought stress has been reported in plants like
wheat [46], cassava [17], etc. its role in pearl millet drought tolerance is still undercover.
Though transcriptome studies on proteome [58] and transcriptome signature [35] of pearl
millet against the drought stress have been conducted, a comprehensive study on pearl
millet’s lncRNAs contributing to its drought tolerance needs to be investigated knowing
the role of lncRNAs in stress conditions already identified in Brassica napus [59], rice [13],
mulberry [10], tomato [60], Populus [61], wheat [62], etc. In our study for the steps of
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mapping the reads to the reference genome to assembly and estimating the abundance of
the assembled transcripts, “new tuxedo” package [42] programs have been used which
includes HISAT2 for reads alignment, StringTie for transcripts assembly and abundance
estimation. In our study of the identification of drought-responsive lncNAs, we found only
879 lncRNAs. The reason for the lesser number of lncRNAs is the expression of lncRNAs at
very low levels as in the case of tomato [63]. Most of the lncRNAs identified have only one
exon in them, which may be due to their smaller size. We also observed a few lncRNAs
having 3–4 exons, but they are lesser in number. The identified lncRNAs were divided into
three groups on the basis of their position with respect to the protein-coding genes in the
reference genome of pearl millet. Intergenic lncRNAs are present in between the coding
genes, intronic lncRNAs which are completely in intronic regions and the lncRNAs having
exonic overlaps on the opposite strand. Most of the lncRNAs were found to be intergenic in
nature. Our study identified 57, 285, 594 and 210 lncRNAs in leaf control, leaf treated, root
control and root treated conditions, respectively. The highest number of lncRNAs in root
control conditions is potentially due to the much role of root-related mechanisms in the
growth and development of plants. Under normal conditions, we expect a higher number
of lncRNAs in the roots of plants, especially during the stress condition, but in our study, a
limited number of lncRNAs were identified, which may be because of certain growth and
development related pathways being slowed down or switched off. Under water stress
conditions, the first response of plants is the closing of stomata, which in turn controls the
CO2 uptake, photosynthesis and transpiration of water [58]. We got a higher number of
lncRNAs in leaf-treated conditions in our study in response to self-defense against drought.

4.3. Identification of Differentially Expressed lncRNAs and Their Annotation

To compare whether the lncRNAs express differently in roots and leaves in control
and treated (drought) conditions, four comparisons were made to compare the difference
in expressions in roots and leaves in control and treated conditions individually and also
the difference in lncRNAs expression in root and leaves in control and treated conditions
separately. We found 209 (67 upregulated, 142 downregulated), 198 (123 upregulated,
75 downregulated), 115 (42 upregulated, 69 downregulated) and 194 (116 upregulated,
78 downregulated) differentially expressed lncRNAs in LC:RC (leaf control, root control),
LT:RT (leaf treated, root treated), LC:LT (leaf control, leaf treated) and RC:RT (root control,
root treated) conditions, respectively. Differential expression of lncRNAs clearly depicts its
regulatory roles in drought response in pearl millet.

A similarity search was performed against the known plant database CANTATAdb
which resulted in only 9 instances of our identified lncRNAs matching with any previously
existing lncRNAs in the database. This result is in concordance with the studies of Ma et al.
(2013) [64] and Sahu et al. (2018) [65], which stated that as compared to other RNA
transcripts like mRNAS, miRNAs, snoRNAs, etc. lncRNAs are poorly conserved. Ma et al.
(2013) [64] explain this as lncRNAs being functional in a species-specific manner. Most of
the matches were found to be with Oryza nivara, which is also a member of the poaceae
family, this also restricts the conserved nature of lncRNAs to species other than the same
family. Our analysis shows that most of the lncRNAs of pearl millet are specific to the pearl
millet itself. Studies on lncRNAs with well-defined functions are reported, for example,
LDMAR, cis-NAT, PHO1;2, TL, LAIR in rice [66–69], Enod4 in rice, maize, legumes and
soybean [70–72], HvCesA6 in barley [73] and WSGAR in wheat [74]. LncRNAs have also
been seen to regulate the expression of protein-coding genes as long molecules [75]. Our
lncRNAs when blasted with the CDS sequences of pearl millet showed only one result
of lncRNA corresponding to eight protein-coding genes of pearl millet, which supports
that the lncRNA can regulate the function of those proteins by transcriptional or post-
transcriptional silencing [76]. Also, studies show lncRNAs to be important modulators of
drought tolerance in plants as reported in various crops like rice, wheat, maize, sorghum,
tomato, coffee, cassava and peanut, etc. [77]. The identified lncRNAs in this study can be of
immense use for future studies of their association with gene expression.



