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Abstract: Streptococci are a diverse group of bacteria, which are mostly commensals but also
cause a considerable proportion of life-threatening infections. They colonize many different host
niches such as the oral cavity, the respiratory, gastrointestinal, and urogenital tract. While these
host compartments impose different environmental conditions, many streptococci form biofilms on
mucosal membranes facilitating their prolonged survival. In response to environmental conditions or
stimuli, bacteria experience profound physiologic and metabolic changes during biofilm formation.
While investigating bacterial cells under planktonic and biofilm conditions, various genes have been
identified that are important for the initial step of biofilm formation. Expression patterns of these
genes during the transition from planktonic to biofilm growth suggest a highly regulated and complex
process. Biofilms as a bacterial survival strategy allow evasion of host immunity and protection
against antibiotic therapy. However, the exact mechanisms by which biofilm-associated bacteria
cause disease are poorly understood. Therefore, advanced molecular techniques are employed to
identify gene(s) or protein(s) as targets for the development of antibiofilm therapeutic approaches.
We review our current understanding of biofilm formation in different streptococci and how biofilm
production may alter virulence-associated characteristics of these species. In addition, we have
summarized the role of surface proteins especially pili proteins in biofilm formation. This review will
provide an overview of strategies which may be exploited for developing novel approaches against
biofilm-related streptococcal infections.

Keywords: streptococci; opportunistic pathogen; planktonic; biofilm; antibiotic therapy; quorum
sensing (QS)

1. Introduction

Biofilms are surface-associated microbial communities enclosed within a self-produced matrix
consisting of a single or multiple bacterial species [1]. Following the evolution of prokaryotes
several billion years ago, the evolution of biofilms is considered a defense mechanism against harsh
environmental conditions by providing homeostasis and protection to the involved bacterial cells [2].
Biofilms were first observed on tooth surfaces by Antoni van Leeuwenhoek in the 17th century, while the
term “biofilm” was introduced into medical microbiology by Costerton in 1982 [3]. He reported biofilm
formation of S. aureus on an infected endocardial pacemaker.
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Biofilms play a prominent role in human infections. More than 80% of microbial diseases have been
linked to biofilm formation. Bacterial biofilms are involved in infections of the urinary tract, the female
genital tract, the bloodstream, and the upper respiratory tract [4–6]. Dental plaque, which contains
streptococci and may eventually result in caries, is a prime example of a natural biofilm composed of a
multispecies bacterial community.

In biofilms, increased resistance to or tolerance of antibiotics is a common problem. It may be
intrinsic due to the microbial growth conditions or it may be caused by mutations or the exchange of
antibiotic resistance genes [7,8]. As biofilms adapt to survive antibiotic treatment, infections are hard
to eradicate despite proper antibiotic therapy [6,9,10].

Most streptococcal species reside as commensals on mucous membranes, while several pathogenic
streptococci are responsible for life-threatening human infections. The production of biofilms
is a common phenotype of commensal as well as pathogenic species. Commensal streptococci
biofilms represent their natural lifeform, and in pathogenic streptococcal species, biofilms have been
identified as important determinants of infectious diseases. This review will focus on specifics of
streptococcal biofilms, their regulation, and the potential to interfere with biofilm production as a
therapeutic approach.

2. Biofilm Composition

The development of these highly ordered multicellular communities is a complex multistep process [11]
(Figure 1). During biofilm formation, the bacterial cells transform from planktonic life to an immotile
life form [1,12], resulting in a complex community consisting of different microbial subpopulations.
Biofilm formation is initiated with the adhesion of planktonic bacteria to biotic or abiotic surfaces, the
development of microcolonies, and a successive production of an extracellular matrix composed of
polymeric substances such as proteins, polysaccharides, and extracellular DNA [13]. Three-dimensional
structures develop through maturation and finally result in the detachment of single bacterial cells [14].
Microbial cells in biofilm experience impaired diffusion of nutrients and waste products with less
nutrient availability in the core of the biofilm [15]. In addition, due to increased endogenous oxidative
stress within biofilms, microbial cells are subjected to spontaneous mutations [16]. Genetic variations
then give rise to microbial subpopulations that are physiologically heterogeneous [17,18].
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Figure 1. Schematic diagram representing the life cycle of biofilm formation in Streptococci. The diagram
shows the transition of planktonic cells to sessile cells by undergoing different stages of biofilm formation
and repeating the cycle by the conversion of sessile cells to the planktonic state again.
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The biofilm matrix is essential for protection of bacteria from environmental stresses and consists
of extracellular polymeric substances (EPS). It represents an efficient diffusion barrier, interfering
with the penetration of harmful substances inside the biofilm [1]. Differential gene expression is
responsible for the production of EPS, which provides cohesion of the bacterial cells and determines the
structure of the biofilm. Three major components are found in the biofilm matrix in varying amounts:
extracellular polysaccharides, extracellular nucleic acids, and proteins can be detected together with a
high percentage of water.

2.1. Extracellular Polysaccharide

Microscopic evaluation of biofilms shows exopolysaccharides as elongated or branched filaments
mediating the adhesion of bacteria to other bacterial cells, host cells, and abiotic surfaces [19,20].
The accumulation of polysaccharide thus acts as a molecular superglue facilitating the colonization of
host surfaces. Especially exopolysaccharides of the S. mutans biofilm matrix have been characterized
in detail and mainly consist of glucans that are synthesized by specific glycosyltransferases [21].
The extracellular polysaccharides found in biofilms differ from classic streptococcal capsular
polysaccharides. Especially for pneumococci, a high amount of capsular polysaccharide appears to
interfere with biofilm formation, since nonencapsulated strains demonstrate a high ability to develop
in vitro biofilms, while encapsulated clinical isolates and isogenic encapsulated transformants develop
less biofilm than their nonencapsulated parent strains [22–25].

2.2. Nucleic Acids

Extracellular DNA (eDNA) is another major component of the biofilm matrix. It is highly similar
to the genomic DNA of the bacterial species present within the biofilm and is released through bacterial
cell lysis [26]. It plays a role in adhesion and is essential in biofilm stabilization and maintenance.
Furthermore, eDNA provides protection against antimicrobial peptides and divalent cations through
chelation of these substances [26]. Upon the addition of nucleases to streptococcal biofilms, significant
inhibitory and disintegrating effects on biofilm formation have been observed for S. pneumonia, S.
pyogenes, as well as for viridans streptococci [27–29].

2.3. Extracellular Proteins

The third major component in biofilm matrix, are extracellular proteins. Extracellular proteins
facilitate reorganization, degradation, and dispersal of the biofilm matrix and play a structural role
in biofilms [30]. A common theme for several biofilm associated proteins of Gram-positive bacteria
is their ability to form amyloids. These include BAP of S. aureus, EPS of Enterococci, and P1 of
S. mutans [31–33]. Amyloid proteins, which assemble into insoluble fibrils, participate supportively
in cell aggregation and in biofilm formation [34]. Another form of fibrillar proteins are streptococcal
pili, which are highly structured cell surface appendages consisting of several different structural
proteins. Their special role in the formation of biofilms will be discussed in a later section of this review.
The biofilm matrix however, also contains nonfibrillar proteins like, e.g., the Glucan-binding proteins
(Gbps) in S. mutans, which play a significant role for biofilm formation as they promote aggregation
and plaque cohesion [35,36]. Furthermore, some of the proteins within the biofilm matrix are enzymes
involved in the degradation of EPS and the initiation of a new biofilm lifecycle. The degradation of
biopolymers also delivers energy and carbon sources to bacterial biofilm cells, especially under limited
nutrient availability [37].

