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a b s t r a c t

The inverse Lindley distribution has been generalized by many authors in recent years.
Here, we introduce a new generalization called alpha power transformed inverse Lindley
(APTIL) distribution that provides better fits than the inverse Lindley distribution and some
of its known generalizations. The new model includes the inverse Lindley distribution as
a special case. Various properties of the proposed distribution, including explicit expres-
sions for the mode, moments, conditional moments, mean residual lifetime, Bonferroni
and Lorenz curves, entropies, stochastic ordering, stress–strength reliability and order
statistics are derived. The new distribution can have an upside-down bathtub failure rate
function depending on its parameters. The model parameters are obtained by the method
of maximum likelihood estimation. The approximate confidence intervals of the model
parameters are also obtained. A simulation study is carried out to examine the performance
of the maximum likelihood estimators of the parameters. Finally, two data sets have been
analyzed to show how the proposed model works in practice.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Most of the standard distributions are incapable of modeling a variety of complex real data sets; particularly, lifetime
ones. This is a matter of grave concern among distribution users and researchers and has resulted in enormous research
attention over the last two decades. Fortunately, several research breakthroughs have been made by many researchers in
their pursuit for solution tomodel complex real data sets. In the recent past, researchers proposed variousways of generating
new continuous distributions in lifetime data analysis to enhance its capability to fit diverse lifetime data which have a
high degree of skewness and kurtosis. A detailed survey of methods for generating distributions was discussed by Lee
et al. [1] and Jones [2]. Most of these distributions are special cases of the T-X class defined by Alzaatreh et al. [3]. This
class of distributions extends some recent families such as the beta-G pioneered by Eugene et al. [4], the gamma-G defined
by Zografos and Balakrishnan [5], the Kw-G family proposed by Cordeiro and Castro [6] and the Weibull-G introduced by
Bourguignon et al. [7] and so on.

The one parameter Lindley distribution was originally introduced by Lindley [8] in the context of Bayesian statistics, as
a counter example of fiducial statistics. Lindley distribution has only one scale parameter and is capable of modeling the
data with monotonic increasing failure rate and as such the applicability of this distribution may be limited to some real life
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phenomenon which has non-monotone failure rates. Since the shape parameter plays a vital role in describing the various
behavior of the distribution, many generalizations of the Lindley distribution have been attempted by researchers under
different scenarios. Notable among these generalizations which we are aware of are: Sankaran [9] discussed the discrete
Poisson–Lindley distribution by compounding the Poisson distribution and the Lindley distribution. Ghitany et al. [10]
investigated the properties of the zero-truncated Poisson–Lindley distribution. Zakerzadeh and Dolati [11] introduced and
analyzed a three-parameter generalization of the Lindley distribution. Weighted Lindley distribution is due to Ghitany
et al. [12]. Nadarajah et al. [13] proposed a generalized Lindley distribution and provided comprehensive account of the
mathematical properties of the distribution. Bakouch et al. [14] extended the Lindley distribution by exponentiation.
Exponential Poisson–Lindley distribution is due to Barreto-Souza and Bakouch [15]. Power Lindley distribution is due to
Ghitany et al. [16]. Shanker et al. [17] introduced a two-parameter Lindley distribution of which the one-parameter Lindley
distribution is a particular case, for modeling waiting and survival times data. A newweighted Lindley distribution is due to
Asgharzadeh et al. [18] and the generalized inverse Lindley distribution is due to Sharma et al. [19].

Many authors have discussed the situations where the data shows the upside-down bathtub (UBT) shapes hazard rates.
For example: Efron [20] analyzed the data set in the context of head and neck cancer, in which the hazard rate initially
increased, attained a maximum and then decreased before it stabilized owing to a therapy. Bennette [21] analyzed lung
cancer trial data which showed that failure rates were unimodal in nature. Langlands et al. [22] have studied the breast
carcinoma data and found that the mortality reached a peak after some finite period, and then declined gradually. It is
interesting to know that the hazard rates of inverse versions of the probability distributions show the UBT shapes. A few
inverse Statistical distributions namely inverseWeibull, inverse Gaussian, inverse Gamma and inverse Lindley etc., are used
to model such UBT data in various real life applications.

Comprehending such a unique applicability of inverse distributions to UBT data, we propose a new two-parameter
distribution, referred to as APTIL distribution using a similar idea to Mahdavi and Kundu [23] which will definitely add
a new dimension to this direction, see also [24]. We are motivated to introduce the APTIL distribution because (i) it is
capable of modeling upside down bathtub hazard rates; (ii) it can be viewed as a suitable model for fitting the skewed
data which may not be properly fitted by other common distributions and can also be used in a variety of problems in
different areas such as public health, biomedical studies and industrial reliability and survival analysis; and (iii) two real data
applications show that it compares well with other competing lifetime distributions in modeling survival data and failure
data.

The rest of the paper is organized as follows. In Sections 2 and 3, we introduce the APTIL distribution, and discuss some
properties of this distribution. In Section 4, maximum likelihood estimators of the unknown parameters are obtained. In
Section 5, we investigate the maximum likelihood estimation procedure to estimate the model parameters. The analysis of
two real data sets has been presented in Section 6. Finally, in Section 7, we conclude the paper.

2. Definition and statistical properties

Sharma et al. [25] suggested the inverse Lindley distribution with the probability density function (pdf)

g(x) =
λ2

λ + 1

(
1 + x
x3

)
e−

λ
x ; x > 0, λ > 0,

with a cumulative distribution (cdf) of the form

G(x) =

[
1 +

λ

(λ + 1)x

]
e−

λ
x ; x > 0, λ > 0.

We now introduce the notion of Alpha-Power Transformed inverse Lindley Distribution.

