
Citation: Gupta, P.; Rahar, R.; Yadav,

R.K.; Singh, A.; Ramandeep; Kumar,

S. Combining Forth and Rust: A

Robust and Efficient Approach for

Low-Level System Programming.

Eng. Proc. 2023, 59, 54. https://

doi.org/10.3390/engproc2023059054

Academic Editors: Nithesh Naik,

Rajiv Selvam, Pavan Hiremath, Suhas

Kowshik CS and Ritesh

Ramakrishna Bhat

Published: 17 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Proceeding Paper

Combining Forth and Rust: A Robust and Efficient Approach
for Low-Level System Programming †

Priya Gupta 1 , Ravi Rahar 2, Rahul Kumar Yadav 2, Ajit Singh 2, Ramandeep 2 and Sunil Kumar 3,*

1 Atal Bihari Vajpayee School of Management and Entrepreneurship, Jawaharlal Nehru University,
New Delhi 110067, India; priyagupta@jnu.ac.in

2 School of Engineering, Jawaharlal Nehru University, New Delhi 110067, India; ravi56_soe@jnu.ac.in (R.R.);
rahul99_soe@jnu.ac.in (R.K.Y.); ajit99_soe@jnu.ac.in (A.S.); ramand53_soe@jnu.ac.in (R.)

3 Department of Computer Science & Information Technology, Central University of Haryana,
Mahendragarh 123031, India

* Correspondence: drsunilk@cuh.ac.in
† Presented at the International Conference on Recent Advances in Science and Engineering, Dubai,

United Arab Emirates, 4–5 October 2023.

Abstract: Rust is a modern programming language that addresses the drawbacks of earlier languages
by providing features such as memory safety at compilation and high performance. Rust’s memory
safety features include ownership and borrowing, which makes it an ideal choice for systems
programming, where memory safety is critical. Forth is a stack-based programming language
that is widely used for low-level system programming due to its simplicity and ease of use. This
research paper aims to explore the combination of Forth and Rust programming languages to create
a more robust and efficient solution for low-level system programming. The primary objective is
to demonstrate the implementation of essential Forth operations, including addition, subtraction,
assignment, comparison, and if-else statements, while demonstrating loops, push operations, and
dump operations in Rust. The implementation of these operations in Rust is demonstrated using
code from actual implementation. This research paper also discusses the advantages of using Rust for
low-level system programming. Rust’s memory safety features, coupled with its high performance,
make it an ideal choice for systems programming, where memory safety and performance are critical.
The combination of Forth and Rust provides a more efficient and safer solution for low-level system
programming, making the implementation more robust. Our implementation tries to leverage these
properties of both languages to make a memory-safe and low-level system programming language.
This research paper also includes code snippets to provide a practical demonstration of how the Forth
operations can be implemented in Rust.

Keywords: rust; forth; compiler; memory safe; stack-based

1. Introduction

Forth is a stack-based programming language that was first developed in the late
1960s by Charles H. Moore. The language was originally designed to be a tool for rapid
prototyping of computer systems, but it quickly gained popularity in low-level system
programming due to its simplicity and efficiency. Forth evolved from Charles H. Moore’s
personal programming system, which had been in continuous development since 1968 [1].
Forth’s minimalistic syntax and stack-based data structure make it easy to learn and
understand, even for programmers with limited experience in low-level programming.
Forth’s data structure is based on a stack, where operands are pushed onto the stack and
operators manipulate the operands on the stack [2]. This allows for a concise and elegant
syntax that is easy to read and write. In addition, the stack-based architecture makes it
easy to implement complex algorithms using a series of simple operations. Forth’s small
memory footprint and direct control over hardware make it suitable for embedded systems

Eng. Proc. 2023, 59, 54. https://doi.org/10.3390/engproc2023059054 https://www.mdpi.com/journal/engproc

https://doi.org/10.3390/engproc2023059054
https://doi.org/10.3390/engproc2023059054
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/engproc
https://www.mdpi.com
https://orcid.org/0000-0002-4666-4203
https://doi.org/10.3390/engproc2023059054
https://www.mdpi.com/journal/engproc
https://www.mdpi.com/article/10.3390/engproc2023059054?type=check_update&version=1