3. Biofilm Formation in Different Streptococci

Many different streptococcal species including commensal as well as pathogenic streptococci form
biofilms. While biofilm formation may take place under favorable environmental conditions, many
species form biofilm in adverse environmental conditions as a survival mechanism to prolong their
persistence under stress.
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3.1. Betahemolytic Group A Streptococci: Streptococcus pyogenes (GAS)

Streptococcus pyogenes (group A Streptococcus, GAS) is responsible for a wide range of human
diseases worldwide including harmless affections of the skin as well as life-threatening toxic shock
syndromes. The formation of biofilm on host cells and tissues contributes to its virulence and has been
investigated in some detail [38,39]. L-glucose and D-mannose have been identified as major sugars of
the GAS biofilms [40]. Further important components of the GAS biofilm matrix are pili and surface
proteins of the MSCRAMM family mediating the adhesion to extracellular matrix components. A main
characteristic of GAS biofilm formation is that it is very strain specific [39,41] and that the requirements
for biofilm production vary among strains [9,41,42]. While certain GAS strains can form biofilm on
abiotic surfaces, for other strains, a matrix protein-coated surface is required [41]. Serotype M6 and
M14, e.g., are able to attach to abiotic polystyrene surfaces, while other strains (M2 and M18) need
collagen types I and IV, fibrinogen, fibronectin, and laminin-coated surface to establish biofilms and
some strains (M1, M12, and M49) are unable to produce biofilms at all [41].

3.2. Betahemolytic Group B Streptococci: Streptococcus agalactiae (GBS)

Streptococcus agalactiae (Group B streptococci, GBS) causes mainly infections in neonates and adult
immunocompromised patients. Similar to other streptococci, GBS has the ability to develop biofilms
that facilitate colonization and survival in the host [43–46]. Biofilm formation of colonizing strains
obtained from asymptomatic pregnant women was increased compared to biofilm production of strains
from symptomatic patients [44]. The isolation of GBS from biofilms on intrauterine devices underlines
the clinical role of GBS biofilms [47]. Acidic conditions as present in the vagina promote biofilm
formation in serotype III and V strains. Especially the hypervirulent serotype III clone ST-17 is an
excellent biofilm former at low pH [48]. Proteins play an important part and contribute to GBS biofilm
structure in these strains as treatment with proteinase K disseminates the established biofilms [48].

3.3. Betahemolytic Group C and G Streptococci: Streptococcus dysgalactiae subsp. equisimilis (SDSE)

Streptococcus dysgalactiae subsp. equisimilis (SDSE) is closely related to S. pyogenes and causes
similar infections [49]. Not many studies have been conducted on biofilm formation in this species.
Resembling the situation in S. pyogenes, the biofilm-forming ability of SDSE varies with emm types.
Up to 46% of clinical SDSE isolates were shown to produce biofilm with stG10.0 strains being strong
biofilm producers, while emm types stG840.0, stG6.1, and stG245.0 correlate with rather weak biofilm
production [50]. In addition, extracellular DNA has been implicated in biofilm formation of SDSE [51],
however, SDSE has been insufficiently investigated in regard to biofilms.

3.4. Biofilm in Non-Beta-Hemolytic Streptococci: Streptococcus pneumoniae

S. pneumoniae colonizes the human nasopharynx and is a major bacterial pathogen for upper
and lower respiratory tract infections. Biofilms have been detected on host mucosal surface in
clinical settings such as pneumonia, otitis media, and rhinosinusitis [29,52–54]. Formation of biofilm
is inversely correlated with capsule formation in pneumococci [53], however, the polysaccharides
present in pneumococcal biofilms remain somewhat elusive. The presence of acetyl-glucosamines and
ß-linked glycopyranosyl units based on positive calcofluor white staining [55] have been implicated as
components of the extracellular matrix in S. pneumoniae. In addition, extracellular DNA and pili proteins
(RrgA, RrgB, and RrgC) have been documented [53]. Dispersion of S. pneumonia cells from colonizing
bacterial cells in biofilms, appears to be involved in the development of invasive infections [56].

3.5. Biofilm in Viridans Streptococci: Streptococcus mitis Group

Streptococci of the Streptococcus mitis group, which include Streptococcus oralis, Streptococcus
gordonii, and Streptococcus sanguinis are primarily commensals of the oral cavity and found as early
colonizers of dental multispecies biofilms [57,58]. These early streptococcal colonizers are essential
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for the formation of stable multispecies dental biofilms [59]. Glucans are a major component of the
extracellular matrix of oral multispecies biofilms and are synthesized through the glycosyltransferase
(GTF) of S. mitis group streptococci and other oral streptococcal species. The molecular basis for
glucan production in these species has been investigated in detail. S. oralis has a single GTF structural
gene (gtfR), with the ability to synthesize water-soluble and -insoluble glucan using sucrose as a
substrate [60]. While in S. gordonii, a single GTF encoding gene (gtfG) is positively regulated by
cotranscription of rgg, which is present upstream of gtfG [61]. S. sanguinis also has a single GTF
structural gene (gtfP) and synthesizes water-insoluble glucans [62]. Glucans promote the accumulation
of bacteria in biofilms [63]. In oral multispecies biofilm, during later stages of biofilm development,
complex intraspecies interactions may occur [64]. The cocolonization with S. mitis and S. sanguinis, e.g.,
enhances the biomass and the cellular metabolic activity in C. albicans biofilm and causes morphological
changes in candida [65].

Apart from mucosal colonization, viridans streptococci can also cause invasive infections, which most
often present as septicemia or endocarditis. Biofilm formation has been implicated as an important
factor in infective endocarditis caused by streptococcal species from the S. mitis group and can be
demonstrated in clinical streptococcal isolates from patients with endocarditis and sepsis [66].

3.6. Biofilm in Viridans Streptococci: Streptococcus anginosus Group

Streptococcus anginosus together with S. constellatus and S. intermedius constitutes the S. anginosus
group (SAG). Streptococcal species of this group are found as a commensal in the oral flora,
the gastrointestinal tract, the upper respiratory tract, and the urogenital tract. However, these
species are also the cause of serious invasive infections including blood stream infections and abscesses.
Biofilm production has been found in all of the three species [67–69], but little is known about the
molecular determinants of S. anginosus biofilm formation. While some studies focus on the regulation
aspect of biofilm in SAG [67,68], a detailed investigation of the biofilm matrix has not been performed.
Investigations of multispecies biofilms with S. aureus, P. aeruginosa, and S. anginosus, as they occur in
cystic fibrosis patients, show that S. anginosus is less susceptible to antibiotics within these biofilms [70].