Definition. A random variable X is said to have APTIL distribution if its pdf is of the form

fAPTIL(x; α, λ) =

⎧⎪⎪⎨⎪⎪⎩
log(α)
α − 1

(
λ2

λ + 1

)(
1 + x
x3

)
e−

λ
x α

[
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(λ+1)x

]
e−

λ
x
, if α > 0, α ̸= 1,

λ2

λ + 1

(
1 + x
x3

)
e−

λ
x , if α = 1,

(1)

where x > 0 and α, λ > 0. The corresponding cdf, survival function and hazard rate functions are, respectively, given
by

FAPTIL(x; α, λ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
α

[
1+ λ

(λ+1)x

]
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λ
x

− 1
α − 1
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1 +
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(λ + 1)x

]
e−

λ
x if α = 1,

(2)
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SAPTIL(x; α, λ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
α − α

[
1+ λ

(λ+1)x

]
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λ
x

α − 1
if α > 0, α ̸= 1

1 −

[
1 +

λ

(λ + 1)x

]
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λ
x if α = 1

(3)

and

hAPTIL(x; α, λ) =
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λ2 log(α) (1 + x) e−
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λ2 (1 + x) e−
λ
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(λ + 1) x3
{
1 − [1 +

λ
(λ+1) x ]e

−
λ
x

} , if α = 1.

(4)

Hereafter, a random variable X that follows the distribution in (1) is denoted by X ∼ APTIL(α, λ).

2.1. Shape

In this section we discuss shape characteristics of pdf fAPTIL(x) and hazard rate function hAPTIL(x). The pdf and hazard rate
function of the APTIL obey the following end behavior f (0) = f (+∞) = 0, h(0) = h(+∞) = 0.

Theorem 2.1. The pdf of APTIL is unimodal.

Proof. It may be noted that

f ′

APTIL(x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
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λ2e−
λ
x
[
λ − 2x2 + (λ − 3)x

]
(λ + 1)x5

if α = 1

and thus the derivative becomes zero if A(x, α, λ) = λ2(x + 1)2 log(α) − (λ + 1)xeλ/x
(
−λ + 2x2− (λ − 3)x), B(x, λ) =

λ − 2x2 + (λ − 3)x is zero for the cases α ̸= 1, α = 1, respectively. This may be readily visible that the expression A is
a strictly decreasing, continuous function in x and A(0+, α, λ) is positive, while A takes negative values as x approaches
+∞. Hence by intermediate value theorem A has only one zero. It is quite obvious that B has only one zero at x =

1
4

(√
λ2 + 2λ + 9 + λ − 3

)
. Hence the conclusion follows. ■

Fig. 1 shows various curves for the pdf of APTIL distribution with various values of the parameters α, λ.
Similarly, one can show that the hazard rate function of APTIL is unimodal. Fig. 2 shows various curves for the hazard rate

function of APTIL distribution with various values of the parameters α, λ.

Special Cases: Let X ∼ APTIL(α, λ).

i. If α → 1, then X reduces to the inverse Lindley distribution proposed by Sharma et al. [25].
ii. If α = e, then X reduces to Inverse Poisson–Lindley distribution in the form:

fILP (x; λ) =
1

(e − 1)

(
λ2

λ + 1

) (
1 + x
x3

)
e−

λ
x e[1+ λ

(λ+1)x ]e−
λ
x

Result 1. APTIL(α, λ) distribution has the following mixture representation for α > 1. log(α)
(α−1) is a decreasing function from 1

to 0, as α varies from 1 to ∞. If X ∼ APTIL(α, λ), then it can be represented as follows:

X =

⎧⎪⎨⎪⎩
X1 with probability (

logα

α − 1
)

X2 with probability 1 − (
logα

α − 1
)

(5)

where X1 and X2 have the following pdfs

f (X1) =
λ2

λ + 1

(
1 + x
x3

)
e−

λ
x (6)
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Fig. 1. Density plots of APTIL distribution.

Fig. 2. Hazard rate function of APTIL distribution.

f (X2) =

[
logα

(α − 1 − logα)

][
λ2

λ + 1

(
1 + x
x3

)
e−

λ
x

][
α

[
1+ λ
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]
e−

λ
x

− 1
]

(7)

respectively. It is clear from the representation (7) that as α approaches 1, X1 behaves like an inverse Lindley distribution,
and α increases, it behaves like X2.

3. Mathematical properties

The formulae derived throughout the paper can be easily handled in analytical soft wares such asMaple andMathematica
which have the ability to deal with analytic expressions of formidable size and complexity. Established algebraic expansions
to determine some mathematical properties of the APTIL family can be more efficient than computing those directly by
numerical integration of its density function, which can be prone to rounding off errors among others. Here, we present nth
moment and moment generating function of APTIL distribution. Also, we provide expressions for the incomplete moments,
conditional moments, Bonferroni and Lorenz curves, Rényi and cumulative residual entropy, mean residual life and order
statistics of this distribution.

3.1. Moments

Now we present an infinite sum representation for the nth moment µ′
n = E[Xn

], and consequently find the mean and
variance for the APTIL distribution. Let X denote a random variable with the probability density function (1). Calculating
moments of X requires the following

Lemma 1. Let f (x) and F (x) be given by (1) and (2), respectively. For a > 0, b > 0, c > 0 and δ > 0, let

K (a, b, c, δ) =

∫
∞

0
xc−3(1 + x) a

[
1+ b

(1+b)x

]
e−

b
x
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δ
x dx.

We have

K (a, b, c, δ) =

∞∑
i=0

i∑
j=0

(
i
j

)(
b

1 + b

)j (log(a))i

i!
(j − c)! (j − c + 1 + bi + δ)

(bi + δ)j−c+2 .
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Proof. Using the power series expansion, (1), one can write

K (a, b, c, δ) =
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(log(a))i
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where y =
bi+δ
x . The result of the lemma follows by the definition of the gamma function. ■

It follows from Lemma 1 that

E(Xn) =
log(α)
α − 1

(
λ2

λ + 1

)
K (α, λ, n, λ). (8)

In particular, the mean and variance of X are

E(X) =
log(α)
α − 1

(
λ2

λ + 1

)
K (α, λ, 1, λ),

and

V (X) =
log(α)
α − 1

(
λ2

λ + 1

) [
K (α, λ, 2, λ) − (K (α, λ, 1, λ))2

]
.

