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ABSTRACT
This paper addresses the problems of frequentist and Bayesian esti-
mation for the unknown parameters of generalized Lindley distribu-
tion based on lower record values. We first derive the exact explicit
expressions for the single and product moments of lower record val-
ues, and then use these results to compute the means, variances
and covariance between two lower record values. We next obtain
the maximum likelihood estimators and associated asymptotic con-
fidence intervals. Furthermore, we obtain Bayes estimators under
the assumption of gamma priors on both the shape and the scale
parameters of the generalized Lindley distribution, and associated
thehighest posterior density interval estimates. TheBayesian estima-
tion is studied with respect to both symmetric (squared error) and
asymmetric (linear-exponential (LINEX)) loss functions. Finally, we
compute Bayesian predictive estimates and predictive interval esti-
mates for the future record values. To illustrate the findings, one real
data set is analyzed, and Monte Carlo simulations are performed to
compare the performances of the proposed methods of estimation
and prediction.

ARTICLE HISTORY
Received 25 April 2019
Accepted 14 October 2019

KEYWORDS
Generalized Lindley
distribution; maximum
likelihood estimator; Bayes
estimator; prediction;
interval estimation; lower
record values

2010MATHEMATICS
SUBJECT
CLASSIFICATIONS
62F10; 62F15

1. Introduction

Record values are of great significance inmany statistical applications, statistical modeling,
and inference involving data pertaining to hydrology, sports, industry, weather forecast,
seismology, athletics, economics, life-testing studies and so on. For example, record values
of the fastest time taken to recite the periodic table of the elements or shortest duration of
tennis matches or fastest indoor marathon, etc. In practice, several attempts are performed
but a recordmakes or breaks only when the attempt is a success, and usually the data on all
of the attempts made to break a record around the world do not available. But the available
data in the form of records have attracted the attentions of several researchers. In fact the
frequency of weather conditions first motivated Chandler [8] to study record values for
independent and identically distributed sequences of random variables. Since then several
scientific findings and books have been published on record-breaking data and their dis-
tributional properties, and among them onemay refer to Glick [15], Ahsanullah [1], Gulati
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and Padgett [14], Arnold et al. [3], and literature cited therein for the developments and
applications using different probability distributions till the last three decades.

In practice, various phenomena can be modeled through different statistical distribu-
tions, and the properties of the phenomenon can be studied through the statistical proper-
ties of the considered particular distribution. For example, mean, variance and moments
of a considered distribution can provide enough information of modeled phenomena. In
this regard a significant amount of research has been done for several distributions to
study record values. For an instance Balakrishnan and Ahsanullah [5] established some
recurrence relations satisfied by single andproductmoments for the generalized Pareto dis-
tribution based on upper record values. Furthermore, single and product moments based
on record observations are obtained by Balakrishnan and Chan [6] for normal distribu-
tion, Raqab [25] for generalized exponential distribution, MirMostafaee et al. [16] for NH
distribution, and recently Devendra et al. [19] for exponentiated moment exponential dis-
tribution. In statistical theory, problems of estimating unknownparameters of a considered
distribution under classical and Bayesian approaches are of fundamental importance as
many statistical inferences can be made through the estimates of parameters based on the
observed record values. Also, problem of prediction may help the practitioners in the field
of reliability and statistical analysis to infer future record observations. In the existing liter-
ature, a lot of work has also been done in this direction for different statistical distributions
based on record values. For instance, Ahmadi and Doostparast [2] considered problems
of Bayesian estimation and prediction for some lifetime distributions such as Exponential,
Weibull, Pareto and Burr type XII, Dey et al. [11] and [10] respectively for generalized
exponential and generalized inverted exponential distributions, Doostparast et al. [13]
and Singh et al. [32] for lognormal distribution, and Yoon et al. [35] for exponentiated
Pareto distribution. The objective of this paper is to compute single and product moments,
and estimation and prediction problems under both classical and Bayesian approaches for
generalized Lindley (GL) distribution based on lower record values.

GL distribution was introduced by Nadarajah et al. [23] as an interesting lifetimemodel
alternative to the gamma, the lognormal and the Weibull distributions. The main advan-
tage of this distribution is that it can accommodate lifetime data having monotonically
decreasing, monotonically increasing and bathtub shaped hazard rate functions which
occurs in many practical problems, see Bebbington et al. [7] and references cited therein.
The probability density function (PDF) and the cumulative distribution function (CDF) of
a two-parameter GL(α,β) distribution are respectively given by

f (x;α,β) = αβ2(1 + x)
(1 + β)

[
1 − 1 + β + βx

(1 + β)
e−βx

]α−1
e−βx; x > 0, α,β > 0, (1)

F(x;α,β) =
[
1 − 1 + β + βx

(1 + β)
e−βx

]α

; x > 0, α, β > 0, (2)

where α and β are respectively the shape and the scale parameters. In fact, this distribu-
tion is an extendedmodel of the one-parameter Lindley distribution (LD), and correspond
to shape parameter α = 1, it reduces to LD. In the existing literature, Singh et al. [28]
considered GL distribution under the progressive type-II censoring scheme which allows
the removals of the live units from a life-test with Beta-binomial probability law dur-
ing the execution of the experiment. Authors obtained maximum likelihood estimates,
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Bayesian estimates and Bayesian predictive estimates, and further discussed the behav-
ior of the expected total test time. Later, Singh et al. [29] discussed maximum likelihood
estimates and the problem of estimation and prediction from Bayesian viewpoint based
on complete sample. In Bayesian paradigm, authors considered non-informative and inde-
pendent gamma informative priors under squared error and general entropy loss functions.
Recently, Singh et al. [30] further extended their work when data are observed under type-
I hybrid censoring. We observed that the existing work under Bayesian approach suggest
independent gamma priors. Furthermore, we observed that problems of estimation and
prediction under both classical and Bayesian approaches for GL distribution based on
lower record values have not been considered. With this motivation, we first derive the
single and product moments of lower record values and then use these results to compute
themeans, variances and covariances between two record values in Section 3. Furthermore,
we consider the problems of estimation based on classical and Bayesian approaches respec-
tively in Sections 4 and 5. The problem of Bayesian prediction is discussed in Section 6.
Real data analysis and simulation study are presented in Section 7. Finally, the paper ends
with a conclusion in Section 8.