3.7. Biofilm in Viridans Streptococci: Streptococcus mutans

S. mutans proteins involved in biofilm formation include glucan-binding proteins, collagen-binding
proteins, glucosyltransferases, and the cell surface protein antigen c (PAc) [36]. Adhesive glucans
produced from sucrose by glucosyltransferases (GTFs), represent an essential component of the biofilm
matrix in S. mutans and provide the attachment of bacterial cells to surface structures [71]. In contrast
to other viridans streptococci, which most often harbor a single GTF, S. mutans produces three
types of GTFs (GtfB, GtfC, and GtfD) that are necessary to maximize the level of sucrose-dependent
cellular adhesion [36]. GtfB and GtfC, which synthesize predominantly water-insoluble glucans rich
in 1, 3-glucosidic linkages, are located on the cell surface and encoded by the gtfB and gtfC genes,
respectively. While GtfD, which synthesizes water-soluble glucans rich in 1, 6-glucosidic linkages,
has been detected in secretory proteins that is encoded by the gtfD gene. Each enzyme is composed
of two functional domains, an amino-terminal catalytic domain (CAT), which binds and hydrolyzes
the sucrose substrate, and a carboxyl-terminal glucan-binding domain (GBD), which functions as an
acceptor for binding glucan, and plays a role in defining the nature of the glucan synthesized by a
GTF. Multiple glucan-binding proteins (GBPs) stabilize plaque on tooth surfaces [36,72], while the
cell surface protein antigen c (PAc) of S. mutans mediates adherence of the bacterial cells to the tooth
surfaces via salivary pellicle interaction [36,73].
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4. The Role of Pili and Streptococcal Cell Surface Proteins in Biofilm Formation (Pathogenesis
and Virulence Factors)

4.1. Pili

Many streptococcal species harbor long proteinaceous fibril structures on their surface known
as pili, which are important during initial adhesion [74]. These pili play a critical role for virulence
during host–pathogen interaction and contribute to the development of biofilms. They participate
in the adhesion and invasion process of the major streptococcal pathogens of humans, S. pyogenes,
S. agalactiae, and S. pneumoniae [75–78].

The pili structure is built through the covalent cross-linking of two or more pilin subunits.
The major subunit (backbone protein) is assembled into the pilus by a class C sortases that catalyzes
the covalent attachment between a conserved lysyl residue of the pilin motif (WxxxVxVYPK) of one
subunit and the conserved threonyl residue of the LPXTG motif of another subunit. In addition, one or
more accessory subunits can be incorporated into the pilus backbone [79,80].

Ancillary protein 1 (AP-1) is attached to the tip of the main pilus component (backbone protein),
and ancillary protein-2 (AP-2) anchors the pilus to the bacterial surface. Initial contact with host tissue
is mediated by AP-1, which is also important for biofilm formation [81]. In addition, AP1 promotes
bacterial aggregation and thus pili not only play a role in the initial adhesion leading to intimate
association with host cells but also mediate the coaggregation of bacteria as an important step in
biofilm formation.

In S. pyogenes, pili have been demonstrated to be an integral part of biofilm formation, which seems
to be associated with certain M- and FCT (fibronectin-binding, collagen-binding, T-antigen-binding
proteins) types [10,41,82–87]. The S. pyogenes T-Antigens, which have been used for serological
purposes over many decades, were later shown to be pili backbone antigens [88]. The FCT region is
highly variable and constitutes 9 different variants [88–92].

In GAS strain TW3558 (emm6), the FCT-1 pilus region (fctX operon) consisting of pilus backbone
(Tee6), ancillary protein (FctX), and sortases (SrtB and SrtA) is essential for biofilm formation suggesting
that both structural as well as assembly components of pili are important for adherence and biofilm
formation [81,85,89] (Figure 2). While FCT type 1 strains were shown to be generally good biofilm
formers, independent of media or pH-conditions, in some other FCT types, e.g., FCT-2, FCT-3, FCT-5,
and FCT-6, biofilm production depends on culture conditions and low pH (Table 1) [83,86]. FCT-7
and FCT-8 are derivatives of FCT-4 and found in a very limited number of strains, so there is no study
available on their biofilm-forming ability.

Table 1. Representation of S. pyogenes pilus structure encoding in the Fibronectin-Binding,
Collagen-Binding, T-Antigen (FCT) genomic region, and its effect on biofilm-forming capacity.

FCT (Fibronectin-Binding, Collagen-Binding,
T-Antigen) Type Encoding pili Biofilm Phenotype

FCT type 1 Strong biofilm, independent of media or pH

FCT type 9 Poor biofilm, under all tested condition

FCT-2, FCT-3, FCT-5, and FCT-6 Biofilm phenotype dependent upon on culture
conditions and is triggered by low pH

FCT type 4 Inhomogeneous response to environmental
conditions with respect to biofilm formation.
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Figure 2. Schematic diagram of general pilus architecture in different streptococci. The blue spheres
represent the different bacterial strains, and the green color boxes represent host epithelial cells. The long
pili shown in the diagram are formed by three major subunits ancillary protein AP1 (tip protein at
the distal end) that attaches to the bacterial surface, backbone protein BP, and ancillary protein AP2,
which are assembled by sortases that facilitate adherence with host epithelial cells. AP2 anchors the
pilus to the bacterial surface. In S. agalactiae, there are three pilus islands designated as PI-1, PI-2a,
and PI-2b. Each pilus island has major protein referred as PI-1 (include GBS104 as AP1, GBS80 as BP,
and GBS52 as AP2 with two sortases SAG0647 and SAG0648), in PI-2a (GBS67 as AP1, GBS59 as BP,
and GBS150 as AP2 with two sortases SAG1408 and SAG1405), and PI-2b (SAN1519 as AP1, SAN1518
as BP, and SAN1516 as AP2 with two sortases SAN1517 and SAN1515). In S. pneumoniae, pilus subunits
are AP1 (RrgA), BP (RrgB), and AP2 (RrgC) with sortases designated as SrtC-1, SrtC-2, and SrtC-3.
Here, RrgC does not depend on pilus-specific sortases for adherence to the cell wall; instead, it binds
the preformed pilus to the peptidoglycan by retaining the catalytic activity of SrtA (blue box). RrgB is
composed of 4 domains D1 at N-terminus, D2 and D3-positioned laterally, D3 connected to D2 through
a loop (dark blue color), and D4 at the C-terminus. In S. pyogenes, the three subunits of pilus include
pilus BP (tee6), AP1 and AP2 (fctX), and sortases (srtB and srtA). The monosyl receptors are present on
the surface of epithelial cells and respond to the infection (arrow in yellow color).

Streptococcal pili were first detected in S. agalactiae in 2005 [76]. In this species, three different
pilus islands PI-1, PI-2a, and PI-2b have been identified [93,94]. GBS strains carry one or a combination
of two pilus islands (PI-2A+ PI-1/PI-2B + PI-1/PI-2a+ PI-2b/PI-2a alone/PI-2b alone). These pilus islands
encode classical streptococcal pili that consist of three structural proteins: PilB (the pilin backbone
protein), PilA (the pilus associated adhesin at the tip of the pilus), and PilC [45]. GBS mutants with
pilB knockouts showed a decreased ability to form biofilms and an impaired interaction with host
cells compared to wild-types strains. Systemic infection with GBS lacking pilB resulted in enhanced
clearance and reduced mortality in mouse models [95,96]. Gene deletion and complementation analysis
confirmed the significant correlation between expression of type 2a pili, and the ability to form biofilm
in vitro [46]. Detailed genetic studies showed that all mutations leading to a loss of pilus expression
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(deletion of the backbone protein PilB, deletion of sortase-encoding genes, or the deletion of ancillary
protein 2 (AP-2 and PilC), which anchors the pilus to the cell wall, prevent biofilm formation. However,
some of the GBS strains, not expressing pilus 2a, were also able to form biofilm, which suggests the
expression of unknown factors that may compensate for the absence of type 2a pili [46]. All GBS isolates,
carry one or two pilus island variant in which PI-2a was the most common among human GBS isolates,
while PI-2b was the most common for GBS isolates from animal origin [46,93,94,97–99] (Table 2).
Human GBS harboring PI-2b and animal GBS harboring PI-2a presented significantly reduced biofilm
production [100]. In conclusion, strong biofilm production seems to be a common characteristic in GBS,
and association of the clinical source with the pilus variant may be crucial. Different studies support
the findings that GBS biofilm production, similar to the situation in S. pyogenes, is a lineage-specific
trait in GBS [98] and is especially important for GBS colonization.