The expression (8) can be readily computed numerically using standard statistical software. In numerical applications, a large
natural number N can be used in the sums instead of infinity. Several quantities of X (central moments, variance, skewness
and kurtosis) can be derived using (8).

The central moments µr and cumulants kr of X can be determined from (8) as

µr =

r∑
k=0

(−1)k
(
r
k

)
µ′r

1 µ′

r−k,
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1
2, k3 = µ′

3 − 3µ′

2µ
′
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1
3, k4 = µ′

4 − 4µ′

3µ
′

1 − 3µ′

2
2

+ 12µ′

2µ
′

1
2

− 6µ′

1
4, etc. The

skewness γ1 = k3/k
3/2
2 and kurtosis γ2 = k4/k22 can be calculated from the second, third and fourth standardized cumulants.

Incomplete moments of a distribution are used in measuring inequality: for example, the Lorenz and Bonferroni curves.
The nth incomplete moment of APTIL distribution is defined by

mn(y) = E
[
Xn

|x < y
]

=

∫ y

0
xnf (x)dx

=
1
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i
j
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∞
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y
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=
1

(α − 1)

∞∑
i=0

i∑
j=0

(log(α))i+1 λj+2

i!(1 + λ)j+1(λi + δ)j−n+2

(
i
j

)

× (λi + δ)n−j−2

⎡⎣Γ

(
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y

)
+

Γ

(
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y

)
λi + δ

⎤⎦ ,

where t =
λi+δ
y and Γ (a, x) =

∫
∞

x ta−1exp(−t)dt denote the complementary incomplete gamma function.

3.2. Conditional moments

For lifetime models, it is also of interest to know what E(Xn
|X > x) is. Calculating these moments requires the following

Lemma 2. Let f (x) and F (x) be given by (1) and (2), respectively. For a > 0, b > 0, c > 0 and δ > 0, let

L(a, b, c, δ, t) =

∫
∞

t
xc−3(1 + x) a

[
1+ b

(1+b)x

]
e−

b
x
e−

δ
x dx.

We have

L(a, b, c, δ, t) =

∞∑
i=0

i∑
j=0

(
i
j

)(
b

1 + b

)j (log(a))i

i!
(bi + δ)c−j−2

×

[
Γ

(
j − c + 2,

bi + δ

t

)
+

1
bi + δ

Γ

(
j − c + 1,

bi + δ

t

)]
. (9)

If c is an integer then (9) can be simplified to

L(a, b, c, δ, t) =

∞∑
i=0

i∑
j=0

(
i
j

)(
b

1 + b

)j (log(a))i

i!
(j − c)!(bi + δ)c−j−2

× e−
bi+δ
t

[
(j − c + 1)
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( bi+δ
k!

)k
k!

+
1

bi + δ

j−c∑
k=0

( bi+δ
k!

)k
k!

]
.

Proof. The proof of (9) is similar to the proof of Lemma 1, but using the definition of the complementary incomplete gamma
function. The final relation follows by using the fact

Γ (a, x) = (a − 1)!e−x
a−1∑
i=0

xi

i!
.

Using Lemma 2, it is easily seen that

E(Xn
|X > x) =

log(α)
α − 1

(
λ2

1 + λ

)
1

[1 − C(x)]
L(α, λ, n, λ, x), (10)

where

C(x) =
α
1−

[
1+ λ

(1+λ)x

]
e−

λ
x

− 1
α − 1

. (11)

An application of the conditional moments is the mean residual life (MRL). In life testing experiments, the expected
additional lifetime given that an item has survived until time x is called the MRL. The MRL function of the APTIL distribution
can be written as follows

mX (x) = E(X − x|X > x) =
log(α)
α − 1

(
λ2

1 + λ

)
1

[1 − C(x)]
L(α, λ, 1, λ, x) − x

where L(α, λ, 1, λ, x) can be obtained from (9) with n = 1 and C(x) is defined in (11).
The mean deviations about the mean and the median of the APTIL distribution can be obtained from (10). Let µ and M

denote the mean and the median of the APTIL distribution, respectively, then the mean deviations about the mean and the
median can be calculated as

δµ =

∫
∞

0
|x − µ| f (x)dx = 2µF (µ) − 2µ + 2

log(α)
α − 1

(
λ2

1 + λ

)
L(α, λ, 1, λ, µ)
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and

δM =

∫
∞

0
|x − M| f (x)dx = 2

log(α)
α − 1

(
λ2

1 + λ

)
L(α, λ, 1, λ,M) − µ

respectively, where L(α, λ, 1, λ, µ) and L(α, λ, 1, λ,M) can be obtained from (9). Also, F (µ) and F (M) are easily calculated
from (2).

3.3. L-moments

Some other important measures useful for lifetimemodels are the L-moments due to Hosking [26]. It can be shown using
Lemma 1 that the kth L-moment is

Lr =

r−1∑
j=0

(−1)r−1−j
(
r − 1

j

)(
r − 1 + j

j

)
λj,

where

λr =
log(α)
α − 1

(
λ2

1 + λ

)
K (α(r + 1), λ, 1, λ).

L-moments possess several advantages compared to conventional moments. Hosking [26] proved that if the mean of a
distribution exists, then all its L-moments exist and the distribution is uniquely characterized by its L-moments.

3.4. MGF, CHF and CGF

Let X denote a random variable with the probability density function (1). It follows from Lemma 1 that the moment
generating function of X , M(t) = E[e(tx)], is given by

M(t) =
log(α)
α − 1

(
λ2

λ + 1

)
K (α, λ, 0, λ − t),

for t < λ. The characteristic function of X , φ(t) = E[e(itX)], and the cumulant generating function of X , K (t) = logφ(t), are
given by

φ(t) =
log(α)
α − 1

(
λ2

λ + 1

)
K (α, λ, 0, λ − it),

and

K (t) = log
(
log(α)
α − 1

)
+ log

(
λ2

λ + 1

)
+ log[K (α, λ, 0, λ − it)],

respectively, where i =
√

−1.