2. Preliminaries

This section presents some preliminaries for better understanding of lower record values.
Suppose that X1,X2, . . . is a sequence of continuous random variables following a PDF
f (x; θ) and a CDF F(x; θ), where θ represents a vector of unknown parameters. Then an
observation Xj will be a lower record if its value is smaller than all of its previous observa-
tions, that is, ifXj < Xi for every i< j. Now let us denote r = (r1, r2, . . . , rm) asmnumber of
lower record values observed from a distribution having PDF and CDF respectively given
by f (x; θ) and F(x; θ). Notice that if we consider the first observation as a lower record
such that r1 = X1 then the next record will be r2 = Xj such that Xj < r1, j = 2, 3, . . ., and
likewise the i-th record ri = Xj such that Xj < ri−1, i = 3, . . . ,m and j = i, i + 1, . . .. In
fact observing record values in such a way is an example of inverse sampling, however if
record values are observed from X1,X2, . . . ,Xn observations then it is called random sam-
pling. Therefore, under inverse sampling m is a pre-specified number but under random
sampling n is a pre-specified number and m turns out to be a random number. The PDF
for the lower record values Rm = r,m = 1, 2, . . . .. can be written as [3]

fRm(r; θ) = 1
(m − 1)!

[− log(F(r; θ))]m−1f (r; θ), r > 0, m = 1, 2, . . . . (3)

Furthermore, the joint PDF for Rm = r and Rn = s such that r > s,m = 1, 2, . . . ,m < n is
given by

fRm,Rn(r, s; θ) = 1
(m − 1)!(n − m − 1)!

[− log(F(r; θ))]m−1

× [− log(F(s; θ)) + log(F(r; θ))]n−m−1 f (r; θ)

F(r; θ)
f (s; θ). (4)
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The associated likelihood function of θ given the observed lower record values
r = (r1, r2, . . . , rm) can be written as

L(θ | r) = f (rm; θ)

m−1∏
i=1

f (ri; θ)

F(ri; θ)
, r > 0, m = 1, 2, . . . . (5)

3. Moments for lower record values

The objective of this section is to obtain the single and product moments for lower
record values when the lifetime data follows GL(α,β) distribution. We assume that
r = (r1, r2, . . . , rm) are them number of lower record values observed from GL(α,β) dis-
tribution. Then PDF for the lower record values can be written from (3) using PDF and
CDF respectively as defined in (1) and (2). Subsequently the g-th moment (g = 1, 2, . . . ,)
for lower record value rm, (m = 1, 2, . . . ,) can be derived as

μ
(g)
m = E(Rgm) =

∫ ∞

0
rgfRm(r;α,β) dr, g = 1, 2, . . . ,m = 1, 2, . . . ,

= αmβ2

(1 + β)(m − 1)!

∞∑
i=0

∞∑
j=0

i+j+m−1∑
k=0

(−1)i
(

α − 1
i

)(
i + j + m − 1

k

)

× φj(m − 1)
(

β

1 + β

)k
�(g + k + 1)

[β(i + j + 1)]g+k+1

(
1 + g + k + 1

β(i + j + m)

)
. (6)

To compute the final above expression, the expansions of, say, (1 − t)j and (− ln(1 − t))j =
(
∑∞

p=1(t
p/p))j = ∑∞

p=0 ap(j)t
j+p such that |t| < 1 are used, and the complete gamma

function is considered, see Shawky and Bakoban [27]. Furthermore, from (4) using PDF
and CDF as respectively defined in (1) and (2), covariance between the lower records
Rm = r and Rn = s such thatm<n, is given by

μ
(g,h)
m,n = E(RgmRhn) =

∫ ∞

0

∫ ∞

0
RgmRhnfRm,Rn(r, s;α,β) dr ds,m = 1, 2, . . . ,m, and m < n

= β4αn

(1 + β)2(m − 1)!(n − m − 1)!

n−m−1∑
i=0

∞∑
j=0

∞∑
k=0

n−i+j+k−2∑
l=0

∞∑
u=0

∞∑
v=0

u+v+i∑
w=0

× (−1)n−m−1−i+u
(
n − m − 1

i

)(
n − i + j + k − 2

l

)(
α − 1
u

)(
u + v + i

w

)
φv(i)

× φk(n − i − 2)
(

β

1 + β

)l+w
(g + l + 1)!

g+l+1∑
t=0

[β(n − i + j + k − 1)]t−(g+l+1)

t!

× [1 + (g + l + 1)(β(n − i + j + k − 1))]
[

�(l + t + w + 1)
[β(n − i + j + k + u + v + i)]l+t+w+1

+ �(l + t + w + 2)
[β(n − i + j + k + u + v + i)]l+t+w+2

]
, r, s = 1, 2, . . . . (7)
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Table 1. Means of lower record values rm for GL(α, 2.0) distribution.

m α = 0.5 α = 0.75 α = 1.0 α = 1.25 α = 1.5 α = 1.75 α = 2.0

1 0.57932 0.77435 0.93333 1.06702 1.18220 1.28330 1.37333
2 0.22531 0.36650 0.49333 0.60590 0.70642 0.79697 0.87916
3 0.12016 0.23087 0.33797 0.43671 0.52725 0.61041 0.68700
4 0.07276 0.16391 0.25773 0.34658 0.42973 0.50734 0.57967
5 0.04676 0.12417 0.20853 0.28988 0.36725 0.44046 0.50939
6 0.03084 0.09781 0.17522 0.25064 0.32330 0.39289 0.45900
7 0.02043 0.07892 0.15114 0.22173 0.29044 0.35697 0.42069
8 0.01339 0.06458 0.13291 0.19949 0.26481 0.32870 0.39034
9 0.00859 0.05318 0.11862 0.18182 0.24416 0.30575 0.36556
10 0.00533 0.04378 0.10712 0.16741 0.22712 0.28666 0.34485

Now the covariance between the Rm and the Rn records is given by σm,n = μm,n − μmμn,
here μm = μ

(1)
m . Furthermore, for n = m, the variance is given by σ 2

m = μ
(2)
m − (μm)2.

Therefore, means, variances and covariances for the lower records can be computed using
the expressions given by (6) and (7). Next, we consider the parameter values of GL(α,β)

distributions as α = 0.5(0.25)2.0 and β = 2, and report themeans in Table 1 and variances
and covariances for the first 10 record values in Table 2. Tabulated values suggest that the
mean of the record values decrease when more number of records are taken into account.
However, for a fixed value of the scale parameter β , mean do increase with a higher value
of the shape parameter α. Furthermore, the values of variances do decrease with a large
number of records, and increase with a higher value of the shape parameter α. A similar
type of behavior is observed for the covariances as well. We mention that the reported
observations also hold true for other values of scale parameter β .