Table 2. Genomic distribution of different pilus island in different Streptococci.

Streptococci
Species Pilus Operon Backbone

Protein

Ancillary
Protein-1
(Adhesin)

Ancillary
Protein-2

Gene Encoding for Sortase
Enzyme

S. agalactiae PI-1 * GBS80 (*
mandatory) GBS 104 GBS 52 SAG 0647 and SAG 0648

S. agalactiae PI-2a GBS 59 GBS 67 GBS 150 SAG 1408 and SAG 1405

S. agalactiae PI-2b SAN 1518 SAN 1519 SAN 1516 SAN1517 and SAN 1515

S. pyogenes fctX operon Tee6 fctX fctX SrtB and SrtA

S. pneumoniae RrgB RrgA RrgC SrtC-1, SrtC-2, and SrtC-3

The S. pneumoniae pili are encoded by the rlrA pathogenicity islet, which carries genes for three
pilin proteins a major backbone protein (RrgB), a terminal tip protein (RrgA), and a cell wall anchored
base (RrgC) [101] as well as three sortases (SrtC-1, SrtC-2, and SrtC-3) (Table 2). The terminal tip
protein (RrgA) mediates bacterial adherence to host ECM proteins [102,103]. The RrgB pilin backbone
is composed of four immunoglobulins (Ig)-like domains (D1–D4) [104] with collagen-binding motifs.
RrgC does not depend on pilus-specific sortases for attachment to the cell wall; instead, it binds
the preformed pilus to the peptidoglycan by retaining the catalytic activity of SrtA [105] (Figure 2).
In contrast to other streptococci, in S. pneumoniae, the RrgA tip protein appears to play the most
important role during biofilm formation as an isogenic mutant of rrgA demonstrates impaired biofilm
production [106], while mutations of the rrgB or rrgC genes did not influence the ability of S. pneumonia
to form biofilm.

Pili are also present in oral streptococci belonging to the Streptococcus mitis group, which is
closely related to S. pneumoniae. In S. sanguinis, pili are involved in colonization on saliva-coated tooth
surfaces and in the human oral cavity. A pili-deficient mutant was incapable of producing a typical
three-dimensional layer of biofilm and could not adhere to saliva-coated surfaces [107]. The ancillary
protein at the tip of the pilus of S. sanguinis, which was designated PilC, binds to multiple salivary
components including salivary alpha amylase. Pilus-mediated binding of S. sanguinis to salivary
components may help this early colonizer of multispecies biofilms to attach to tooth surfaces and
initiate biofilm formation in the oral cavity. In two other species of the S. mitis group, Streptococcus oralis
and S. mitis pili were identified, which closely resemble PI-2 pili of S. pneumoniae, however, if there is
any involvement in biofilm formation has not been investigated [108]. Surprisingly for one of the most
typical streptococcal species in dental multispecies biofilms, Streptococcus mutans, the presence of pili
has not been reported.

4.2. Surface Proteins and Their Role in Biofilm Formation

Apart from pili, bacterial adhesins play a direct role in the initial step of attachment to host
surfaces and thus biofilm formation. For several bacterial surface protein families, their involvement
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in biofilm production has been demonstrated. These include the MSCRAMM family (microbial
surface components recognizing adhesive matrix molecules) [109], the AgI/II family [110], the family of
collagen-like proteins [111], the choline-binding proteins of S. pneumoniae [112], and the Bap family [31].

In S. pyogenes, fibronectin-binding proteins PrtF1 and PrtF2 of the MSCRAMM family are
involved in biofilm formation [113–115], as well as IgG/fibrinogen-binding surface protein Mrp4,
and the fibronectin-binding serum opacity factor of S. pyogenes. Another S. pyogenes adhesin Scl1,
the streptococcal collagen-like protein 1, binds to fibronectin and has the ability to support biofilm
formation as well as facilitate microcolony formation. It is conserved among all S. pyogenes strains
investigated so far and is present in many other pathogenic streptococcal species including S. agalactiae,
S. pneumoniae, and S. equi [116–118].

The major virulence factor of S. pyogenes, the anti-phagocytic M protein, which binds fibrinogen,
has also been demonstrated as an important factor in biofilm formation. Biofilm production is strain
dependent in S. pyogenes and strongly correlated with the M protein type. An association between
M protein expression, surface hydrophobicity, and the ability to form biofilms for certain emm types
has been established [119]. Furthermore, the cell wall-anchored adhesin AspA, which belongs to the
antigen I/II type family, facilitate biofilm development of S. pyogenes on saliva-coated surfaces [120,121].
A surface protein of S. pyogenes with a negative influence on biofilms is the cysteine protease SpeB that
promotes the dispersal of biofilms [122].

In S. agalactiae, the adhesive surface proteins and their role in biofilm formation have not been
investigated to the same extent as in S. pyogenes. The role of surface proteins for biofilm production
was, however, demonstrated through proteinase K treatment, which inhibited biofilm formation
and induced biofilm detachment [48]. The fibrinogen-binding surface protein C (FbsC) is one of
the S. agalactiae surface proteins investigated in more detail in regard to biofilm formation [123,124].
In addition, more recently a member of the Ag I/II family has been identified in S. agalactiae contributing
to fibrinogen binding and involved in biofilm production [125].

The role of pneumococcal surface proteins for biofilm formation have been studied primarily
in nonencapsulated strains. Among these, the choline-binding proteins (Cbps) of S. pneumoniae,
which bind noncovalently to the phosphorocholine residues in the bacterial cell wall [126], have been
demonstrated to be involved in biofilm production. Cbps are important for virulence, colonization,
and adherence to host cells [112]. They include LytA (the major autolysin), LytB (a glucosaminidase
involved in daughter cell separation), and LytC (a lysozyme acting as an autolysin at 30 ◦C), the CbpA
adhesin, the PcpA putative adhesin, and PspA (pneumococcal surface protein A). A direct contribution
to biofilm formation in S. pneumoniae has been demonstrated for LytB and LytC [27,127–129].

In the different viridans streptococci species especially the AgI/II and the Bap family of surface
proteins play a special role in biofilm production. Common features of the Bap (biofilm-associated
proteins) and Bap-related proteins are a high-molecular-weight and a core domain of tandem repeats.
They are characterized as cell wall-associated proteins with amyloid behavior, involved in biofilm
formation. The AgI/II proteins have been given different names according to the strains or species in
which they were identified, such as antigen B, SpaP, Sr, MSL-1, and PAc from S. mutans; Spa A from
S. sobrinus; PAa from S. cricetus; and Pas from S. intermedius [130–132].

In S. mutans, proteins that are required for the initiation of biofilm formation include SpaP [133].
In addition, protein antigen C (PAc) contributes to the interactions of S. mutans cells with fibronectin,
collagen type I, and fibrinogen. Independent studies have shown that in S. mutans isogenic Ag
I/II-deficient mutants, the initial adhesion to salivary films was reduced [134,135]. It was found that
wapA, SMU_63c, forms amyloid like fibrils but individual mutants of P1 (which originally identified
as AgI/II or PAc), wapA or 63c, did not reduce biofilm formation in S. mutans. P1 forms a fibril-like
structures contributing to functional amyloid formation during biofilm development. However,
double and triple mutants of these genes show reduced biofilm formation [136]. As mentioned before,
the glucans of the extracellular matrix play a critical role during attachment and accumulation of
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S. mutans to the host niche. Binding of S. mutans to these glucans is facilitated by four different cell
surface-associated GBPs (glucan-binding proteins), namely, GbpA, GbpB, GbpC, and GbpD [137].