3.5. Bonferroni and Lorenz curves

Bonferroni curve proposed by Bonferroni [27] and Lorenz curve by Lorenz [28] are used to measure the inequality of the
distribution of a random variable X . They are applied in many fields such as economics, reliability, demography, insurance,
etc. These indices are defined as:

B(p) =
1
pµ

∫ q

0
xf (x)dx

and

L(p) =
1
µ

∫ q

0
xf (x)dx,

respectively, where q = F−1(p). If X has the pdf in (1), then, by Lemma 2, one can calculate Bonferroni curve of the APTIL
distribution as

B(p) =
1
pµ

[
µ −

log(α)
α − 1

(
λ2

λ + 1

)
L(α, λ, 1, λ, q)

]
.

The Lorenz curve of the APTIL distribution is

L(p) =
1
µ

[
µ −

log(α)
α − 1

(
λ2

λ + 1

)
L(α, λ, 1, λ, q)

]
.

The area between the line L(F (x)) = F (x) and the Lorenz curve, known as the area of concentration, may be regarded as a
measure of inequality of income, so it is important in insurance, economics and other fields like reliability and medicine.
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3.6. Entropies

Entropy is used to measure the variation of the uncertainty of the random variable X . If X has the probability distribution
function f (·), then Rényi entropy (Rényi [29]) is defined by

Hδ(x) =
1

1 − δ
log

(∫
∞

−∞

f δ(x)dx
)

, δ > 0, δ ̸= 1. (12)

Suppose X has the pdf in (1). Then, one can calculate∫
∞

0
f δ(x)dx =

[
λ2 log(α)

(α − 1)(1 + λ)

]δ ∫
∞

0
(1 + x)δ x−3δ

{
α

[
1+ λ

(λ+1) x

]
e−

λ
x
}δ

e−
δλ
x dx

=

[
λ2 log(α)

(α − 1)(1 + λ)

]δ ∞∑
i=0

(δ log(α))i

i!

∫
∞

0

(1 + x)δ

x3δ

[
1 +

λ

(λ + 1) x

]i

e−
(i+δ)λ

x dx

=

[
λ2 log(α)

(α − 1)(1 + λ)

]δ ∞∑
i=0

i∑
j=0

(δ log(α))i

i!

(
i
j

)

×

∫
∞

0

(1 + x)δ

x3δ

[
λ

(λ + 1) x

]j

e−
(i+δ)λ

x dx

=

[
λ2 log(α)

(α − 1)(1 + λ)

]δ ∞∑
i=0

i∑
j=0

δ∑
k=0

(δ log(α))i

i!

(
λ

λ + 1

)j (
i
j

)
×

(
δ

k

)∫
∞

0
xk−j−3δe−

(i+δ)λ
x dx

=

[
λ2 log(α)

(α − 1)(1 + λ)

]δ ∞∑
i=0

i∑
j=0

δ∑
k=0

(δ log(α))i

i!

(
λ

λ + 1

)j (
i
j

)
×

(
δ

k

)
[λ(i + δ)]k−j−3δ+1

∫
∞

0
yk−j−3δ e−ydy

=

[
λ2 log(α)

(α − 1)(1 + λ)

]δ ∞∑
i=0

i∑
j=0

δ∑
k=0

(δ log(α))i

i!

(
λ

λ + 1

)j (
i
j

)
×

Γ (k + 3δ − j − 1)
[λ(i + δ)]k−3δ−j−1 ,

where y =
λ(i+δ)

x . Now, the Rényi entropy of the APTIL distribution can be obtained as

Hδ(x) =
δ

1 − δ
log

[
λ2logα

(α − 1)(1 + λ)

]
+

1
1 − δ

log

{
∞∑
i=0

i∑
j=0

δ∑
k=0

(−1)j(δ log(α))i

i!

(
λ

λ + 1

)j (
i
j

)

×

(
δ

k

)
Γ (k + 3δ − j − 1)
[λ(i + δ)]k−3δ−j−1

}
. (13)

Shannon entropy (Shannon [30]) defined by E[− log f (x)] is the particular case of (13) for δ ↑ 1. Finally, consider the
cumulative residual entropy (Rao et al. [31]) defined by

ℑc = −

∫
Pr(X > x) log[Pr(X > x)]dx. (14)

Using the series expansions,

(1 − x)n−1
=

∞∑
p=0

(−1)p
(
n − 1
p

)
xp (15)

and

log(1 − x) = −

∞∑
p=1

xp

p
,
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one calculates (14) as

ℑc =

∞∑
i=1

1
i

∫
∞

0

⎧⎨⎩α

[
1+ λ

(1+λ)x

]
e−

λ
x

− 1
α − 1

⎫⎬⎭
i ⎧⎨⎩1 −

α

[
1+ λ

(1+λ)x

]
e−

λ
x

− 1
α − 1

⎫⎬⎭ dx

=

∞∑
i=1

1
i

⎧⎪⎨⎪⎩
∫

∞

0

⎡⎣α

[
1+ λ

(1+λ)x

]
e−

λ
x

− 1
α − 1

⎤⎦i

−

⎡⎣α

[
1+ λ

(1+λ)x

]
e−

λ
x

− 1
α − 1

⎤⎦i+1
⎫⎪⎬⎪⎭ dx

=

⎡⎣ ∞∑
i=1

1
i(α − 1)i

i∑
j=0

(−1)i−j
(
i
j

)
−

∞∑
i=1

1
i(α − 1)i+1

i∑
j=0

(−1)i+1−j
(
i + 1
j

)⎤⎦
×

∫
∞

0
α
j
[
1+ λ

(1+λ) x

]
e−

λ
x
dx

=

⎡⎣ ∞∑
i=1

1
i(α − 1)i

i∑
j=0

(−1)i−j
(
i
j

)
−

∞∑
i=1

1
i(α − 1)i+1

i∑
j=0

(−1)i+1−j
(
i + 1
j

)⎤⎦
×

∞∑
k=0

k∑
l=0

(
k
l

)(
λ

1 + λ

)k
[j log(α)]k Γ (l − 1)

k! (λk)l−1 .