4. Maximum likelihood estimation

The objective of this section is to derive maximum likelihood estimators (MLEs) for
the unknown parameters of GL distribution based on lower record values. Suppose that
r = (r1, r2, . . . , rm) be the m number of lower record values observed from GL(α,β) dis-
tribution. Then the associated likelihood function of (α,β) given the lower record values
r = (r1, r2, . . . , rm) is given by (5) using PDF andCDFas respectively defined in (1) and (2).
Now on equating partial derivative of the log-likelihood function, say, l = ln L(α,β | r)
with respect to α to zero, we get

α = −m/ lnA(β , rm). (8)

Here A(β , x) = 1 − (1 + ((β)/(1 + β))x)e−βx. Notice that limβ→0 A(β , x) → 0 and
limβ→∞ A(β , x) → 1. The limits also hold true for the values of x, and therefore lnA(β , x)
always become negative which gives the positive unique estimate for α. Also the second
derivative of the log-likelihood function ∂2l/∂α2 = −m/α2 < 0 corresponding to any
value of β ensures the maximization of the associated log-likelihood equation with respect
to α. Now if α(k+1) = −m/ lnA(β(k), x) is the estimate of α at (k + 1)th stage, then the
estimate of β at the (k + 1)th stage can be obtained on solving the following equation:

2m
β

− m
1 + β

−
m∑
i=1

ri −
m∑
i=1

Aβ(β , ri)
A(β , ri)

+ α(k+1)Aβ(β , rm)

A(β , rm)
= 0. (9)
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Table 2. Variances and covariances of lower record values for GL(α, 2.0) distribution.

m n α = 0.5 α = 0.75 α = 1.0 α = 1.25 α = 1.5 α = 1.75 α = 2.0

1 1 0.38906 0.52138 0.62980 0.72134 0.80048 0.87014 0.93231
2 0.14833 0.24227 0.32728 0.40319 0.47131 0.53290 0.58899
3 0.07828 0.15110 0.22212 0.28808 0.34890 0.40502 0.45691
4 0.04710 0.10660 0.16836 0.22731 0.28283 0.33491 0.38366
5 0.03015 0.08040 0.13563 0.18933 0.24076 0.28967 0.33594
6 0.01983 0.06313 0.11359 0.16318 0.21130 0.25764 0.30186
7 0.01311 0.05082 0.09773 0.14400 0.18936 0.23354 0.27605
8 0.00858 0.04151 0.08576 0.12929 0.17230 0.21463 0.25566
9 0.00550 0.03414 0.07641 0.11763 0.15860 0.19931 0.23905
10 0.00341 0.02807 0.06891 0.10815 0.14732 0.18660 0.22519

2 2 0.14010 0.22893 0.30939 0.38128 0.44582 0.50422 0.55742
3 0.07385 0.14261 0.20975 0.27214 0.32971 0.38287 0.43204
4 0.04441 0.10054 0.15887 0.21459 0.26711 0.31640 0.36256
5 0.02842 0.07580 0.12792 0.17866 0.22727 0.27355 0.31734
6 0.01868 0.05950 0.10710 0.15393 0.19940 0.24322 0.28506
7 0.01235 0.04788 0.09212 0.13580 0.17865 0.22041 0.26061
8 0.00808 0.03910 0.08082 0.12190 0.16252 0.20252 0.24131
9 0.00518 0.03215 0.07200 0.11089 0.14957 0.18803 0.22559
10 0.00321 0.02644 0.06492 0.10193 0.13891 0.17602 0.21249

3 3 0.06987 0.13498 0.19861 0.25778 0.31242 0.36288 0.40958
4 0.04199 0.09510 0.15034 0.20315 0.25295 0.29972 0.34354
5 0.02686 0.07166 0.12100 0.16906 0.21514 0.25903 0.30057
6 0.01765 0.05624 0.10127 0.14561 0.18869 0.23024 0.26992
7 0.01167 0.04525 0.08709 0.12843 0.16902 0.20860 0.24672
8 0.00764 0.03695 0.07639 0.11526 0.15373 0.19163 0.22840
9 0.00489 0.03037 0.06804 0.10483 0.14145 0.17789 0.21349
10 0.00303 0.02497 0.06134 0.09635 0.13135 0.16650 0.20106

4 4 0.03980 0.09019 0.14262 0.19280 0.24014 0.28462 0.32631
5 0.02545 0.06794 0.11475 0.16038 0.20417 0.24589 0.28540
6 0.01672 0.05330 0.09601 0.13810 0.17902 0.21850 0.25623
7 0.01105 0.04287 0.08254 0.12178 0.16032 0.19792 0.23415
8 0.00723 0.03500 0.07240 0.10927 0.14579 0.18178 0.21673
9 0.00463 0.02877 0.06447 0.09937 0.13413 0.16873 0.20255
10 0.00287 0.02365 0.05811 0.09132 0.12454 0.15791 0.19073

5 5 0.02418 0.06456 0.10908 0.15251 0.19420 0.23395 0.27160
6 0.01588 0.05063 0.09124 0.13129 0.17024 0.20784 0.24379
7 0.01049 0.04072 0.07843 0.11575 0.15242 0.18822 0.22274
8 0.00687 0.03324 0.06878 0.10384 0.13859 0.17285 0.20614
9 0.00440 0.02732 0.06124 0.09442 0.12749 0.16042 0.19262
10 0.00273 0.02246 0.05520 0.08676 0.11836 0.15011 0.18136

6 6 0.01512 0.04821 0.08691 0.12508 0.16224 0.19812 0.23243
7 0.00999 0.03877 0.07469 0.11025 0.14523 0.17939 0.21233
8 0.00654 0.03164 0.06548 0.09890 0.13203 0.16472 0.19647
9 0.00418 0.02601 0.05830 0.08991 0.12144 0.15285 0.18357
10 0.00259 0.02137 0.05254 0.08262 0.11273 0.14301 0.17282

7 7 0.00953 0.03699 0.07127 0.10524 0.13866 0.17131 0.20281
8 0.00623 0.03018 0.06248 0.09439 0.12604 0.15727 0.18764
9 0.00399 0.02480 0.05562 0.08580 0.11591 0.14593 0.17530
10 0.00247 0.02039 0.05012 0.07883 0.10759 0.13652 0.16502

8 8 0.00596 0.02885 0.05973 0.09025 0.12054 0.15044 0.17952
9 0.00381 0.02370 0.05317 0.08203 0.11085 0.13958 0.16770
10 0.00236 0.01948 0.04790 0.07536 0.10288 0.13057 0.15785