Eng. Proc. 2023, 59, 54 2 of 9

and real-time applications. Rust, on the other hand, is a modern programming language
that was developed by Mozilla in 2010. Rust is designed to be safe, concurrent, and
fast, with a strong emphasis on memory safety. Rust’s unique ownership and borrowing
system ensures that programs are memory-safe at compile time, eliminating many common
programming errors [3].

Rust’s memory safety features make it an ideal choice for low-level system program-
ming, where memory errors can have serious consequences. Rust also provides powerful
concurrency features that make it well-suited for high-performance, multithreaded applica-
tions [4]. By combining Forth and Rust, it can leverage the simplicity and elegance of Forth
with the safety and efficiency of Rust. This research paper will explore the implementation
of various Forth operations using the Rust programming language. The later part will
discuss the implementation of basic arithmetic operators, comparison operators, condi-
tional statements, loop constructs, and stack operations using Rust’s built-in operators and
control flow constructs.

Forth can offer the responsiveness necessary for critical tasks where real-time control
and safety are paramount, while Rust can handle background processing and sophisticated
algorithms. This combination makes sure that potential memory bugs or security flaws
will not affect real-time operations. Rust can be used for computationally intensive parts
in applications that require high performance, such as simulations, scientific computing,
or data processing, while Forth can be integrated for low-level hardware interactions and
control. This allows for effective memory usage and improved performance without com-
promising security. Integrating Rust can offer contemporary tooling, package management,
and safety improvements in systems with pre-existing Forth codebases.

By checking array bounds at runtime and preventing access to out-of-bounds memory,
Rust prevents buffer overflows. Buffer overflow attacks, which are frequently used to gain
unauthorized access or run arbitrary code, must be stopped from doing this. Forth and Rust
interfaces can be created to offer secure and controlled points of interaction. This can stop
unsafe operations from being carried out or unauthorized data manipulation. Processes for
code auditing and validation are made easier by Rust’s strong type system and memory
safety features. Knowing that Rust’s compiler checks will have already obliterated some
classes of vulnerabilities allows security audits to concentrate on high-risk areas. In this
analysis of a combined solution leveraging Rust’s ownership and borrowing model for
memory management, the impact is evident despite being non-direct. Rust’s stringent
ownership system enhances memory safety, preventing common issues like double-free
errors, while its borrowing mechanism and lifetimes ensure safe concurrent data access. In
contrast, traditional Forth implementations, reliant on manual memory management, lack
Rust’s safety features, potentially leading to memory-related vulnerabilities and making
the analysis an essential exploration of memory management paradigms.

The implementation of basic arithmetic operators such as addition, subtraction, multi-
plication, and division is straightforward in Forth. These operators manipulate the values
on the stack, and the result is pushed back onto the stack [2]. The implementation in
Rust is equally simple, using Rust’s built-in arithmetic operators to perform the necessary
calculations. Comparison operators such as less than, greater than, and equal to are also
commonly used in Forth programming. These operators compare values on the stack
and push a Boolean result back onto the stack. In Rust, comparison operators can be
implemented using the standard comparison operators such as ==, !=, <, >, <=, and >=.

Conditional statements, such as if-else statements, are used to execute different code
blocks based on a Boolean condition. In Forth, conditional statements can be implemented
using the if-else construct, which tests a condition and executes the appropriate code
block. Rust provides a similar if-else construct that can be used to implement conditional
statements. Stack operations, such as push and pop, are essential to Forth programming.
These operations manipulate the stack, pushing values onto the stack and popping values
off the stack. Rust provides a similar stack manipulation functionality using its built-in
vector data structure.



