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A B S T R A C T

In this paper, we have discussed the Fibonacci wavelet (FW) framework for numerical simulations of the
fractional relaxation–oscillation model (FROM). Firstly, the fractional order operational matrices of integration
associated with the FW are constructed via the block pulse functions. The operational matrices merged with the
collocation method are used to convert the given problem into a system of algebraic equations that is solved by
the Newton method. We conduct error analysis, perform numerical simulations, and present the corresponding
results to establish the credibility and practical applicability of the proposed technique. Numerical examples are
provided to show the efficiency of our approach. To show the accuracy of the FW-based numerical technique,
the approximate solutions of FROM are compared with the exact solution and other existing methods. This
research opens up new possibilities for using FW as a powerful tool for addressing complex mathematical
problems in real-world systems.
1. Introduction

Fractional calculus (FC) is dealing with the calculus of derivatives
and integrals of arbitrary order either real or complex1,2 There has been
a powerful development in fractional differential equations (FDEs) in
last few decades due to their applicability in different areas of science
and engineering. Modelling biological models with fractional-order
differential equations has more convenience than classical integer-order
mathematical modelling. Many substantial efforts have been made to
model and control biological systems using FDEs.1,3–7 FDEs have an
advantage in modelling of real-life phenomena because they reduce
the errors arising from the ignored parameters. There are numerous
examples of the mathematical model of biology, physical, natural and
other fields of science that are represented by the FDEs.3,7–12 Fractional
calculus deals with derivatives and integrals of non-integer order, al-
lowing it to capture memory and non-locality in a more comprehensive
way than traditional integer-order calculus, which only considers the
present state of a system. The fractional model combines the Caputo
derivative, which accounts for present memory, and the Riemann–
Liouville integral, which accounts for past memory, to describe systems
with complex memory and non-local characteristics. This modelling
approach is particularly useful in situations where traditional integer-
order calculus models fall short, such as in the description of materials
with memory effects, viscoelastic behaviour, or systems exhibiting long-
range dependence and persistence. Fractional models provide a more
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accurate representation of how such systems evolve over time by incor-
porating both present and past memory. Fractional-order viscoelasticity
models have proven to be very useful for simulating polymers. Poly-
mers often behave in a time-dependent, inelastic manner that includes
damping, relaxation, and creep. To replace costly experiments with
numerical simulations, we require an accurate material model. One
difficulty in particular that has been thoroughly researched is how
highly detailed the viscoelastic material model must be or what the
absolute minimum of parameters required for an accurate depiction
of the material behaviour. There is little frequency dependence in
the damping properties of many technological materials, especially
polymers, across a broad frequency range. It is difficult to explain
this weak frequency dependence in the framework of conventional
viscoelastic models based on integer-order rate laws, at least without
utilising an excessive number of material characteristics. Fractional
order operators (integrals and derivatives) can be incorporated in the
constitutive relations as an alternative to employing integer order
operators. The number of parameters required to correctly define the
dynamic characteristics can be considerably reduced as a result.13–15

Natural and artificial soft materials are frequently viscoelastic, hav-
ing memory and fractionally frequency-dependent characteristics. Their
two most prevalent mechanical characteristics are stress relaxation and
damped oscillation.15–17 A relaxation oscillator is a type of oscillator
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that is based on the way that perturbed physical systems recover to
equilibrium. Physics is strongly connected to the two fundamental
phenomena of relaxation and oscillation in their processes.8,18,19 The
rincipal equation governing relaxation and oscillation processes is the
elaxation–oscillation equation.
𝑑𝜇
𝑑𝑥

+ 𝑃𝜇 = 𝑓 (𝑥), 𝑥 ≥ 0. (1.1)

Where 𝑃 stands for Elc, the elastic modulus is represented by 𝐸, the
viscous coefficient is denoted by 𝑐, and 𝐸 multiplied by the strain rate
is represented by the symbol f(𝑥). The viscoelastic behaviour Maxwell
model is represented by Eq. (1.1) and the analytical solutions for 𝑓 (𝑥) =
0 are

𝜇(𝑥) = 𝐶𝑒𝑥𝑝(−𝑃𝑥). (1.2)