9 9 0.00365 0.02269 0.05091 0.07857 0.10618 0.13373 0.16070
10 0.00226 0.01865 0.04587 0.07217 0.09854 0.12509 0.15125

10 10 0.00217 0.01788 0.04399 0.06923 0.09454 0.12004 0.14516

Here Aβ(β , x) is the partial derivative of A(β , x), and is given by Aβ(β , x) = xe−βx[(1 +
(β/(1 + β))x) − (1/((1 + β)2))]. Notice that the possible solution to the above equation
can be seen graphically, and further the negative values of the second derivative given in
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Figure 1. Plot for (∂ l/∂β) and convergence of partial derivatives of log-likelihood function.

the appendix can assure the maximization of the associated log-likelihood equation. In
real data analysis and simulation studies described later in Section 7, we consider nleqslv
package in R-programming language for the solution andmaximization to above equation.
Next, the iterative procedure given by Equations (8) and (9) can be terminated once the
convergence, say |α(k+1) − α(k)| + |β(k+1) − β(k)| ≤ ε for some given ε > 0, is achieved.
From now onwards, we will denote the maximum likelihood estimates of α and β respec-
tively as α̂ and β̂ . For illustration purpose, we consider the generated lower record values
given in Section 7 under real data analysis. NowEquation (8) assures the unique estimate of
α, and further for the given value of α, the estimate of β can be obtained fromEquation (9).
In Figure 1, we first present the graph for ∂ l/∂β given by Equation (9) for a range of α and
β in (0, 3]. It can be seen that for every value of α, the estimate of β can be easily observed.
Next, for all the estimates of α and β obtained respectively from iterative procedure given
by Equations (8) and (9), we plot both derivatives with respect to number of iterations. It
can be seen that as the number of iteration increases both the derivatives converge to zero.
Notice that alternatively as discussed in the work of Pak and Dey [24], for the given set
of parameters and associated generated record values, both equations ∂ l/∂α and ∂ l/β can
be plotted, and the unique intersection can ensure solution to the log-likelihood equations
exists and is unique. Now the observed information matrix can be written as

I(α̂, β̂) = −
[
l20 l11
l11 l02

]
(α,β)=(α̂,β̂)

, (10)

where lij = ∂2l/∂αi∂β j, i, j = 0, 1, 2 such that i + j = 2, and the associated expressions
are reported in Appendix. Now the asymptotic normal distribution for the MLEs can
be derived in the usual way. Under some mild regularity conditions, the MLEs (α̂, β̂)

is approximately bivariate normal with mean (α,β) and covariance matrix which is
the inverse of Fisher’s information matrix. In practice, a simpler and equally valid pro-
cedure is to use the approximation (α̂, β̂) ∼ N((α,β), I−1(α̂, β̂)), where I(α̂, β̂) is the
observed information matrix defined in (10). Therefore the two-sided 100(1 − γ )%,
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0 < γ < 1, asymptotic confidence intervals for α and β can be respectively obtained as

α̂ ± �−1((γ /2))
√
Var(α̂) and β̂ ± �−1(γ /2)

√
Var(β̂).

5. Bayesian estimation

In this section, we consider Bayesian estimation for the parameters of the GL distribution
based on lower record values. In Bayesian estimation, selection of prior distribution and
loss function play important roles. In the existing literature various prior distributions have
been proposed for the unknown parameters of a particular distribution of interest. For
example, in their work Singh et al. [28–30] considered independent gamma prior for the
parameters ofGL distribution, Kundu andGupta [21] also considered independent gamma
priors for the parameters of Weibull distribution, Ahmadi and Doostparast [2] proposed a
bivariate prior, and Singh et al. [32] and Singh and Tripathi [31] considered a conditional
prior for lognormal distribution. However, Arnold and Press [4] mentioned that there is
clearly no way in which one can say that one prior is better than other. In the premises of
the above arguments, we consider gamma priors on the shape and the scale parameters of
the GL distribution such that

π(α | c, d) = dc

�(c)
αc−1e−dα , c > 0, d > 0,

π(β | a, bα) = (bα)a

�(a)
βa−1e−bαβ , a > 0, b > 0.

Here �(.) represents the gamma function, and a, b, c and d are the hyper-parameters.
Now the prior density is π(α,β) = π(β | a, bα)π(α | c, d), and the non-informative prior
π(α,β) = (1/(αβ)) corresponds to the zero approaching hyper-parameter values in the
considered prior. Notice that posterior distribution using the Bayes theorem under con-
sideration of prior π(α,β) for (α,β) can be obtained as

π(α,β | r) = π(α,β)L(α,β | r)∫ ∞
0

∫ ∞
0 π(α,β)L(α,β | r) dα dβ

.

In the existing literature squared error loss (SEL) function has been extensively considered,
under which the Bayes estimator of, say g(α,β) is given by

ĝ(α,β) ∝ E
(
g(α,β) | r) =

∫ ∞

0

∫ ∞

0
g(α,β)π(α,β | r) dα dβ . (11)

However, the SEL is a symmetric loss function in which under and over estimations have
same weight. But in many practical situations under/over-estimation may be more seri-
ous than the over/under-estimation, and in such situations asymmetric loss function can
be used. Thus we next consider LINEX loss function defined by δLL(g(α,β), ĝ(α,β)) =
eĝ(α,β)−g(α,β) − ν(ĝ(α,β) − g(α,β)) − 1, here ν �= 0 is a shape parameter and further sug-
gests seriousness of over/under-estimation according to ν > 0/ν < 0. The Bayes estimator
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of a function g(α,β) under LINEX loss function is given by

ĝLINEX(α,β) = −1
ν
ln

[
E(e−νg(α,β) | x)]

= −1
ν
ln

[∫ ∞

0

∫
0

∞e−νg(α,β)π(α,β | x) dα dβ
]
. (12)

We observe that Bayes estimators under the consideration of squared error and LINEX
loss functions respectively given by (11) and (12) can not be simplified into a closed form
expression. So by making use of some approximation methods, we can derive explicit
expressions for these estimators. In the existing literature, Lindley’s method [22] has been
extensively taken into account for such situations. However, this method requires third
derivatives of the log-likelihood function. Instead, we consider another approximation
method proposed by Tierney andKadane (TK) [33], inwhich derivatives only up to second
order are required to compute the desired Bayes estimates.