Eng. Proc. 2023, 59, 54 3 of 9

Background

The Forth programming language is a stack-oriented language that was created in the
late 1960s. It is known for its simplicity and flexibility, which has made it a popular choice
for embedded systems and real-time applications [5]. However, its syntax and semantics
can be challenging for new users, and its lack of a formal specification has led to multiple
implementations with different features and behaviors [6].

One popular implementation of Forth is porth, which is written in Python [7]. Porth is
designed to be portable, extensible, and easy to read and modify. It supports most of the
standard Forth primitives, as well as some Python-specific features such as generators and
lambdas [7]. However, Python may not be the most efficient language for implementing
Forth, especially for performance-critical applications [7]. Rust, on the other hand, is a
systems programming language that provides a balance between safety, speed, and expres-
siveness [8]. Rust’s ownership and borrowing system helps prevent common programming
errors such as null pointers and data races, while its performance is comparable to that of
C and C++.

In this context, the implementation of a Forth compiler in Rust inspired by porth
can provide several benefits. First, it can leverage Rust’s performance and safety features
to create a fast and reliable Forth implementation that can be used in various domains,
from microcontrollers to web applications. Second, it can extend porth’s functionality by
adding new primitives, libraries, and tools that are specific to Rust, such as support for
multithreading, SIMD instructions, and foreign function interfaces. Third, it can provide a
reference implementation of Forth in Rust that can help educate and inspire developers
who are interested in systems programming and low-level optimization.

The code snippets provided in this study show some of the key features of the proposed
Forth compiler. These features reflect the standard Forth semantics and syntax, while
also incorporating some Rust-specific idioms (e.g., the use of Option types for optional
references). Overall, the implementation of a Forth compiler in Rust can be a valuable
contribution to the Forth and Rust communities, as well as a fascinating exploration of the
intersection between two powerful and versatile languages.

Rust and Forth can be combined to optimize various functionalities and determine
the system’s performance-critical components that could use Rust’s optimization. These
might involve memory-intensive tasks, difficult algorithms, or data processing, using
Forth for other tasks and integrating Rust components specifically for these parts. The
ownership model in Rust can aid in effective memory management. For data structures
that demand dynamic memory allocation, it is best to use Rust. These structures can be
interfaced with Forth, which enables Rust to manage memory allocation and deallocation.
Rust supports in-line assembly for precise hardware control. Utilizing this feature can
seamlessly integrate Rust with Forth’s direct hardware interaction by inserting low-level
assembly code where required. With Forth’s direct hardware interaction, everything runs
smoothly. Implementing complex algorithms in Rust will take advantage of its performance
optimizations. Forth can call these Rust functions when needed, allowing your system to
achieve high efficiency without sacrificing Forth’s hardware control. Comparative analysis
of memory safety features can be seen in Table 1.



Eng. Proc. 2023, 59, 54 4 of 9

Table 1. Comparative Analysis of Memory Safety Features of Rust.

Memory Safety Feature Description

Ownership and borrowing
The ownership mechanism in Rust makes sure that each memory variable has a distinct owner. Data
races are avoided through borrowing restrictions, which also provide secure concurrent access by

avoiding multiple mutable references to the same data.

Lifetimes
The lifetimes system in Rust upholds rules on the duration of a reference’s validity, avoiding

dangling references and memory-related issues. References are always kept current, and deallocated
memory is not accessed.

Safe Concurrency By avoiding data races with its ownership and borrowing restrictions, Rust upholds thread safety.
Data exchange and transmission across threads is made safe via the Send and Sync characteristics.

Safe Memory Management Rust’s memory management system ensures strong bounds checking and forgoes uncontrolled access
to protect against buffer overflows, stack overflows, and other memory-related problems.

This study will move on to the comparison operators, like greater than and equal to.
It will discuss the implementation code and Rust code used to implement each operator,
after which the discussion of if-else constructs and loops will be included. Again, it will
demonstrate how Rust’s built-in control flow constructs can be used to implement these
constructs. Finally, it will explore the implementation of stack operations such as push,
dump, and dup. It will discuss how Rust’s built-in vector data structure can be used to
implement these operations.