3.7. Stochastic ordering

If X and Y are independent random variables with cdfs FX and FY respectively, then X is said to be smaller than Y in the

• stochastic order (X≤st (Y )) if FX (x) ≥ FY (x) for all x
• hazard rate order (X≤hr (Y )) if hX (x) ≥ hY (x) for all x
• mean residual life order (X≤mrl(Y )) ifmX (x) ≥ mY (x) for all x
• likelihood ratio order (X≤lr (Y )) if

fX (x)
fY (x)

decreases in x.

The APTIL distribution is ordered with respect to the strongest ‘likelihood ratio’ ordering as shown in the following
theorem. It shows the flexibility of two parameter APTIL distribution.

Theorem 1. Let X ∼ APTIL(α1, λ1) and Y ∼ APTIL(α2, λ2). If α1 = α1 = α and λ1 ≥ λ2, then X≤lrY , X≤hrY , X≤mrlY and
X≤stY .

Proof. The likelihood ratio is

fX (x)
fY (x)

=
λ2
1 log(α1) (α2 − 1) (λ2 + 1) e−

λ1
x α

[
1+ λ1

(λ1+1) x

]
e−

λ1
x

1

λ2
2 log(α2) (α1 − 1) (λ1 + 1) e−

λ2
x α

[
1+ λ2

(λ2+1) x

]
e−

λ2
x

2

thus,
d
dx

log
fX (x)
fY (x)

=
λ1 − λ2

x2
−

λ1

x2
e−

λ1
x

(
1 +

λ1

(λ1 + 1)x

)
− e−

λ1
x

λ1

(λ1 + 1)x2

+
λ2

x2
e−

λ2
x

(
1 +

λ2

(λ2 + 1)x

)
+ e−

λ2
x

λ2

(λ2 + 1)x2
.

Now if α1 = α2 = α and λ1 ≥ λ2 then d
dx log

fX (x)
fY (x)

≤ 0, which implies that X≤lrY and hence X≤lrY , X≤hrY , X≤mrlY and
X≤stY .

3.8. Order statistics

Suppose X1, X2, . . . , Xn is a random sample from (1). Let X1:n, X2:n, . . . , Xn:n denote the corresponding order statistics. It
is well known that the pdf and the cdf of the rth order statistic, say Y = Xr:n, are given by

fY (y) =
n!

(r − 1)!(n − r)!
F r (y)[1 − F r (y)]n−r f (y)

=
n!

(r − 1)!(n − r)!

n−r∑
u=0

(−1)u
(
n − r
u

)
F r−1+u(y)f (y)
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and

FY (y) =

n∑
j=r

(
n
j

)
F j(y)[1 − F (y)]n−j

=

n∑
j=r

n−j∑
u=0

(
n
j

)(
n − j
u

)
(−1)uF j+u(y),

respectively, for r = 1, 2, . . . , n. It follows from (1) and (2) that

fY (y) =

log(α)
(α−1)

(
λ2

1+λ

)
n!

(r − 1)!(n − r)!

n−r∑
u=0

(−1)u
(
n − r
u

)
(1 + y)

y3
e−

λ
y α

[
1+ λ

(1+λ)x

]
e−

λ
x

[C(y)]r−1+u

and

FY (y) =

n∑
j=r

n−j∑
u=0

(
n
j

)(
n − j
u

)
(−1)u[C(y)]j+u,

where C( . ) is given by (11). Themth moment of Y can be expressed as

E
(
Ym)

=
log(α) n!

(r − 1)!(n − 1)!

n−r∑
u=0

r−1+u∑
v=0

(
n − r
u

)(
r − 1 + u

v

)
(−1)u+r−1+v

(α − 1)r+u

×

∞∑
k=0

k∑
l=0

(
k
l

)
[(1 + v) log(α)]k

k!
λl+2

(1 + λ)l+1

×

[
Γ (l − m + 2)
[(l + 1)λ]l−m+2 +

Γ (l − q + 1)
[(l + 1)λ]l−m+1

]
,

form ≥ 1.

3.9. Stress–strength reliability

Here, we derive the reliability parameter, denoted by R, when X1 and X2 are independent variables distributed according
to (1) with parameters (α1, λ1) and (α2, λ2) respectively. The stress–strength parameter R, of the APTIL distribution can be
obtained as from (1) and (2) that

R =
log(α1)
(α1 − 1)

(
λ2
1

1 + λ1

)∫
∞

0

(1 + x)
x3

e−
λ1
x α

1−
[
1+ λ1

(1+λ1) x

]
e−

λ1
x

1

⎧⎪⎨⎪⎩α
1−

[
1+ λ2

(1+λ2) x

]
e−

λ2
x

2 − 1
α2 − 1

⎫⎪⎬⎪⎭ dx

=
log(α1)

(α1 − 1)(α2 − 1)

(
λ2
1

1 + λ1

)∫
∞

0

(1 + x)
x3

e−
λ1
x α

[
1+ λ1

(1+λ1) x

]
e−

λ1
x

1 α

[
1+ λ2

(1+λ2) x

]
e−

λ2
x

2 dx

−
log(α1)

(α1 − 1)(α2 − 1)

(
λ2
1

1 + λ1

)∫
∞

0

(1 + x)
x3

e−
λ1
x α

[
1+ λ1

(1+λ1) x

]
e−

λ1
x

1 dx

=
log(α1)

(α1 − 1)(α2 − 1)

(
λ2
1

1 + λ1

)
[I1 − I2] ,

where

I1 =

∫
∞

0

(1 + x)
x3

e−
λ1
x α

[
1+ λ1

(1+λ1) x

]
e−

λ1
x

1 α

[
1+ λ2

(1+λ2) x

]
e−

λ2
x

2 dx.