5.1. TK’s method

This section deals with the use of TK’s [33] method to approximate the Bayes estimates.
Suppose our objective is to estimate the expressionE(g(θ) | x) using the TKmethod. Then,
we first consider the following functions:

δ(α,β) = 1
n
ln[L(α,β)π(α,β)] and δ∗

g (α,β) = 1
n
ln[L(α,β)π(α,β)g(θ)]. (13)

Now suppose that values (α̂δ , β̂δ) and (α̂δ∗
g , β̂δ∗

g ) respectively maximize the functions
δ(α,β) and δ∗

g (α,β). Then the approximation using the method of TK suggests that

E
(
g(θ) | x) =

√
|�∗

g |
|�δ| exp

[
n
(
δ∗
g (α̂δ∗

g , β̂δ∗
g ) − δ(α̂δ , β̂δ)

)]
, (14)

where |�δ| and |�∗
g | are the negatives of inverse Hessian matrices of δ(α,β) and δ∗

g (α,β)

respectively obtained at (α̂δ , β̂δ) and (α̂δ∗
g , β̂δ∗

g ). We first demonstrate the method to obtain
(α̂δ , β̂δ) and (α̂δ∗

g , β̂δ∗
g ). Suppose that our purpose is to obtain the Bayes estimate of α under

the SEL and the LINEX loss functions. Then accordingly we have g(α,β) = α, and sub-
sequently we need to approximate function E(α | r) and E(e−να | r) respectively for SEL
and LINEX loss functions in expressions given by (11) and (12). Now on equating partial
derivatives of δ(α,β) and δ∗

g (α,β) (g(θ) = α under SEL and g(θ) = e−να under LINEX
loss) with respect to α to zero, we get estimate of α in the following form:

α = −(m + Cα + K1)/ [lnA(β , rm) − (d + bβ) − K2] , (15)

where Cα = (a + c − 1). Furthermore,

K1 =

⎧⎪⎨
⎪⎩
0 for δ(α,β) expression
1 for δ∗

g (α,β) under SEL

0 for δ∗
g (α,β) under LINEX

and K2 =

⎧⎪⎨
⎪⎩
0 for δ(α,β) expression,
0 for δ∗

g (α,β) under SEL,

ν for δ∗
g (α,β) under LINEX.
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Now if α(k+1) is the estimate of α at (k + 1)th stage given by (15) then the respective
estimate of β at the (k + 1)th stage can be obtained on solving the following equation:

(2m + Cβ)

β
− m

1 + β
−

m∑
i=1

ri −
m∑
i=1

Aβ(β , ri)
A(β , ri)

+ α(k+1)
(
Aβ(β , rm)

A(β , rm)
− b

)
= 0, (16)

where Cβ = (a − 1)/β . Consequently (α̂δ , β̂δ) and (α̂δ∗
α
, β̂δ∗

α
) under SEL and LL can be

obtained from iterative procedure given by (15) and (16) using the respective values of K1
and K2. Finally, Bayes estimate of α under SEL is given by (14) with

|�δ| =
[

∂2δ

∂α2 × ∂2δ

∂β2 − ∂2δ

∂α∂β
× ∂2δ

∂β∂α

]−1

α=α̂δ ,β=β̂δ

,

where

∂2δ

∂α2 = 1
n

[
l20 − a + c − 1

α2

]
,

∂2δ

∂β2 = 1
n

[
l02 − a − 1

β2

]
,

and

∂2δ

∂β∂α
= 1

n
[l11 − b].

Furthermore, under SEL function

|�∗
α| =

[
∂2δ∗

α

∂α2 × ∂2δ∗
α

∂β2 − ∂2δ∗
α

∂α∂β
× ∂2δ∗

α

∂β∂α

]−1

α=α̂δ∗α ,β=β̂δ∗α

,

where

∂2δ∗
α

∂α2 = 1
n

[
l20 − a + c

α2

]
,

∂2δ∗
α

∂β2 = ∂2δ

∂β2 ,

and

∂2δ∗
α

∂β∂α
= ∂2δ

∂β∂α
.

However, under LINEX loss function, the expressions are given by

∂2δ∗
α

∂α2 = ∂2δ

∂α2 ,
∂2δ∗

α

∂β2 = ∂2δ

∂β2 ,

and

∂2δ∗
α

∂β∂α
= ∂2δ

∂α∂β
.

Furthermore, for Bayes estimate of β , we have g = β under SEL and g = e−νβ under
LINEX loss. Therefore the estimate of α is given by

α = −(m + Cα)/ [lnA(β , rm) − (d + bβ)] . (17)
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Furthermore, estimate of β at the (k + 1)th stage can be obtained on solving the following
equation:

(2m + Cβ + K1)

β
− m

1 + β
−

m∑
i=1

ri −
m∑
i=1

Aβ(β , ri)
A(β , ri)

+ α(k+1)
(
Aβ(β , rm)

A(β , rm)
− b

)
− K2 = 0. (18)

The iterative procedure given by (17) and (18) provides estimates for (α̂δ , β̂δ) and (α̂δ∗
β
, β̂δ∗

β
)

under SEL and LINEX loss function. The rest of the involved expressions for the compu-
tation of Bayes estimates can be obtained easily likewise in the case of α. Furthermore,
the complete expressions for terms l20, l02 and l11 are reported in the Appendix. It is to be
noticed that this method is not useful in interval estimation. Thus we considerMetropolis-
Hastings (MH) algorithm for this purpose, and the procedure is illustrated in the next
section.

5.2. MH algorithm

This section discusses MH algorithm. This algorithm is very much useful particularly
when posterior distribution does not admit analytically tractable form, and it has been
widely used in Bayesian inference. In our case also the posterior distribution does not
admit a closed form. Therefore we first consider a symmetric proposal distribution of type
J((ά, β́) | (α,β)) = J((α,β) | (ά, β́)) to approximate the posterior distribution. Notice
that a bivariate normal density N2((α,β), I−1

X (α,β)) where I−1
X (α,β) is the inverse of the

observed Fisher information matrix can be an ideal choice. However, considering a bivari-
ate normal distribution there are possibilities that negative observations may occur for β ,
but here β > 0 so it can not be accepted. To avoid this situation we consider the algorithm
as discussed by Dey et al. [12]. Now suppose that we have total N generated samples of
(α,β) according to the algorithm. Then from these samples, we discard some of the initial
samples (burn-in), say N0, and consider the remaining M number of samples such that
M = N − N0 for further utilization to compute Bayes estimates. Subsequently the Bayes
estimates of α and β under the SEL can be obtained as

α̂SEL = 1
M

M∑
k=1

αk and β̂SEL = 1
M

M∑
k=1

βk.