2. Materials and Methods/Methodology

To implement the various Forth operations using Rust, it has used Rust’s built-in
operators and control flow constructs. One of the most important features of Forth is its
stack data structure. Rust’s built-in vector data structure is an excellent tool to implement
stack operations like push and pop. The vector data structure in Rust is efficient and
provides automatic memory management, making it easy to use [7]. To implement the
arithmetic operations, it has used Rust’s built-in arithmetic operators, such as addition
(Algorithm 1), subtraction, multiplication, and division. These operators have allowed us to
perform basic arithmetic operations on the operands present on the stack. The equality and
inequality operators can be used to implement the comparison operators. Rust provides
multiple comparison operators like ‘==’ (equal to), ‘!=’ (not equal to), ‘>’ (greater than), ‘<’
(less than), ‘>=’ (greater than or equal to), and ‘<=’ (less than or equal to) [2]. For now, only
the greater than operator has been implemented.

Algorithm 1. Implementation of plus (+) operator

let a = handle_stack_empty(stack.pop(),token);
let b = handle_stack_empty(stack.pop(),token);
stack.push(a + b);

To implement conditional statements, it has used Rust’s built-in if-else control flow
construct (Algorithm 2). It can evaluate a condition based on the top of the stack and
perform an action accordingly. This will allow us to implement conditional statements
in Forth. In the implementation below, => indicates an arm of a match statement which
matches the word of the next instruction.



Eng. Proc. 2023, 59, 54 5 of 9

Algorithm 2. Implementation of ‘if’, ‘else’, and ‘end’ block

Word::OpIf(else_end_idx) => {
let a = handle_stack_empty(stack.pop(), token);
if a == 0 {

let Some(else_end_idx) = else_{end_idx
else {println!(“Error: ‘if’ does not have
reference to end of block”); exit(1)};
token_idx = else_end_idx - 1;

}
}
Word::OpElse(end_idx) => {

let Some(end_idx) = end_idx
else {println!(“Error: ‘else’ does not have
reference to end of block”); exit(1)};
token_idx = end_idx - 1;

}
Word::OpEnd(wile_end_idx) => {

let Some(wile_end_idx) = wile_end_idx
else {println!(“Error: ‘end’ does not have
reference to while block or next instruction”);
exit(1)};
token_idx = wile_end_idx - 1;

}

To implement the loop constructs, it has used Rust’s built-in loop construct and
conditional statements. It can use the loop construct to create an infinite loop and then use
conditional statements to break out of the loop when a certain condition is met. Rust also
provides a while loop construct that can be used to loop through a set of instructions while
a condition is true.

Overall, the implementation of various Forth operations using Rust provides a unique
and modern approach to low-level system programming. By leveraging the simplicity
and elegance of Forth with the safety and efficiency of Rust, it can create reliable and high-
performance low-level systems. Current implementation can run in two modes: simulation
mode and compilation mode. In simulation mode, Rust’s operations and data structures
are used to simulate operations like Forth. On the other hand, in compilation mode, the
Forth program is converted to assembly and then compiled to binary, also generating object
files in the process. The ELF64 format is used for binary generation. Simulation mode is
implemented in the simulated_program() function and compilation mode is implemented
in the compile_program() function. Both functions take a vector of struct type Token
(Algorithm 3) which contains the filename in which it appeared, the line number(row), the
place in line(col) where it appeared, and the actual lexeme which was present.

Algorithm 3. Structure of struct type Token

struct Token {
file_path: String,
col: usize,
row: usize,
word: Word,

}

The lexing is performed by the function lex_file(). It generates tokens from files. Tokens
can contain any one of the variants of enum word (Algorithm 4), which implements all of
the keywords that are allowed in the language [8]. The current implementation has twelve
words. The words for ‘If’, ‘else’, ‘end’, and ‘do’ need to store the index of the next operation
so that that can be jumped to if needed based on the condition provided. This is where



Eng. Proc. 2023, 59, 54 6 of 9

the powerful enums of Rust shine. The same indexes are used in assembly in compilation
mode to be saved as addresses so that they can be jumped to if needed.