Applying the power series expansion, one obtains the representation

I1 =

∞∑
i=0

∞∑
j=0

(log(α1))i (log(α2))j

i! j!

i∑
k=0

k∑
p=0

(
i
k

)(
k
p

)(
λ1

1 + λ1

)k(
λ2

1 + λ2

)p

×

∫
∞

0

(1 + x)
xk+p+3 e−

λ1(1+k)−λ2 l
x dx

=

∞∑
i=0

∞∑
j=0

(log(α1))i (log(α2))j

i! j!

i∑
k=0

k∑
p=0

(
i
k

)(
k
p

)(
λ1

1 + λ1

)k(
λ2

1 + λ2

)p

×

[∫
∞

0
x−k−p−3e−

λ1(1+k)+λ2 l
x dx +

∫
∞

0
x−k−p−2e−

λ1(1+k)+λ2 l
x dx

]
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=

∞∑
i=0

∞∑
j=0

(log(α1))i (log(α2))j

i! j!

i∑
k=0

k∑
p=0

(
i
k

)(
k
p

)(
λ1

1 + λ1

)k(
λ2

1 + λ2

)p

×
(k + p)!

[λ1(1 + k) + λ2l]k+p+1

[
1 +

k + p + 1
λ1(1 + k) + λ2l

]
,

where the final step follows by the definition of the gamma function. Similarly, we obtain

I2 =

∞∑
i=0

i∑
j=0

(
i
j

)
(log(α1))i

i!

(
λ1

1 + λ1

)j j!
[λ1(i + 1)]j+1

[
1 +

j + 1
λ1(i + 1)

]
.

4. Maximum likelihood estimation

In this section, the maximum likelihood estimates (MLEs) of the unknown parameters of the APTIL distribution are
obtained. Also the observed information matrix is obtained and used to construct the approximate confidence intervals
of the unknown parameters. Let x1, . . . , xn be a random sample of size n from (1), then the log-likelihood function of (1) is
given by

ℓ(α, λ; x) = log L(α, λ; x) = n log(log(α)) − n log(α − 1) + n log
(

λ2

λ + 1

)
+

n∑
i=1

log
(
1 + xi
x3i

)

− λ

n∑
i=1

x−1
i + log(α)

n∑
i=1

[
1 +

λ

(1 + λ)xi

]
e−

λ
xi . (16)

To obtain the likelihood equations for the unknown parameters, we differentiate (16) partially with respect to α and λ and
equate to zero. The resulting equations are

0 =
∂ℓ(α, λ; x)

∂α
=

n
α log(α)

−
n

α − 1
+

1
α

n∑
i=1

[
1 +

λ

(1 + λ)xi

]
e−

λ
xi

and

0 =
∂ℓ(α, λ; x)

∂λ
=

2n
λ

−
n

λ + 1
−

n∑
i=1

x−1
i

− log(α)
n∑

i=1

{[
1 +

λ

(1 + λ)xi

]
e−

λ
xi

xi
−

xie
−

λ
xi

[(1 + λ)xi]2

}
.

TheMLEs of α and λ denoted by α̂ and λ̂ are obtained by solving the above nonlinear system of equations. Mathcad program
or R package can be used to solve these equations numerically.

4.1. Approximate confidence intervals

Using large sample approximation, the asymptotic distribution of theMLEs is [
√
n(α̂−α),

√
n(λ̂−λ)] → N2(0, I−1(α, λ)),

see [32]. This result can be used for constructing the approximate confidence intervals for the parameters α and λ. For this
purpose, the inverse of observed information matrix, I−1(α, λ), of the unknown parameters is required as follows

I−1(α, λ) =

⎛⎜⎝−
∂2ℓ(α, λ; x)

∂α2 −
∂2ℓ(α, λ; x)

∂α∂λ

−
∂2ℓ(α, λ; x)

∂λ∂α
−

∂2ℓ(α, λ; x)
∂λ2

⎞⎟⎠
−1⏐⏐⏐⏐⏐

(α,λ)=(α̂,λ̂)

=

(
var(α̂) cov(α̂, λ̂)

cov(λ̂, α̂) var(λ̂)

)
,

where

∂2ℓ(α, λ; x)
∂α2 = −

n(1 + log(α))
(α log(α))2

+
n

(α − 1)2
−

1
α2

n∑
i=1

(
1 +

λ

(1 + λ)xi

)
e−

λ
xi

∂2ℓ(α, λ; x)
∂α ∂λ

= −
1
α

n∑
i=1

{(
1 +

λ

(1 + λ)xi

)
e−

λ
xi

xi
−

xie
−

λ
xi

[(1 + λ)xi]2

}
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∂2ℓ(α, λ; x)
∂λ2 = −

2n
λ2 +

n
(λ + 1)2

− log(α)
n∑

i=1

{
e−

λ
xi

[(λ + 1)xi]2
−

e−
λ
xi

x2i

(
1 +

λ

(λ + 1)xi

)

+

(λ + 1)2 1
xi
e−

λ
xi + 2(λ + 1)e−

λ
xi

xi(λ + 1)4

}
.

Now, approximate 100(1 − τ )% confidence intervals of the parameters α and λ of the forms

α̂ ± zτ/2

√
var(α̂)

and

λ̂ ± zτ/2

√
var(λ̂),

where zτ/2 is the upper (τ/2)th percentile of the standard normal distribution.