Likewise, the Bayes estimates of α and β under the LINEX loss can be respectively obtained
as

α̂LINEX = −1
ν
ln

(
1
M

∑
k=1

Me−ναk

)
and β̂LINEX = −1

ν
ln

(
1
M

∑
k=1

Me−νβk

)
.

Furthermore, the method of Chen and Shao [9] can be used to construct the highest
posterior density (HPD) intervals.
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6. Bayesian prediction

This section deals with the problem of Bayesian prediction in which m number of
lower record values, say, r = (r1, r2, . . . , rm) are available, and our interest is to pre-
dict future s-th lower record value and predictive interval estimate for the s-th record,
1<m< s. Notice that the conditional PDF of future record Rs = rs given the record values
r = (r1, r2, . . . , rm) can be written as [32]

f1(rs | r,α,β) = 1
F(rm)�(s − m)

s−m−1∑
i=0

(
s − m − 1

i

)
(ln F(rm))i(− ln F(rs))s−m−1−if (rs),

0 < rs < rm < ∞. (19)

Here f (·) = f (·;α,β) and F(·) = F(·;α,β). Assume that a prior π(α,β) for (α,β) is con-
sidered. Then bymaking use of the likelihood function L(α,β | r), the associated posterior
predictive density can be written as

f ∗1 (rs | r) =
∫ ∞

0

∫ ∞

0
f1(rs | r,α,β)π(α,β | r) dα dβ .

Furthermore, making use of the above posterior predictive density, a predictive estimate
for s-th lower record under SEL can be obtained as E(rs | r), and is given by

r̂s =
∫ rm

0
rsf ∗1 (rs | r) drs =

∫ ∞

0

∫ ∞

0

[∫ rm

0
rsf1(rs | r,α,β) drs

]
π(α,β | r) dα dβ ,

=
∫ ∞

0

∫ ∞

0
I1(α,β)π(α,β | r) dα dβ , (20)

where

I1(α,β) = 1
F(rm)�(s − m)

s−m−1∑
i=0

(
s − m − 1

i

)
[ln F(rm)]i

×
∫ rm

0
rs(− ln F(rs))s−m−1−if (rs) drs.

Observe that the expression given by (20) can be seen as E(I1(α,β) | r)which can be com-
puted easily based on the samples drawn using theMH algorithm, and subsequently we get
r̂s = [

∑M
i=1 I1(αi,βi)]/M. Likewise a predictive estimate under LINEX loss function can

be obtained as −(1/ν) ln[E(e−νrs | r)].
Nowbased on given record values r = (r1, r2, . . . , rm), CDF for the future recordRs = rs

can be written as

F1(t | r,α,β) = P(Rs ≤ t | r,α,β)

P(Rs ≤ rm | r,α,β)
,
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where

P(Rs ≤ w | r,α,β) =
∫ w

0
f1(rs | r,α,β) drs

= 1
F(rm) �(s − m)

s−m−1∑
i=0

(
s − m − 1

i

)
(ln F(rm))i�(s − m − i)

[1 − G(− ln F(w), s − m − i)].

Here G(x,α) denotes the CDF of a gamma distribution. Thus under the prior π(α,β),
associated posterior predictive distribution function F∗

1 (t | r) can be obtained which will
be further used to compute predictive interval estimate for rs-th record. An equal-tail sym-
metric predictive interval, say (L,U)with 1 − γ degree of belief can be obtained on solving
the following non-linear equations for L and U:

F∗
1 (L | r) = γ

2
and F∗

1 (U | r) = 1 − γ

2
.

The algorithm given by Singh and Tripathi [31] can also be implemented to solve the
above expressions using the samples drawn by the MH algorithm. Furthermore, to obtain
HPD predictive interval, one may refer to the algorithm discussed in Turkkan and Pham-
Gia [34]. However, in case of the uni-modal posterior predictive density, alternatively
the HPD predictive interval (L,U) can also be obtained by simultaneously solving the
following equations:∫ U

L
f ∗1 (rs | r) drs = 1 − γ and f ∗1 (L | r) = f ∗1 (U | r).

7. Simulation study and data analysis

7.1. Data analysis

To demonstrate how the proposed methods can be used in practice, we consider the
following data set on the total annual rainfall (in inches) during March recorded at
Los Angeles Civic Center from 1973 to 2006 (see the website of Los Angeles Almanac:
www.laalman-ac.com/weather/we08aa.htm).

2.70 3.78 4.83 1.81 1.89 8.02 5.85 4.79 4.10 3.54
8.37 0.28 1.29 5.27 0.95 0.26 0.81 0.17 5.92 7.12
2.74 1.86 6.98 2.16 0.00 4.06 1.24 2.82 1.17 0.32
4.31 1.17 2.14 2.87.

We notice that in the given data set, rain fall data in the year 1997 is 0.00 which means
no rain in that year. Now if one wants to proceed with the same data with GL distribution
then either a small value for the year need to be considered or to omit this observation
as this distribution’s support is greater than zero. We further mention that one may also
proceed with the rainfall data till the 2.16 observation of year 1996 as after that no lower
record value is observed. For a comparison purpose, we take into account Lindley (L) dis-
tribution, Lognormal (LN) distribution, and power Lindley (PL) distribution, and consider

http://www.laalman-ac.com/weather/we08aa.htm
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Table 3. Goodness-of-fit test criterion values.

Model PDF α̂ β̂ NL AIC BIC

GL f (x;α,β) 0.7134 0.4463 70.414 144.8292 147.8819
L α2

α+1 (1 + x)e−αx 0.5321 71.654 145.3087 146.8350

PL αβ2

β+1 (1 + xα)xα−1e−βxα 0.9098 0.5952 71.384 146.7682 149.8209

LN 1
x
√

β
φ

(
ln x−α√

β

)
0.4876 3.8599 87.7864 179.5728 182.6256

Table 4. Maximum likelihood, Bayes and associated interval estimates.