Algorithm 4. Elements of enum word

enum Word {
OpPush(i32),
OpPlus,
OpMinus,
OpEqual,
OpDump,
OpDup,
OpGt,
OpIf(Option<usize>),
OpEnd(Option<usize>),
OpElse(Option<usize>),
OpWhile,
OpDo(Option<usize>),

}

The Forth language implementation uses postfix notation [2] that can be described in
Algorithms 5–7 below:

Algorithm 5. Sample Forth program and its output

40 20 +
40 20 −
40 20 =
40 20 >

Output:
60
20

0
1

Algorithm 6. Sample Forth program and its output

1 1 = if 5 . end
1 0 = if 5 . end

Output:
5

Algorithm 7. Sample Forth program and its output

5 while dup 0 > do
dup .
1 -
end

Output:
5
4
3
2
1



Eng. Proc. 2023, 59, 54 7 of 9

First the lexing is performed and each word is broken and identified as a token and
stored in the token struct [9]. All tokens thus generated are stored in a vector. Finally, blocks
are checked to see if they are properly closed. ‘If (else)’ blocks and ‘while (do)’ blocks are
closed by the end. If they are not closed properly, then an error is generated. In the case of
the ‘If’ block, the vector indices of ‘if’, ‘else’, and ‘end’ are stored. In the case of the ‘while’
block, the indices of ‘while’, ‘do’, and ‘end’ are stored [10]. They are stored in the same
word enum. For example: In the case of ‘if . . . end’ in simulation mode, the index of ‘end’
is stored in ‘if’. If the after ‘if’ statement is true, the execution continues, and if it is false,
the instruction next to ‘end’ is executed. This cross referencing is performed by another
function crossreference_blocks(). The result of this function, which is still a vector of tokens,
is passed to simulation mode or compilation mode as requested by the user [11].

It also looks at how to implement comparison operators like greater than ‘>’ and
equal to ‘=’ in Rust. The pseudocode for the greater than, less than, and equal to operators
involves popping two values from the stack, comparing them, and pushing the result back
onto the stack [12]. This demonstrates how Rust’s built-in comparison operators can be
used to implement comparison operations in a straightforward and easy-to-understand
way. It also implements loop constructs using Rust’s built-in control flow constructs. The
pseudocode for a while loop involves checking the length of the stack and executing a code
block if the stack is not empty. This illustrates how Rust’s built-in control flow constructs
can be used to implement loop constructs in a clear and concise manner.

Finally, it explores how to implement stack operations using Rust’s built-in vector data
structure. The pseudocode for the pop operation involves popping a value off the stack.
On the other hand, to implement compilation mode, nasm assembly is used. Its keywords
are used. For example: jmp and jz are used for unconditional and conditional (when zero)
jumps. Addresses are provided to all instructions as they are executed to make it easy to
jump back to them [13].

3. Results

The implemented Forth compiler in Rust provides a solid foundation for future
investigations and developments. Its successful completion highlights the feasibility and
advantages of integrating Rust’s modern programming capabilities with the functionality
of Forth. This accomplishment not only reinforces Rust’s reputation as a powerful language
for systems programming but also encourages further exploration of how Rust can be
leveraged in the implementation of other low-level programming languages or systems
software. Because Forth and Rust have different design philosophies, toolchains, and
runtime environments, combining them poses portability challenges. It takes careful
planning to ensure broad applicability while controlling platform-specific dependencies.
Here is how to handle these difficulties: Rust has a more robust runtime and standard library
than Forth, which frequently uses a stack-based interpreter as its runtime environment [14].
Runtime environment compatibility can be difficult. Memory management models used by
Forth and Rust are dissimilar. Determining clear data exchange formats and interfaces is
necessary to ensure seamless memory exchange. The implementation of the Forth compiler
using Rust demonstrates the efficacy of combining these two programming languages. The
resulting compiler exhibits improved reliability, performance, and memory management,
thanks to Rust’s unique features and capabilities. This research paper sets the stage
for future research endeavors in the realm of utilizing Rust for implementing low-level
programming languages and systems software.