The natural exponential stress relaxation under continuous strain is
described by Eq. (1.2), where 𝐶 is a constant specified by the starting
state. The usual oscillation formula
𝑑2𝜇
𝑑𝑥2

+𝑄𝜇 = 𝑓 (𝑥), 𝑥 ≥ 0. (1.3)

Where 𝑄 𝑖𝑠 𝑘∕𝑚 = 𝜔2, 𝜔 is the angular frequency, 𝑘 and 𝑚 are stiffness
coefficient and mass, respectively. When we take 𝑓 (𝑥) = 0 the exact
solution is

𝜇(𝑥) = 𝐶 cos
√

𝑄𝑥 +𝐷 sin
√

𝐵𝑥. (1.4)

Here the initial condition determines the constants 𝐶 and 𝐷. The
ystem is conservative and the model depicts undamped oscillation.
he relaxation and oscillation models use fractional positive frac-
ional and fractal derivatives to depict gradual relaxation and damped
scillation.16,18,19 In this article we used fractional derivatives for the
orresponding models (1.1) and (1.2) which give FROM as
𝑑𝛼𝜇
𝑑𝑥𝛼

+𝑄𝜇(𝑥) = 𝑓 (𝑥), 𝑥 ≥ 0. (1.5)

𝑄 denotes a positive constant. This FROM depicts the relaxation with
power law attenuation at 0 < 𝛼 < 1. At 1 < 𝛼 < 2, the FROM
illustrates a damped oscillation with viscoelastic intrinsic oscillator
damping.19 In fact, the classic relaxation and oscillation models use
fractional derivatives to demonstrate gradual relaxation and damped
oscillation. This fractional model is frequently employed in a number of
related disciplines, including physical oscillation systems and nonlinear
dynamic systems. It has been demonstrated to be a mathematical
representation of a number of physical processes, including diffusion,20

the spruce-budworm system,21 the predator–prey system,22 the damp-
ing law and others.18,22 Finding a solution to FROM is becoming a
hot topic for researchers. As it involves specific functions like multi-
variable Mittag-Leffler functions, which are particularly challenging to
compute. As a result, the significance of successful numerical modelling
using the FROM has increased in related research fields.18–22 The
reation of reliable techniques for solving fractional order relaxation–
scillation equations numerically has received a lot of interest recently.
ome of the numerical techniques include Muntz-Legendre wavelets
pproach,23 a computational algorithm for simulating fractional order
elaxation oscillation equation,24 a new accurate method for solving
ROM with Hifler derivatives,25 differential transform method,26 Ho-
otopy asymptotic method and others. In the literature there are
ot much publication dealing with the numerical treatment of FROM
sing wavelets. Wavelets have found applications in various areas,
ncluding signal and image processing, data compression, scientific
omputing, and solving differential and integral equations.20,27,28 They

offer advantages over traditional methods by allowing for adaptive and
multiscale analysis, which can capture both global and local features of
the problem. Wavelets based numerical approaches have been carefully
examined and applied in a wide range of scientific and engineering
fields, offering a powerful and flexible framework for numerical anal-
ysis and computation. In recent years, wavelet techniques have been
2

widely employed by researchers to solve fractional-order differential
equations. The popularity of wavelet-based numerical algorithms can
be attributed to their straightforwardness, computational simplicity,
and speedy convergence. Various types of wavelets have been explored
in the literature, including Chebyshev, Gegenbaur,29 Bernoulli, Haar,28

and FW30–32 are consistently used to solve various biological and
physical problems.27,33–35 The main objective of this study is to present
a numerical technique for the solution of FROM based on the FW
operational matrix approach. In this paper, we proposed Fibonacci
wavelet method (FWM) to solve FROM. Fibonacci polynomials can
be directly obtained as a special case of the generalised Fibonacci
polynomials which originally appeared in the numerical solution of
differential equations in Ref. 3. The Fibonacci polynomials has gained
significant attention due to their superior characteristics compared to
the Legendre polynomials. The FW consist of fewer terms as compared
to other polynomial wavelets which accelerates computation and re-
duces the chances of errors occurring. This motivates us to use Caputo
fractional derivatives and FW based methods to understand and analyse
FROM. The proposed approach offers a comprehensive framework for
accurately modelling and analysing the behaviour of fractional order
dynamics in the system. Further we discussed convergence and error
analysis and presented numerical examples to show the efficiency of the
proposed method. Our results reveal that the present approach agrees
perfectly with the conventional techniques.24,26

The rest of the paper is organised as: In Section 2 the mathematical
preliminaries of fractional calculus is discussed. Section 3 presents
an overview of the FW and function approximation. In Section 4 the
block pulse functions and operational matrix of FW are discussed.
In Section 5, the description of the proposed technique is obtained.
Section 6, the error estimation and numerical problems are discussed to
demonstrate the effectiveness and accuracy of the proposed approach.
Lastly, a conclusion is given in Section 7.