Maximum likelihood Bayesian estimation

estimation TK method MH algorithm HPD

MLE Asymptotic C.I. SEL LINEX loss SEL LINEX loss interval

1.9556 (0, 4.1306) 1.0862 1.3029a 1.3032b 1.4775 1.5904a 1.6239b (0.6758, 3.5384)
0.9407 (0, 2.0876) 1.3357 0.9651 0.9633 1.0894 1.0592 1.1094 (0.3271, 2.0334)

Note: a and b respectively correspond to the values for ν = −0.15 and ν = 0.15.

negative log-likelihood (NL) criterion, AIC and BIC. All the values are reported in Table 3
which suggest the GL distribution is more appropriate for this data set. Now the lower
record values from the given data set are 2.70, 1.81, 0.28, 0.26, 0.17, and based on these
record values the uniqueness, existence and further convergence of iteration have been
shown in Section 4, also see Figure 1. We get the maximum likelihood estimates of (α,β)

as (1.9556, 0.9407)withNL value 0.1344.However, for Lindley distributionmaximum like-
lihood estimate is 0.5872 with NL value 0.7526, for PL distribution maximum likelihood
estimates are (0.8217, 0.8852) with NL value 1.4102, and finally for LN distribution maxi-
mum likelihood estimates are (0.6278, 0.9667) with NL value 3.0213. We observe that the
maximum likelihood estimates under GL distributionmaximizes the associated likelihood
function as compared to other considered distributions, so still based on the generated
lower record values GL distribution can be the best choice. We next consider these five
lower records, and based on these observations, we compute maximum likelihood esti-
mates and associated interval estimates, Bayes estimates using the TK method and MH
algorithm based on squared error and LINEX loss functions, and HPD interval estimates
using the method of Chen and Shao [9]. We mention that for LINEX loss function, we
have considered two values of ν as ν = −0.15 and ν = 0.15. Furthermore, to estimate the
Bayes estimates, hyper-parameter values are considered as a = 2, b = 1, c = 2 and d = 1,
the values are chosen in such a way that the prior means α = c/d and β = a/(bα) remain
sufficiently close to the maximum likelihood estimated values of the unknown parame-
ters, see Kundu [20] and Singh and Tripathi [31]. All the estimated values are reported
in Table 4. It can be observed that the Bayes estimates obtained using the MH algorithm
have larger values compared to the TK method. Next, to illustrate prediction problem, we
consider the lower record values and provide inference about the next three lower record
values. The computed results are given in Table 5. From tabulated values, it is seen that a
higher value of s leads to wider predictive intervals. It is also observed that the lengths of
HPD predictive intervals are smaller than those of equal-tail predictive intervals.
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Table 5. Bayesian predictive and associated predictive interval estimates.

SEL LINEX loss Credible interval HPD interval

s r̂s r̂s r̂s (L, U)/ AIL (L, U)/ AIL

m+ 1 0.1607 0.1616a 0.1604b (0.1508, 0.1698)/ 0.0190 (0.1553, 0.1700)/ 0.0147
m+ 2 0.1498 0.1508 0.1519 (0.1395, 0.1645)/ 0.0250 (0.1401, 0.1657)/ 0.0256
m+ 3 0.1119 0.1203 0.1258 (0.0976, 0.1605)/ 0.0629 (0.1029, 0.1585)/ 0.0556

Note: a and b respectively correspond to the values for ν = −0.15 and ν = 0.15.

Table 6. Average estimates and associated confidence interval estimates, AILS and
CPs.

MLE Asymptotic confidence interval

m α β α β

5 Average 1.3702 1.9254 Average interval (0.3597, 4.3189) (0.6971, 6.0826)
MSE 0.3567 0.3880 AIL/ CP 3.9592/ 90.71 5.3855/ 93.09

8 Average 1.3278 1.8219 Average interval (0.4089, 4.1683) (0.6819, 5.9389)
MSE 0.2437 0.2908 AIL/ CP 3.7594/ 92.87 5.2570/ 93.96

10 Average 1.1745 1.6597 Average interval (0.4218, 3.9815) (0.7292, 5.6814)
MSE 0.1510 0.1829 AIL/ CP 3.5597/ 94.98 4.9522/ 95.47

7.2. Simulation study

In this section, we conduct a simulation study to observe the behavior of different pro-
posed methods of estimation and prediction. We first simulate n number of observations
from the GL(1, 1.5) distribution, and from generated observations we then compute them
number of record values which are used to compute MLEs, Bayes estimates and associated
interval estimates. We mention that the simulation study may be influenced by the gen-
erated records, however the results based on a large number of repetitions may represent
the same phenomenon. In this work, the results are based on 5000 repetitions using R-
statistical software, and are reported in Table 6. To compare the performance of proposed
estimators, average estimates andmeans square error (MSE) values are taken into account.
Tabulated values suggest that with more number of record values, behavior of estimates
improve in terms of smaller MSE values and tend to close the true parameter values. Fur-
thermore, the average interval lengths (AILs) for asymptotic confidence intervals decrease
but associated 95% coverage percentages (CPs) do improve. It can be seen that reported
asymptotic confidence intervals contain the true and estimate values, and further the asso-
ciated CPs are near the nominal level. Table 7 report Bayes estimates obtained using the TK
method and MH algorithm under SEL and LINEX loss functions correspond to the two
values of ν such that ν = −0.15 and ν = 0.15. The hyper-parameter values are considered
as a = 3, b = 2, c = 2 and d = 2 so the prior means remain close to the true parameter
values. Tabulated values observe similar type of behavior, as reported for Table 6 in case of
large number of record values. Furthermore, average estimated values of α are higher, in
general, obtained using the MH algorithm as compared to the TKmethod but an opposite
behavior can be seen for the estimated values of β . However,MSE values are smaller associ-
ated to estimates obtained using theMH algorithm. Furthermore, AILs and CPs associated
to HPD intervals obtained using the idea of Chen and Shao, are smaller for α as compared
to β . AILs tend to decrease and associated CPs tend to increase with a large number of
record values. Finally for predictive interval estimates, Tabulated values reported in Table 8
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Table 7. Bayes estimates and associated intervals, AILs and CPs.