There are several advantages of using Rust with Forth. Rust is a memory-safe program-
ming language that eliminates the possibility of null and dangling pointer errors [11]. This
feature makes Rust a great language to use with Forth, as Forth does not have a garbage
collector and relies heavily on memory management [15]. Rust is designed to be a fast
language that provides low-level control over system resources. This feature makes it an
ideal language to use with Forth, as Forth is a language that requires speed and efficiency.
Rust’s syntax is expressive and readable, making it easier for developers to understand and



Eng. Proc. 2023, 59, 54 8 of 9

maintain code. This feature makes Rust a good choice to use with Forth, which is known
for its concise and expressive syntax. Rust can be easily integrated with C and C++, which
means that it can be used with existing Forth codebases that are written in these languages.
This feature makes Rust a versatile language to use with Forth.

Despite several advantages, it also suffers from some disadvantages. Rust has a steeper
learning curve compared to other programming languages, which can be a disadvantage
for developers who are new to Rust and Forth. While Rust has a growing ecosystem of
libraries and tools, it still has a smaller library collection compared to other programming
languages like Python and Java. This can be a disadvantage for developers who require
specific libraries for their Forth projects. Because Forth uses stacks and direct memory
manipulation, it is challenging to measure memory utilization correctly [16]. Forth’s low-
level memory operations can collide with Rust’s ownership and borrowing mechanism,
which places a strong emphasis on security. Forth is frequently employed in embedded and
real-time systems where exact timing is essential [17]. Rust’s execution time profiling might
provide overhead that hinders Forth’s real-time capabilities. To provide useful findings,
profilers frequently rely on Symbolic Information (e.g., function names). It is challenging
to trace profiling findings back to the original Forth source code since Forth code is often
interpreted or compiled into a low-level representation. Profilers can be resource-intensive,
making them unsuitable for contexts where Forth is often used due to resource limitations.

4. Discussion

This research paper offers a comprehensive exploration of integrating Rust and Forth,
shedding light on the advantages and challenges that arise from merging these two pro-
gramming languages. In terms of prospects for this research, several possibilities are
worth considering.

Firstly, there is a potential for further exploration of real-world use cases. While the
paper already outlines some potential applications for integrating Rust and Forth, it is
likely that numerous other use cases remain unexplored. To broaden our understanding,
future research endeavors could examine how these languages can be effectively utilized
in different contexts, such as the development of embedded systems, operating systems,
or various software applications. Investigating performance gains represents another
promising avenue. The combination of Rust and Forth offers the potential for improved
performance. To delve deeper into this aspect, future research could conduct benchmarking
tests to measure the speed and efficiency of code written using this integrated approach,
in comparison to other programming languages or alternative methods. The integration
process itself could benefit from refinement. While this research paper provides a starting
point for integrating Rust and Forth, there may be room for improvement.

Future investigations could focus on making this integration more seamless by de-
veloping new tools, libraries, or frameworks that simplify the process and enhance its
efficiency. Additionally, it would be valuable to compare this approach with others aiming
to achieve similar goals. Although this research paper looks into the intricacies of inte-
grating Rust and Forth, alternative approaches may exist. To determine the most effective
strategies across different contexts, future research could undertake comparative analyses,
contrasting various approaches to identify their respective strengths and weaknesses.

5. Conclusions

The task of this research paper was to investigate the implementation of a Forth com-
piler using Rust, a modern programming language whose cornerstones are its robustness
and efficiency. The choice of Rust is due to its characteristics such as its unique ownership
model and borrowing rules which endow it with suitable capabilities for implementing
low-level programming languages such as Forth. By leveraging Rust’s memory manage-
ment and error handling capabilities, the Forth compiler implemented in this paper is
reliable and less prone to bugs. This study involved designing a parser and lexer for Forth,
creating a runtime environment, and integrating these components to build the compiler.