Agronomy 2022, 12, 1976 14 of 18

4.4. Identification of miRNAs Targeting the lncRNAs

To evaluate whether lncRNAs in pearl millet could affect post-transcriptional regula-
tion of functional genes by binding to miRNAs, the bioinformatics methods were employed
to identify the lncRNA-originating target mimics in pearl millet based on the differentially
expressed lncRNAs. In our study, we found three miRNAs targeting the lncRNAs [78]. A
total of eight interactions between the lncRNAs and miRNAs were found.

4.5. lncRNA-miRNA-mRNA Interaction

A total of 14 mRNAs were found to be potential targets for the identified miRNAs. The
functions of the predicted mRNAs as reported by BLAST2GO in pearl millet under drought
showed that the mRNAs were involved in plant hormone signal transduction, response
to stress, defense response mechanism, transcription factor activity, Orcinol O-methyl
transferase activity, Lignin biosynthetic process, Metalonin biosynthetic process, Flavanol
biosynthetic process, Integral components of membrane, Structural constituent of ribosome,
etc. [78]. Flavone and flavonoid biosynthesis pathways (Pathway ID: ko00944; Ec:2.1.1.42)
found in our study are reported to have key significance in plants under drought stress [79],
specifically in Ligustrum vulgare [80] and peanut [81]. Similarly, the phenylpropanoid
biosynthesis (Pathway ID: ko00940, Ec:2.1.1.68) reported in our study is in concordance
with the previous studies related to drought stress in crops like apple [82], foxtail millet [83]
and tomato [84].

4.6. Development of Pearl Millet lncRNAs Database (PMDlncRDB)

There exists a drought-associated web genomic resource of pearl millet, PMDTDb but
there is no information on lncRNAs (Jaiswal et al., 2018). The developed web genomic
resource, PMDlncRDB catalogs the identified drought-responsive lncRNAs. It is the first
such resource for pearl millet lncRNAs. It contains information like lncRNA sequence, ID,
length, peptide length, number of exons, miRNAs targeting the lncRNAs, etc. This will
help researchers as a foundation for understanding the role of lncRNAs in pearl millet crop
and further studies in improving crop performance in drought stress through selective
breeding approaches. The developed genomic resource of lncRNAs in this study can be of
immense use for future studies of their association with gene expression.

5. Conclusions

The study deals with the drought-responsive long non-coding RNAs in pearl millet,
which is the staple food for >90 million poverty-driven farmers. The drought-associated
genome-wide lncRNAs were identified in pearl millet through the transcriptome data
generated from root and leaf tissues. A total of 1046 candidate lncRNAs were predicted
with reference-based mapping. We report 879 differentially expressed lncRNAs under
the four comparison sets (LC:RC, LT:RT; LC:LT and RC:RT). Three miRNAs were found
targeting these lncRNAs and a total of 14 mRNAs had potential target mimics of these
miRNAs. The developed web-genomic resource of pearl millet lncRNAs (PMDlncRDB)
cataloging these drought-responsive lncRNAs is the first such resource that can be used in
trait improvement as well as CISPR-Cas technology in the editing of ncRNAs. This will
help in the further investigation of lncRNA-related studies in pearl millet improvement
programs for drought tolerance in endeavors of higher production.
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