5. Monte Carlo simulation study

In this section, we investigate the performance of the MLEs of the APTIL parameters by using Monte Carlo simulations.
The simulation study is repeated 1000 times each with sample sizes n = 25, 50, 100 under the scenarios: I: λ = 2.0, α = 0.5,
0.8, 1.5 and 2.5 and II: λ = 4.0, α = 0.5, 0.8, 1.5 and 2.5. Table 1 presents the average value of the estimates, mean squared
error (MSE), the approximate confidence intervals (CIs) ofMLEs of the parameters α and λ for each parameters combinations
and different sample sizes. From the results in this table, we can conclude that the maximum likelihood method performs
well for estimating the APTIL parameters. In addition, the approximate CIs lengths decrease as the sample size increases in
all cases. Also, for fixed n and λ, as α increases the MSEs of λ decrease and the CIs length of λ increases. For fixed n and α, as
λ increases, the MSEs of α increase. We use the inverse cdf method to generate the random variate from (2). For the APTIL
distribution, the inverse cdf cannot be obtained in explicit form. For this reason, we propose to use the Newton’s method
to solve the inverse cdf of APTIL distribution. We use the following algorithm to generate the random sample from APTIL
distribution:

Step 1: Set the values of n, α, λ and the initial value x0.
Step 2: Generate U , where U ∼ uniform(0, 1).
Step 3: Use Newton’s method to update x0 by

x∗
= x0 −

F (x0, α, λ) − U
f (x0, α, λ)

,

where f (.) and F (.) are given by (1) and (2), respectively.
Step 4: If | x0 − x∗

|≤ ϵ (ϵ > 0 is the tolerance limit), then store x = x∗ as a sample from APTIL distribution. Otherwise,
set x0 = x∗ and go to step 3.

Step 5: Repeat steps 2–4, n times to get the random sample x1, . . . , xn.

6. Applications

In this section, the APTIL distribution is applied to model two complete data sets. The first data set considered here was
initially reported by Efron [20] and Makkar et al. [33] and recently by Sharma et al. [25]. The data set represents the survival
times of a group of patients suffering from head and neck cancer disease. The patients were treated using radiotherapy. The
data are:

Data set 1. 6.53, 7, 10.42, 14.48, 16.1, 22.7, 34, 41.55, 42, 45.28, 49.4, 53.62, 63, 64, 83, 84, 91, 108, 112, 129, 133, 133, 139,
140, 140, 146, 149, 154, 157, 160, 160, 165, 146, 149, 154, 157, 160, 160, 165, 173, 176, 218, 225, 241, 248, 273, 277, 297,
405, 417, 420, 440, 523, 583, 594, 1101, 1146, 1417.

The second data represent the survival times (in days) of 72 guinea pigs infected with virulent tubercle bacilli. The data
were observed and reported by Bjerkedal [34]. The data are:

Data set 2. 0.1, 0.33, 0.44, 0.56, 0.59, 0.72, 0.74, 0.77, 0.92, 0.93, 0.96, 1, 1, 1.02, 1.05, 1.07, 1.07, 1.08, 1.08, 1.08, 1.09, 1.12,
1.13, 1.15, 1.16, 1.2, 1.21, 1.22, 1.22, 1.24, 1.3, 1.34, 1.36, 1.39, 1.44, 1.46, 1.53, 1.59, 1.6, 1.63, 1.63, 1.68, 1.71, 1.72, 1.76, 1.83,
1.95, 1.96, 1.97, 2.02, 2.13, 2.15, 2.16, 2.22, 2.3, 2.31, 2.4, 2.45, 2.51, 2.53, 2.54, 2.54, 2.78, 2.93, 3.27, 3.42, 3.47, 3.61, 4.02,
4.32, 4.58, 5.55.

We compare the fits of the APTIL model with the inverse Lindley (IL), generalized inverse Lindley (GIL), exponentiated
generalized inverse Lindley (EGIL), exponentiated inverse Lindley (EtIL) and inverseWeibull (IW) distributions.We estimate
the model parameters by using the maximum likelihood method. We compare the goodness-of-fit of the models using −2L
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Table 1
Average values of estimates, MSEs (in parentheses) and CIs.

Parameters MLE CIs

λ α λ̂ α̂ λ α

n = 25

2 0.5 2.0153 (0.0633) 0.7755 (0.5563) (0.8936, 3.1370) (0.2992, 1.2517)
0.8 2.0147 (0.0550) 1.1753 (1.1367) (0.6968, 3.3325) (0.3525, 1.9982)
1.5 2.0122 (0.0418) 2.1091 (3.3746) (0.5342, 3.4901) (0.5461, 3.6720)
2.5 2.0094 (0.0308) 3.4730 (9.4320) (0.0498, 3.9690) (0.4667, 6.4794)

4 0.5 4.0389 (0.3375) 0.7959 (0.6121) (1.7405, 6.3374) (0.3195, 1.2724)
0.8 4.0374 (0.2976) 1.2005 (1.2315) (1.2371, 6.8377) (0.3732, 2.0277)
1.5 4.0314 (0.2309) 2.1417 (3.5649) (0.9278, 7.1349) (0.5491, 3.7343)
2.5 4.0246 (0.1731) 3.5121 (9.7266) (0.2868, 7.7624) (0.6799, 6.3443)

n = 50

2 0.5 2.0085 (0.0251) 0.6588 (0.2610) (1.1125, 2.9045) (0.4189, 0.8988)
0.8 2.0076 (0.0213) 1.0191 (0.5355) (0.9595, 3.0557) (0.6249, 1.4132)
1.5 2.0055 (0.0154) 1.8607 (1.5399) (0.8123, 3.1986) (1.0985, 2.6229)
2.5 2.0034 (0.0109) 3.0789 (4.0035) (0.6169, 3.3899) (1.7028, 4.4549)