In regard to Streptococcus parasanguis the fimbria-associated serine-rich repeat adhesin BapA1
and Fap1 (fimbriae-associated protein 1), a high-molecular-weight glycoprotein, which is essential for
assembly of fimbriae, are both critical for biofilm formation [138]. They show a similar biofilm-deficient
phenotype, but function independently. Bacterial autoaggregation during biofilm formation is mediated
through the N-terminal region of BapA1, by BapA1-BapA1 interactions. Deletion of the 3´ portions of
bapA1 leads to a loss of bacterial autoaggregation and reduces biofilms development [138].

In summary, numerous different cell surface proteins with the ability to bind extracellular
matrix components or to mediate adhesion to host cells are also involved in biofilm production,
reflecting the importance of initial attachment to host structures for the successful establishment of a
streptococcal biofilm.

5. Regulation

The formation of biofilms is a complex multistep process that needs proper control of gene
expression patterns. Thus, sensing environmental stimuli and adaptation of the gene expression is
crucial and can only be realized by complex regulatory networks (Figure 3A,B).

Microorganisms 2020, 8, x FOR PEER REVIEW 11 of 34 

 

 

Figure 3. (A) Regulation of biofilm in different streptococcal species at the genetic level. The figure 

describes the gene regulation system in S. pyogenes, S, mutans, S. agalactiae, and S. pneumoniae for direct 

effect on biofilm inhibition (shown in purple), induction (shown in green), negative regulators (shown 

in red), and positive regulators (shown in brown and blue). (B) Involvement of virulence genes in the 

regulation of biofilm in different species of the Streptococcus mitis group and S. suis. The represented 

genes of S. gordonii, S. sanguinis, and S. suis are involved in the positive regulation of biofilm formation 

and thus directly involved in increasing the biomass of forccpamed biofilm. 

5.1. GAS 

The transition of a planktonic to a sessile biofilm lifestyle is associated with global changes in 

gene expression, which affects about 25% of all GAS genes (Table 3) [139]. During biofilm growth, 

classical virulence genes, typically involved in invasive disease, like the streptolysins (sagA and slo), 

the hyaluronic acid capsule biosynthesis (hasA), the M-protein, and the streptococcal pyrogenic 

exotoxin B (speB) are downregulated, whereas competence-associated genes are upregulated (Table 

3) [140]. The observed downregulation of speB during biofilm growth plays an important role in the 

biogenesis of the biofilm in GAS as dispersal of the biofilm seems to be speB dependent and the 

absence of speB is required for biofilm growth [141]. The extracellular cysteine protease SpeB appears 

to be responsible for the degradation of extracellular biofilm proteins [142]. Multiple regulatory 

pathways are involved in the transcriptional control of speB [143] including seven activators (ccpA, 

ropB, mga, pel, codY, sagP, and luxS) and five repressors (covRS, svr, lacD.1, nra, and vfr) (Figure 3A 

and Table 3). Some of these regulatory pathways (CovRS, Mga, and LuxS) are indirectly linked to 

biofilm formation via the regulation of other effector genes. 

Figure 3. (A) Regulation of biofilm in different streptococcal species at the genetic level. The figure
describes the gene regulation system in S. pyogenes, S, mutans, S. agalactiae, and S. pneumoniae for direct
effect on biofilm inhibition (shown in purple), induction (shown in green), negative regulators (shown
in red), and positive regulators (shown in brown and blue). (B) Involvement of virulence genes in the
regulation of biofilm in different species of the Streptococcus mitis group and S. suis. The represented
genes of S. gordonii, S. sanguinis, and S. suis are involved in the positive regulation of biofilm formation
and thus directly involved in increasing the biomass of forccpamed biofilm.
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5.1. GAS

The transition of a planktonic to a sessile biofilm lifestyle is associated with global changes in
gene expression, which affects about 25% of all GAS genes (Table 3) [139]. During biofilm growth,
classical virulence genes, typically involved in invasive disease, like the streptolysins (sagA and slo),
the hyaluronic acid capsule biosynthesis (hasA), the M-protein, and the streptococcal pyrogenic exotoxin
B (speB) are downregulated, whereas competence-associated genes are upregulated (Table 3) [140].
The observed downregulation of speB during biofilm growth plays an important role in the biogenesis
of the biofilm in GAS as dispersal of the biofilm seems to be speB dependent and the absence of
speB is required for biofilm growth [141]. The extracellular cysteine protease SpeB appears to be
responsible for the degradation of extracellular biofilm proteins [142]. Multiple regulatory pathways
are involved in the transcriptional control of speB [143] including seven activators (ccpA, ropB, mga, pel,
codY, sagP, and luxS) and five repressors (covRS, svr, lacD.1, nra, and vfr) (Figure 3A and Table 3). Some
of these regulatory pathways (CovRS, Mga, and LuxS) are indirectly linked to biofilm formation via
the regulation of other effector genes.

The two-component system CovRS influences the expression of around 15% of chromosomal genes
in GAS and is involved in the regulation of important virulence factors including the capsule, surface
adhesins, and extracellular enzymes [144,145]. As a negative regulator of the capsule biosynthesis
operon HasABC and as the capsule was shown to be involved in biofilm maturation [141], a mutation
in CovRS would be expected to result in increased biofilm formation. Instead, CovS mutants of
M2, M18, and M49 strains showed a reduced biofilm formation although the capsule production
was increased [146]. A strain-dependent alteration of the biofilm production was observed in M6
strains, [139,146] indicating that the influence of CovRS on the biofilm regulation is serotype and even
strain dependent [39]. Mga, the major stand-alone positive regulator of emm and emm-like genes,
influences biofilm production besides speB regulation (Table 3) [147–149]. Neither a mga deletion strain
nor an emm deletion strain retained their biofilm formation capacity potentially because of the loss
of autoaggregation [139,150]. Besides speB regulation, the LuxS/Autoinducer-2 regulatory system is
involved in the control of streptolysin S, emm, and capsule expression [151,152], with the latter two
factors known to influence biofilm formation. Thus, the LuxS/AI-2 system could be involved in biofilm
regulation in GAS, but no difference between wild-type and the corresponding luxS-deficient strains
for the initial step of biofilm formation could be observed (Table 3) [153].

Two other quorum sensing systems, SilC and Rgg2/3, were also described as being involved in
biofilm regulation in GAS as a silC mutant in emm14 and emm18 strains exhibited an altered biofilm
structure [41] and the stimulation of the Rgg2/3 pathway resulted in increased biofilm biogenesis
(Table 3) [154]. However, as the sil system is only poorly conserved and not present in the majority
of clinical GAS isolates [42] and as the effector genes of the Rgg2/3 system that mediate the biofilm
effect are not known yet, the contribution of these systems to biofilm regulation in GAS still needs to
be further elucidated.