TK MH HPD interval

m SEL LINEX loss SEL LINEX loss HPD interval

5 α Average 1.3318 1.3251a 1.3408b 1.3812 1.3527a 1.3906b Average interval (0.3791, 4.1892)
MSE 0.2736 0.2682 0.2509 0.2387 0.2438 0.2216 AIL/ CP 3.8101/ 94.06

β Average 1.8698 1.8198 1.9120 1.8257 1.7898 1.8592 Average interval (0.6595, 5.7591)
MSE 0.3598 0.3189 0.3291 0.3172 0.3098 0.2981 AIL/ CP 5.0996/ 95.18

8 α Average 1.2992 1.2896 1.3153 1.3481 1.3269 1.3685 Average interval (0.3973, 3.9129)
MSE 0.2340 0.2298 0.2164 0.2141 0.2204 0.2047 AIL/ CP 3.5156/ 95.83

β Average 1.8387 1.7482 1.8571 1.7489 1.7159 1.7579 Average interval (0.6972, 5.6939)
MSE 0.2974 0.2792 0.2869 0.2284 0.2185 0.2091 AIL/ CP 4.9967/ 96.09

10 α Average 1.1678 1.1654 1.1701 1.1571 1.1474 1.1984 Average interval (0.3686, 3.7892)
MSE 0.1491 0.1401 0.1318 0.1468 0.1398 0.1309 AIL/ CP 3.4206/ 97.77

β Average 1.7156 1.6594 1.7549 1.6792 1.6598 1.7018 Average interval (0.6794, 5.2896)
MSE 0.1921 0.1910 0.1982 0.1782 0.1871 0.1820 AIL/ CP 4.6102/ 98.18

Note: a and b respectively correspond to the values for ν = −0.15 and ν = 0.15.

Table 8. Predictive interval estimates and associated AILs and CPs.

m+ 1 m+ 2

m s= ET HPD ET HPD

5 Average interval (0.0591, 5.0332) (0.0395, 3.0612) (0.0450, 5.5427) (0.0348, 3.0724)
AIL/ CP 4.9741/ 95.6 3.0217/ 96.3 5.4977/ 96.8 3.0376/ 97.3

8 Average interval (0.0061, 2.9414) (0.0052, 2.0914) (0.0056, 2.9681) (0.0041, 2.0916)
AIL/ CP 2.9353/ 96.4 2.0862/ 97.1 2.9625/ 97.4 2.0875/ 98.1

10 Average interval (0.0008, 1.3956) (0.0007, 1.3571) (0.0006, 1.3956) (0.0004, 1.3519)
AIL/ CP 1.3948/ 97.5 1.3564/ 98.3 1.3950/ 97.5 1.3515/ 98.5

suggest the performance of HPD interval estimates appreciable as compared to equal-tail
interval estimates both in the terms of AILs and associated CPs. It can be observed that
AILs for predictive interval estimates are higher for the bigger value of s, and based on
more number of records AILs and CPs do improve.

Remark 7.1: In many practical applications, the total number of attempts made before
making/breaking a record become available. For statistical analysis, such data are stud-
ied in the form of (R,K) = (R1,K1,R2,K2, . . . ,Rm,Km). Here Ri represent the i-th record
value, and Ki denote the number of trials following the Ri observations that are required to
obtain a new record value Ri+1, called inter-record time. The study of record values with
inter-record times have also considered attention of many researchers, see Kizilaslan and
Nadar [17] and [18] on generalized exponential and Kumaraswamy distributions, Pak and
Dey [24] on power Lindley distribution, and references cited therein. Suppose that from a
distribution having PDF and CDF respectively given by f (x; θ) and F(x; θ), record values,
say, r = (r1, r2, . . . , rm) are observed with inter-record times, say, k = (k1, k2, . . . , km) in
the form (r, k). Then the associated likelihood function of θ given the data (r, k) can be
written as [26]

L1(θ | r, k) =
m∏
i=1

f (ri; θ)[1 − F(ri; θ)]ki−1I(−∞,ri−1)(ri),

where IA(r) is the indicator function of the set A. Notice that under inverse sampling
scheme km ≡ 1, and under random sampling scheme km ≡ n − ∑m−1

i=1 ki wherem denote
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the random number of records observed from the first n (pre-fixed) number of observa-
tions. So if we assume that record with inter-record times are observed from GL(α,β)

distribution, then MLEs of α and β and associated asymptotic confidence intervals can be
obtained using the likelihood function L1(θ | r, k) with PDF and CDF as defined in (1)
and (2), and proceeding likewise in Section 4. In a similar way, the procedures for Bayesian
estimation and prediction, and associated interval estimates will be same as discussed in
Sections 5 and 6 but with the likelihood function L1(θ | r, k).

8. Conclusion

In this paper, we have considered GL distribution when data are available in the form of
lower record values. We first presented expressions for the single and product moments,
and by making use of them we have obtained means, variance and covariances for the
lower record values. In the simulation study, we observed that means and variances do
decrease when a high number of lower records are taken into account, however, the behav-
ior is found opposite when a large value of shape parameter is considered correspond to
a fixed value of scale parameter. In practice, the reported values can also be used for best
linear unbiased estimation and prediction. We next considered the problem of estimating
the unknown parameters of the GL distribution and obtained maximum likelihood esti-
mators and associated interval estimates for the unknown parameters of the distribution.
In the simulation study, we observed that with more number of record values behavior
of estimates improve in terms of smaller mean square error values and tend to close the
true parameter values. Furthermore, the average interval lengths for asymptotic confidence
intervals decrease but associated 95% coverage percentages do improve. It is also observed
that asymptotic confidence intervals contain the true and estimates values, and further the
associated CPs are near the nominal level. Next, we considered the problem of Bayesian
estimation and proposed gamma priors for the shape and the scale parameters of the dis-
tribution. We made use of the TK method and MH algorithm to compute Bayes estimates
under squared error and LINEX loss functions. In the simulation study, we found the per-
formance of the TK method appreciable. However, the MH algorithm helped to compute
HPD interval estimates, and further in predicting the future lower records and the compu-
tation of associated predictive interval estimates under Bayesian framework. We observed
that predictive intervals contain the predictive estimates, and the performance of the inter-
vals do better with the consideration of a higher sample size. We also illustrated all the
proposed methods of estimation and prediction using a real data set. Finally, a remark on
the consideration of lower record valueswith inter-record times is presented. The proposed
methodologies can also be considered for upper record values.
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Appendix

Notice that we denote

A(β , x) = 1 −
(
1 + β

1 + β
x
)
e−βx,

Aβ(β , x) = xe−βx
[(

1 + β

1 + β
x
)

− 1
(1 + β)2

]
,

and

Aββ(β , x) = −xAβ(β , x) + xe−βx
[

βx
(1 + β)2

+ 2
(1 + β)3

]
.

Furthermore, the expressions for l20, l02 and l11 are given below

l20 = −m/α2,

l02 = −2m
β2 + m

(1 + β)2
−

m∑
i=1

[
Aββ(β , ri)
A(β , ri)

− (Aβ(β , ri))2

(A(β , ri))2

]

+ α

[
Aββ(β , rm)

A(β , rm)
− (Aβ(β , rm))2

(A(β , rm))2

]
,

l11 = Aβ(β , rm)

A(β , rm)
.
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