Eng. Proc. 2023, 59, 54 9 of 9

The resulting Forth compiler in Rust is a powerful system that can operate on multiple
platforms. The successful implementation of this compiler highlights Rust’s potential as
a language for systems programming and opens possibilities for further research into
how Rust can be utilized in implementing other low-level programming languages or
systems software.

Author Contributions: Conceptualization, R.K.Y. and P.G.; methodology, R.R.; software, R.R.; valida-
tion, P.G. and S.K.; formal analysis, A.S.; investigation, A.S.; resources, R.; writing—original draft
preparation, R.K.Y.; writing—review and editing, R.K.Y.; visualization, R.R. and R.K.Y.; supervi-
sion, P.G. and S.K.; project administration, R.K.Y. and P.G. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Gibson, R.G.; Bergin, T.J. History of Programming Languages-II; ACM Press: New York, NY, USA, 1996.
2. Scanlon, L.J. Forth Programming; Howard W.Sams & Co.: Indianapolis, IN, USA, 1983.
3. Aho, A.V.; Lam, M.S.; Sethi, R.; Ullman, J.D. Compilers: Principles, Techniques & Tools; Braille Jymico Inc.: Charlesbourg, QC,

Canada, 2015.
4. Klabnik, S.; Nichols, C. The Rust Programming Language; No Starch Press: San Francisco, CA, USA, 2023.
5. Encyclopedia of Computer Science; Wiley: Chichester, UK, 2008.
6. Qin, B.; Chen, Y.; Yu, Z.; Song, L.; Zhang, Y. Understanding memory and thread safety practices and issues in real-world rust

programs. In Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation,
London, UK, 15–20 June 2020.

7. Available online: https://www.complang.tuwien.ac.at/anton/euroforth/ef14/papers/ertl.pdf (accessed on 3 November 2023).
8. Brodie, L. Thinking Forth; Punchy Pub.: London, UK, 2004.
9. Brodie, L.; FORTH Inc, C.O.R.P.O.R.A.T.E. Starting Forth; Prentice-Hall, Inc.: Upper Saddle River, NJ, USA, 1987.
10. Brakefield, J.C. Challenges for Forth. In Proceedings of the Second and Third Annual Workshops on Forth—FORTH ’90 and ’91,

San Antonio, TX, USA; 1991.
11. The Rust Programming Language. Available online: https://doc.rust-lang.org/book/ (accessed on 3 November 2023).
12. Available online: https://pages.physics.wisc.edu/~lmaurer/forth/Forth-79.pdf (accessed on 3 November 2023).
13. 83 Standard. Available online: https://forth.sourceforge.net/standard/fst83/ (accessed on 3 November 2023).
14. Thompson, C. How Rust Went from a Side Project to the World’s Most-Loved Programming Language. Available online:

https://www.technologyreview.com/2023/02/14/1067869 (accessed on 3 November 2023).
15. Olney, R.; Benson, M. Forth Techniques; Pan: London, UK, 1985.
16. Forsely, L.P. 1988 Rochester Forth Conference: Programming Environments, June 14–18, 1988, University of Rochester; The Institute for

Applied Forth Research: Rochester, NY, USA, 1988.
17. Katzan, H. Invitation to Forth; Petrocelli Books: Princeton, NJ, USA, 1981.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://www.complang.tuwien.ac.at/anton/euroforth/ef14/papers/ertl.pdf
https://doc.rust-lang.org/book/
https://pages.physics.wisc.edu/~lmaurer/forth/Forth-79.pdf
https://forth.sourceforge.net/standard/fst83/
https://www.technologyreview.com/2023/02/14/1067869

	Introduction 
	Materials and Methods/Methodology 
	Results 
	Discussion 
	Conclusions 
	References