5.2. GBS

Although multiple QS (Quorum Sensing) systems are described in the regulation of adhesion
and colonization in GBS, for many of these systems, no role in the regulation of biofilm was
demonstrated [155,156]. An exception is CovRS, the TCS, which regulates adhesive proteins like
BsaB/FbsC. covRS-mutant bacteria show an increased adherence to host cells and an increased formation
of biofilm-like structures [123,124,157]. BceRS is also among the TCS involved in the biofilm regulation
of GBS. A mutant of the response regulator bceR showed a reduced mortality in a murine infection model
and a reduced biofilm formation potentially due to a compromised oxidative stress response [158].
Another two-component regulatory system, RgfA/C, regulates fibrinogen binding [159,160] and may
thus be involved in biofilm formation (Table 3). For veterinary S. agalactiae strains, the quorum sensing
signaling system (LuxS) has been shown to participate in biofilm formation [72].
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Recently, a novel biofilm regulatory protein A (BrpA) was characterized in GBS due to the strong
reduction in biofilm biomass in a brpA-mutant strain [161]. Although the authors investigated the
transcriptome of the mutant, a conclusive reason for the loss of biofilm formation could not be identified
so far as prominent surface structures like pilus type 2a and antigens I/II that were involved in GBS
biofilm formation [46,125] were still present in the brpA mutant (Table 3).

5.3. S. pneumoniae

S. pneumoniae colonization and disease is often linked to biofilm formation. However, the regulation
of the initial steps of biofilm formation and maturation are only partly understood (Table 3). Here, QS
systems, the LuxS/Autoinducer-2, and the competence system are involved in the biofilm regulation
in S. pneumonia. Although the Lux QS system seems to be important during early steps of biofilm
formation [162], the competence system seems to be implicated in early and later stages dependent on
the biofilm model [163,164].

The link between the competence system and biofilm formation was illusive till recently as
Aggarwal and colleagues described BriC (biofilm-regulating peptide induced by competence), a peptide
under transcriptional control of ComE that leads to increased biofilm biomass at later stages of the
biofilm development [165]. Another small secreted peptide, VP1, was discovered in the same secretome
study that identified BriC [166] and a pneumococcal mutant of VP1 formed less biofilm. The reduced
biofilm formation could be restored by external VP1 addition probably due to a membrane-bound
receptor recognizing VP1 at the cell surface [166].

An orthologue of the GAS Mga regulator in S. pneumoniae, the virulence regulator MgrA, was
also described in relation to biofilm formation showing increased expression in biofilm compared to
planktonic growth [23]. Additionally, mgrA is an important factor during nasopharyngeal colonization
and pneumonia [167], two bacterial lifestyles associated with biofilm formation.

5.4. Viridans Streptococcus

As the etiological agent of caries, S. mutans is the best investigated member of the viridans
streptococci concerning the regulation of biofilm formation (Table 3). Thus, multiple TCS systems are
described as part of a complex regulatory network including VicRK, CiaRH, and CovRS. Reduced
biofilm biomass and viable cell numbers were observed in vic-mutant cells [168], and a direct regulation
of glycosyltransferases and glucan-binding proteins was demonstrated for VicR highlighting the
role of this TCS for the adherence and early steps of biofilm growth in S. mutans [169–171]. Biofilm
formation was also reduced in a ciaH mutant probably due to increased expression of the protease
HtrA [172–175]. An orthologue of the prominent CovR regulator of GAS and GBS is encoded in S.
mutans and was initially designated TarC [176]. Usually, CovR is the response regulator of a TCS
including a histidine kinase, in S. mutans, however, covR is an orphan gene as no homologue to CovS
could be detected. CovR represses the glycosyltransferases gtfB, gtfC, and gtfD and the glucan-binding
protein gbpC, factors known to influence biofilm formation, and a covR mutation results in an altered
biofilm architecture (Table 3) [176,177].

Two quorum sensing systems were described in relation to biofilm regulation in S. mutans. The
bacteriocin controlling system ComDE/CSP is involved in the programmed cell death and persister cell
formation during biofilm growth, and the LuxS/Autoinducer-2 system participates in the regulation of
the early steps of biofilm formation [178–181].

A central role in the regulation of biofilm formation in S. mutans is realized by BrpA, an orthologue
of GBS BrpA. The expression of more than 200 genes is altered in a brpA mutant including genes involved
in stress tolerance, adherence, and cell wall biogenesis resulting in a profound biofilm-formation
defect [182–184]. Another regulatory protein the peptidyl-prolyl isomerase (RopA) plays a substantial
role in biofilm formation with or without saliva and sucrose [185]. Transcriptional regulator BrpT
negatively regulates the gtfP expression as deletion of brpT promotes the expression of gtfP and displays
increased biofilm formation ability.
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A link between exopolysaccharide synthesis and biofilm formation was demonstrated by the
characterization of rnc. A-mutant strain showed an altered biofilm formation and reduced bacterial
adhesion. Additionally, rnc affects the expression of the TCS VicRK, which itself is involved in biofilm
regulation [186,187]. Two additional regulators were reported to be involved in biofilm control in S.
mutans. The StsR protein, a GntR transcription factor, seems to positively regulate biofilm formation
and EPS production, although the effect was not to pronounced and the mutant of stsR showed a
growth delay, which could be responsible for the observed phenotypes [188]. The other factor NagR
was demonstrated to regulate the expression of glmS and nagAB, which are known to be involved in
biofilm formation [189,190]. However, a nagR-mutant strain was so far not tested for biofilm formation;
thus, it remains elusive if the regulation of NagR directly affects biofilm growth.

Only little is known about other members of the viridans streptococci concerning biofilm regulation
(Table 3). The LuxS/Autoinducer-2 QS system is described in S. anginosus and S. gordonii, with the
difference that a luxS mutant in S. anginosus seems to be almost deficient in biofilm formation, whereas
a luxS mutant in S. gordonii and in S. suis formed an altered microcolony structure within the early
biofilm [68,191]. Additionally, CcpA, the catabolite control protein A, was described as important for
the biofilm formation of S. gordonii and S. mutans, as a ccpA-mutant strain showed a reduced biofilm
biomass under various growth conditions [192]. In S. sanguinis, the regulation of the glycosyltransferase
gtfP was described in two independent mutant strains, ciaR and brpT, both demonstrating positive
association of gtfP expression and biofilm formation [62,193]. In S. gordonii, TCS system named “BfrAB,”
which encodes two ABC transporters and a CAAX amino-terminal protease family protein, promotes
biofilm development [72].

Sugar metabolism enzyme was identified in S. suis, and the gene involve in the process is said to
be as pyruvate dehydrogenase (pdh), which acts as temperature stress, salt stress, and oxidative stress
controller and involves in adhesion, biofilm formation, and antiphagocytic activity [194].

In S. sanguinis, SptRSs and SptSSs are the TCS systems that coordinate cell wall homeostasis and
are involved in H2O2 production and competence [195]. Another quorum sensing system is homoserine
kinase (thrB), which is involved in threonine biosynthesis. Metal (Zn)-binding permease (adcA) shows
implication in biofilm formation by S. gordonii Challis and S. sanguinis [196]. There are three genes,
which are identified and found to be responsible for de novo pyrimidine biosynthesis, and these are
orotate phospho-ribosyl-transferase (pyrE), phospho-ribosyl-formyl-glycin-amidine synthase (purL),
and adenylosuccinate lyase (purB) (Figure 3B and Table 3) [196].

Table 3. List of different genes present in Streptococcal species that are involved in biofilm formation
and act as adhesins, virulence factors, or regulators.