4 0.5 4.0212 (0.1309) 0.6699 (0.2860) (2.2134, 5.8289) (0.4371, 0.9026)
0.8 4.0191 (0.1125) 1.0324 (0.5802) (1.9275, 6.1107) (0.6456, 1.4192)
1.5 4.0142 (0.0832) 1.8774 (1.6380) (1.6098, 6.4185) (1.1587, 2.5960)
2.5 4.0093 (0.0596) 3.0980 (4.1851) (1.1982, 6.8205) (1.7847, 4.4113)

n = 100

2 0.5 2.0093 (0.0146) 0.5740 (0.1155) (1.3156, 2.7031) (0.4598, 0.6882)
0.8 2.0084 (0.0123) 0.8986 (0.2358) (1.1347, 2.8822) (0.6939, 0.8990)
1.5 2.0068 (0.0088) 1.6539 (0.6487) (1.0869, 2.9267) (1.2915, 2.0163)
2.5 2.0054 (0.0062) 2.7373 (1.5825) (0.9582, 3.0525) (2.0946, 3.3800)

4 0.5 4.0222 (0.0757) 0.5801 (0.1267) (2.5218, 5.5226) (0.4607, 0.6994)
0.8 4.0202 (0.0645) 0.9059 (0.2564) (2.2517, 5.7887) (0.7082, 1.1036)
1.5 4.0165 (0.0473) 1.6630 (0.6954) (2.1023, 5.9306) (1.3065, 2.0196)
2.5 4.0131 (0.0338) 2.7479 (1.6716) (1.8927, 6.1336) (2.1324, 3.3634)

where (L denotes the log-likelihood function evaluated at the maximum likelihood estimates), Kolmogorov–Smirnov (K–S)
statistic, Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC). The pdfs of the IL, GIL, EGIL, EtIL and
IWmodels are, respectively, given by

IL : f (x; λ) =
λ2

λ + 1

(
1 + x
x3

)
e−

λ
x ,

GIL : f (x; α, λ) =
αλ2

1 + λ

(1 + xα

x2α+1

)
e−

λ
xα ,

EIL : f (x; β, λ) =
βλ2

1 + λ

(1 + x
x3

){
1 +

λ

(1 + λ)x

}β−1
e−

βλ
x ,

EGIL : f (x; α, β, λ) =
βαλ2

1 + λ

(1 + xα

x2α+1

){
1 +

λ

(1 + λ)xα

}β−1
e−

βλ
xα ,

IW : f (x; α, λ) = αλαx−(α+1)e−(λ/x)α .

Tables 2 and 4 list the MLEs (and the corresponding standard errors in parentheses) of the parameters. The values of
−2L, K–S, AIC and BIC are displayed in Tables 3 and 5. Among all other competitive models, it is to be noted that the APTIL
distribution has the lowest values of −2L, AIC, BIC and K–S, and so it could be chosen as the best model to fit the given data
sets. The relative histogram and the fitted densities and the plot of the fitted survival and the empirical survival functions
are displayed in Figs. 3 and 4 for data 1 and data 2, respectively.

7. Conclusion

In this paper, we proposed a new two-parameter family of distributions, so-called the APTIL distribution. The proposed
APTIL distribution has one shape parameter and one scale parameter. The APTIL density function is unimodal and its hazard
rate function upside down bathtub shaped. Therefore, it can be used quite effectively in analyzing lifetime data. Additionally,
the new APTIL model can be used as an alternative to the generalized form of the inverse Lindley distributions and inverse



S. Dey et al. / Journal of Computational and Applied Mathematics 348 (2019) 130–145 143

Table 2
MLEs, standard errors (in parentheses) for data 1.

Model Estimates

IL (λ) 60.007 (7.7542)
APTIL (α, λ) 50.756 (64.127) 24.800 (7.7207)
EIL (λ) 3.9940 (8.2021) 15.696 (30.438)
GIL (α, λ) 0.7856 (0.0716) 29.409 (8.2370)
IW (α, λ) 0.7857 (0.0714) 70.962 (12.612)
EGIL (α, β, λ) 0.7842 (0.0720) 5.3499 (19.465) 6.1230 (19.6605)

Table 3
Goodness-of fit statistics for data 1.

Model −2L AIC BIC K -S

APTIL 753.2427 757.243 761.364 0.16090
IL 771.4063 773.406 775.467 0.28799
EIL 771.4918 775.492 780.045 0.28837
GIL 763.2041 767.204 771.325 0.19032
EGIL 763.3393 769.339 775.521 0.19099
IW 763.1635 767.163 771.284 0.19030

Table 4
MLEs, standard errors (in parentheses) for data 2.

Model Estimates

IL (λ) 1.5767 (0.1457)
APTIL (α, λ) 0.0322 (0.0010) 2.8084 (0.1173)
EIL (λ) 0.6966 (0.9926) 2.1041 (2.4529)
GIL (α, λ) 1.0713 (0.0764) 1.5487 (0.1468)
IW (α, λ) 1.1731 (0.0842) 1.0583 (0.1132)
EGIL (α, β, λ) 1.1632 (0.0848) 0.0534 (0.07913) 20.6388 (29.62438)

Table 5
Goodness-of fit statistics for data 2.

Model −2L AIC BIC K -S

APTIL 230.817 234.817 239.37 0.14570
IL 239.5689 241.569 243.846 0.19414
EIL 239.4938 243.494 247.615 0.19900
GIL 238.6981 242.698 247.251 0.18107
EGIL 236.5008 242.501 249.331 0.18357
IW 236.3320 240.332 244.885 0.18272

Fig. 3. (a) The relative histogram and the fitted densities, (b) the fitted and empirical survival functions for data 1.

Weibull distribution and is expected that in some situations it might work better (in terms of model fitting) than themodels
stated, although it cannot be always guaranteed. In this paper, the APTIL distribution shows its ability tomodel survival times
of a group of patients suffering from head and neck cancer disease and survival times of guinea pigs infected with virulent
tubercle bacilli. Finally, we hope that the APTIL distribution attracts wider sets of applications such as medical, engineering
and social sciences etc.
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Fig. 4. (a) The relative histogram and the fitted densities, (b) the fitted and empirical survival functions for data 2.
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