Virulence
Factors Genes Function Streptococci

Species Reference

Quorum sensing
system

luxS

Key regulator of early biofilm
formation S. gordonii [61]

Involvement in virulence,
competence, biofilm formation, acid
and oxidative stress tolerance, and

carbohydrate metabolism

S. agalactiae [72]

Regulation of lytA and early biofilm
formation S. pneumoniae [162,197]

Regulatory role in biofilm formation S. mutans [178]

Key regulator of early biofilm
formation S. suis [198,199]

Streptococcal invasion
locus (silC)

Regulator affecting biofilm
architecture and density S. pyogenes [41]
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Table 3. Cont.

Virulence
Factors Genes Function Streptococci

Species Reference

Regulatory gene of
glucosyltransferase

(rgg)

Universal streptococcal regulator
involved in intraspecies

communication, increased biogenesis
of biofilms by rgg2 rgg3

S. pyogenes [142]

Competence-stimulating
peptide (CSP)

Competence development, involved
in later stages of biofilm production S. pneumoniae [23,200]

comCDE
Regulation of competence through

production of competence-stimulating
peptide (CSP)

S. mutans [178,181]

Two-component
signaling system

bfrAB Regulator involved in the maturation
of multispecies biofilms S. gordonii [72]

bceRS Control of oxidative stress response
and biofilm production S. agalactiae [158]

Histidine kinase (ciaH)
Regulatory role in biofilm formation,

acid tolerance, and genetic
competence

S. mutans [172]

vicR/K system (vicK)

Modulates the expression of several
genes such as gtfBCD, gbpB, ftf, wapE,
smaA, SMU.2146c, lysM, and epsC that
affect the synthesis of EPS and biofilm

formation

S. mutans [169,201,202]

ciaR/H Control of the competence operon S. pneumoniae [203]

yefM-yoeB and relBE
Control of resistance towards

oxidative stress and involvement in
biofilm formation

S. pneumoniae [204]

rgfA Control of adherence to fibrinogen S. agalactiae [159,160]

covR/S Major virulence and adherence
regulator [123,124,157]

Histidine kinase (hk11)
and response regulator

(rr11)

Control of biofilm formation and acid
resistance S. mutans [205]

sptRSs and sptSSs
Coordination of cell wall homeostasis,

involved in H2O2 production, and
competence

S. sanguinis [195]

Four-component
system bceA, bceB, bceR, or bceS

Regulation of sensitivity towards
antimicrobial peptides and

requirement for biofilm formation
S. mutans [206]

CRISPR/Cas
systems cas3 gene Bacterial immunity, effect on biofilm

formation, and fluoride sensitivity S. mutans [202]

Extracellular
enzyme

Glucosyltransferases
(gtfB, gtfC, and gtfD)

and
fructosyltransferases

(ftfs)

Carbohydrate metabolism for the
generation of exopolysaccharide S. mutans [207]

Sugar
metabolism

enzyme

Pyruvate
dehydrogenase (pdh)

Control of environmental stress and
promotion of biofilm formation S. suis [194]

Glucan binding
Glucan-binding

protein (gbpA, gbpB,
and gbpC)

Adhesion and promotion of biofilm
formation S. mutans [208,209]

Amyloid proteins Wall-associated protein
(wapA and wapE) Production of extracellular matrix S. mutans [136]
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Table 3. Cont.

Virulence
Factors Genes Function Streptococci

Species Reference

Regulatory
proteins

Biofilm regulatory
protein (brpA)

Regulation of acid and oxidative
stress tolerance and biofilm formation S. mutans [182,205,210]

Virulence regulator stress tolerance S. agalactiae [211]

Sugar Transporter
Systems Regulator

(stsR)

Formation of biofilm and production
of extracellular polysaccharides (EPS)

at early stage
S. mutans [188]

Catabolite control
protein (ccpA)

Global transcriptional regulator of
carbon catabolite repression,

involvement in biofilm formation
S. mutans [210]

Surface protease Serine protease (htrA)

Processing and maturation of
extracellular proteins

including surface associated
glycolytic enzymes (GbpB, GtfB, and
FTF) contributing to biofilm formation

S. mutans [174]

Surface-associated
proteins

Fimbria-associated
serine-rich repeat

adhesin (fap1)
and (bapA1)

Adhesins with important role in
biofilm initiation S. sanguinis [212]

Choline-binding
protein adhesin (cbpA),

putative adhesin
(pcpA), and

pneumococcal surface
protein A (pspA)

Adhesins binding to the teichoic acids
of the cell wall, involvement in

immune evasion, and promotion of
biofilm formation

S. pneumoniae [27,53]

Pneumococcal
serine-rich repeat

protein (psrP)

Adhesion to host cells and mature
biofilm formation S. pneumoniae [213]

Pyruvate oxidase
(spxB) Responsible for the synthesis of H2O2 [53,214]

Pili/fimbriae

Genomic island (PI-1,
-2a, -2b). All islands

contain 3 genes
encoding pilus

component

Pilus assembly and creation of
biofilms S. agalactiae [93–95]

rrgA, rrgB, and rrgC Pilus subunits and involvement in
biofilm formation S. pneumoniae [106]

FCT-1 region (fctX,
srtB, and tee6) Pili and biofilm formation S. pyogenes [84]

Adhesin

Bacterial surface
adhesin of GBS (BsaB)

(sal0825)

Attachment of GBS to epithelial cells,
extracellular matrix and promotion of

biofilm production
S. agalactiae [124]

Fibrinogen-binding
protein (fbsC)

Fibrinogen binding, promotion of
invasion of epithelial and endothelial

barriers, biofilm formation
S. agalactiae [123]

Antigen Neuraminidase (nanA)

Release of sialic acid residues,
modification of immune defense

proteins, promotion of colonization
and biofilm formation

S. pneumoniae [215]

Autolysin

lytA (amidase),
lytB (glucosaminidase),

and
lytC (lysozyme)

Cell separation, autolysis and
promotion of biofilm dispersion S. pneumoniae [27,216]
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Table 3. Cont.

Virulence
Factors Genes Function Streptococci

Species Reference

M-protein emm
Key virulence factor, antiphagocytic,

immune evasion, adhesin, and
contribution to biofilm formation

S. pyogenes [38,119,142]

Hyaluronic acid
capsule

Hyaluronate synthase
(hasA)

Escape of phagocytosis involvement
in biofilm maturation S. pyogenes [38,139]

Sorting signal

Sortase A (srtA),
sortase C (srtC-1)

Pilus polymerization and cell wall
attachment S. agalactiae [43,46]

Sortase (srt A and srtA) Pili assemblance and biofilm
production S. pyogenes [39]

Transcriptional
regulator

Streptococcal regulator
of virulence (srv)

Transcriptional regulator of virulence
and contribution to biofilm dispersal

by degrading SpeB
S. pyogenes [122,142]

Streptococcal
antigen I/II

(AglI/II) family
polypeptides

Group A Streptococcus
protein A (aspA)

Adhesion to human salivary
glycoproteins and facilitation of
colonization to develop biofilm

S. pyogenes [38,39]

Collagen-like
protein

Streptococcal
collagen-like gene-1

(scl-1)
Cell surface adhesin S. pyogenes [142]

MSCRAMM
family proteins

Fibronectin-binding
protein F (prtF1 and

prtF2) and mrp4
Adherence to host epithelial cells S. pyogenes [38,39,111]

Exotoxin

(speA) Superantigen involved in the
dispersal of biofilm S. pyogenes [122,217]

Cysteine protease
(speB)

Cleavage of streptococcal cell surface
virulence factors such as M protein,

protein F, and C5a peptidase.
Dispersal of biofilm

6. Therapeutic Antibiofilm Approaches

The treatment of bacteria growing in biofilms is challenging due to the increased tolerance
towards antibiotics and their protection against the host immune system. Identification of agents that
interfere with biofilm formation may increase the effectiveness of antimicrobials and allow access
of host defenses, which may then resolve the infection. To prevent biofilm formation, innovative
approaches aim at specific therapeutic targets. These may include biofilm regulation, degradation of the
extracellular matrix, and the targeted delivery of antimicrobial peptides and other antibiofilm agents.

6.1. Quorum Sensing Systems

Biofilm formation shows a close biological connection with the quorum sensing (QS) systems found
in many streptococci. Several different ways can be used to interrupt QS-associated cell communication
system including: competitive inhibition of signaling molecules, compounds with signaling molecules
binding capacity, and degradation of the chemical structures of signaling molecules. Interestingly
signaling molecules like the competence-stimulating peptide of S. mutans may at higher concentrations
cause bacterial self-destruction and thus interfere with biofilms [218]. KBI-3221, an analog of
the competence-stimulating peptides of various Streptococci, reduces biofilm formation in several
species [219]. In another study, the QS mechanism interfering compound 5-hydroxymethylfurfural was
shown to inhibit biofilm formation in different streptococcal species [220]. These studies highlight that
an interference with quorum sensing regulation appears a promising antibiofilm strategy, which may
also represent a more general approach to interfere with host microbe interactions [221].
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6.2. Target Extracellular Polysaccharide (EPS) Matrix

Biofilm matrix components, such as polysaccharides, proteins, and eDNA, are crucial for
providing resistance against antimicrobials, the immune system, and environmental stressors [222,223].
The inhibition of biofilm formation can thus be achieved by matrix degrading enzymes that can induce
biofilm dispersion, biofilm detachment, and reduction in cell aggregation [224]. While different types
of compounds have been shown to degrade EPS in E. coli, P. aeruginosa, and staphylococci [225–227],
a few studies exist on streptococci. DNase I as well as different proteases have been shown to degrade
biofilm matrices in streptococci [29,228,229], despite potential toxicity to the host they may be useful in
developing novel therapeutic approaches [230]. In 2015, Ren et al. reported a more specific approach
to target the EPS of oral multispecies biofilm [231]. They identified a compound termed 5H6 as an
inhibitor of glucosyltransferases, a key contributor to the EPS of S. mutans, and they could show the
effect of 5H6 on preventing caries development in an in vivo rat model.

6.3. Antimicrobial Peptides (AMPs)

Most antimicrobial peptides are small cationic and amphipathic peptides that are part of the
host innate immune system. AMPs have been shown to interfere with various stages of biofilm
formation independent from their ability to kill bacterial cells [232]. Some of the most prominent
examples of AMPs showing biofilm preventive activity include the human cathelicidin peptide
LL-37 (derivative of mucosal epithelial cells and several cells of the immune system), Lactoferrin,
Oritavancin (semisynthetic lipoglycopeptide), DJK-5, and DJK-6 (synthetic analog of active antibiofilm
peptides), DD13-RIP (chimeric compound), and (IDR-)1018 (bactenecin derivative) [233,234]. In regard
to streptococci Chrysophsin-1, IDR-1018 and pleurocidin have been shown to exhibit antibiofilm
activity [218,235–237]. The AMP C16G2 may even selectively remove S. mutans from multispecies oral
biofilms and shift the microbial community towards beneficial streptococcal species [238]. An attractive
approach is to strengthen the antibiofilm activity of AMPs by targeted delivery. Specificity, e.g.,
can be increased by conjugation to a pathogen-specific siderophore, packaged within a phage delivery
system [239]. Furthermore the combination of an AMP with conventional antibiotics can strengthen
the antimicrobial activity, at sub-MBIC (minimal biofilm inhibition concentration) levels, IDR-1018,
e.g., causes a 64-fold decrease in the respective MBIC of several antibiotics [239]. In summary,
coadministration of AMPs with antibiotics or other antimicrobial strategies may offer an effective way
to combat streptococcal biofilms.

6.4. Bacteriocins

Bacteriocins are antimicrobial peptides, which are produced by bacteria to kill closely related
bacteria. While they may have similar antibiofilm properties as eukaryotic AMPs, these have not been
investigated to the same extent. Nisin has been shown to interfere with biofilms in several bacterial
species including enterococci [240,241], there are, however, conflicting reports about the activity of
nisin on S. mutans biofilms [242,243]. In summary the potential antibiofilm properties of bacteriocins
have not been sufficiently explored for streptococci.

6.5. Nanodrug Delivery System

Nanoparticles are an emerging technology used for drug delivery and selective targeting of
pathogenic bacteria with the ability to penetrate biofilms [230]. Liposomes, e.g., can carry more than
one drug by coencapsulation and can also be functionalized by linking biomolecules such as peptides or
polymers to increase target specificity and to provide a triggered release [244]. Inorganic nanoparticles
such as iron oxide (Fe3O4) with a peroxidase-like function catalyzes hydrogen peroxide (H2O2)
showing potent effects against S. mutans oral biofilms in vivo [245]. Several other studies using metallic
nanoparticles underline their potential as antibiofilm strategies [246–249]. Overall, nanoparticles offer a
promising therapeutic platform for the development of new and effective biofilm-targeting approaches.
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6.6. Surfactants, Amino-Acids, Metal Chelators, and Various Enzymes

Surfactants show antibiofilm activity by interacting with various cellular components, such as
proteins and lipids, reducing microbial cell growth and viability [250–252]. Sodium dodecyl sulfate (SDS)
promotes biofilm dispersion by causing cavity formation within biofilms [251]. Several other surfactants,
such as surfactin, rhamnolipids, Tween 20, cetyltrimethylammonium bromide (CTAB), and Triton
X-100, have also been reported to cause biofilm disruption [253,254]. The disintegration of biofilms can
also be achieved by amino acids (D-cysteine (Cys), D- or L-aspartic acid (Asp) and D-or L-glutamic
acid (Glu), which have been reported for various bacterial species including streptococci [243,255].

6.7. Phages Therapy

Bacteriophages may also be used for their antibiofilm properties. They have the advantage of
being specific for bacterial strains and of having a rapid, targeted action, reducing the development of
resistance [256]. Even for resistant bacteria, phages are often bacteriocidal. The successful application
of bacteriophages or bacteriophage-encoded lysins was shown for S. pyogenes and S. suis [257–259].
More recently, a novel S. mutans phage was isolated showing antibiofilm activity [260] and the use of a
bacteriophage-encoded lysin against S. mutans biofilms could be demonstrated [261].

7. Conclusions and Future Prospective

Biofilms are often essential in the development of streptococcal infections and represent an
important clinical challenge affecting morbidity and mortality. They provide defense against antibiotics
and protection from the immune system, therefore treatment with antimicrobial drugs alone is difficult.
Addressing this situation requires a better understanding of the underlying molecular mechanisms.
In this review, we discuss the role of virulence factors, pili, and surface proteins and regulators
associated with streptococcal biofilms. Targeting different aspects of biofilm production, promising
antibiofilm approaches can be envisioned. Various in vitro studies show that streptococcal biofilms can
be attacked by addressing quorum sensing systems, bacteriocins, EPSs, AMPs, nanodrugs, enzymes,
surfactants, and phages. Thus, biofilms that represent a crucial part in the development Streptococcal
infections can be a key target for novel therapeutic strategies.
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