2. Fractional calculus

Various techniques for defining fractional order derivatives, includ-
ing Caputo, Riemann–Liouville(RL), Baleno fractional, and Grünwald–
Letnikov. Since most physical processes begin with starting conditions
specified in form of field coordinates and its integer order, Caputo’s
method is remarkable. To avoid confusion, the fractional derivative will
be used throughout the rest of this article in the sense of Caputo. For
further studies, we refer Refs. 36, 37.

Definition 2.1. The fractional integral of RL type of order 𝛼 > 0 of a
function 𝑔(𝑥) is

𝐼𝛼𝑔(𝑥) = 1
𝛤 (𝛼) ∫

𝑥

0
(𝑥 − 𝜏)𝛼−1𝑔(𝜏) 𝑑𝜏, 𝑥 > 0.

here 𝛤 (.) is the gamma function. Few, properties of 𝐼𝛼 are listed
elow:

• 𝐼𝛼𝐼𝛽𝑔(𝑥) = 𝐼𝛼+𝛽𝑔(𝑥), 𝛼, 𝛽 > 0.
• 𝐼𝛼𝐼𝛽𝑔(𝑥) = 𝐼𝛽𝐼𝛼𝑔(𝑥), 𝛼, 𝛽 > 0.
• 𝐼𝛼𝑥𝛽 =

𝛤 (1 + 𝛽)
𝛤 (1 + 𝛼 + 𝛽)

𝑥𝛼+𝛽 , 𝛽 > −1.

Definition 2.2. The fractional derivative 𝐷𝛼 of order 𝛼 in the sense of
aputo of 𝑔(𝑥) is defined as

𝛼𝑔(𝑥) = 1
𝛤 (𝑛 − 𝛼) ∫

𝑥

0

𝑔𝑛(𝜏)
(𝑥 − 𝜏)𝛼−𝑛+1

𝑑𝜏, 𝑛 − 1 < 𝛼 ≤ 𝑛, 𝑛 ∈ N.

elow are some fundamental features of 𝐷𝛼 :

• 𝐷𝛼(𝛾𝑔(𝑥) + 𝛿𝑔(𝑥)
)

= 𝛾𝐷𝛼𝑔(𝑥) + 𝛿𝐷𝛼𝑔(𝑥), where 𝛾, 𝛿 are constants.
• 𝐷𝛼𝑥𝛽 =

𝛤 (1 + 𝛽)
𝛤 (1 + 𝛽 − 𝛼)

𝑥𝛽−𝛼 , 0 < 𝛼 < 𝛽 + 1, 𝛽 > −1.

• 𝐼𝛼𝐷𝛼𝑔(𝑥) = 𝑔(𝑥) −
𝑛−1
∑

𝑘=0
𝑓𝑘(0+) 𝑥

𝑘

𝑘!
, 𝑛 − 1 < 𝛼 ≤ 𝑛, 𝑛 ∈ N.

• 𝐷𝛼𝐶 = 0, 𝐶 is a constant.
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3. Fibonacci wavelet and function approximation

For any 𝑥 ∈ R+, the recurrence relation defines the Fibonacci
olynomials as follows:

̃n+2(𝑥) = 𝑥𝑃n+1(𝑥) + 𝑃n(𝑥), (n ∈ N),

with initial conditions 𝑃0(𝑥) = 0, 𝑃1(𝑥) = 1.30

The general formula used to define Fibonacci polynomial as follows:

𝑃m+1(𝑥) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 n = 0,

𝑥 n = 1,

𝑥𝑃n(𝑥) + 𝑃n−1(𝑥) n ≥ 2.

The FW is defined as:

𝛹n,n(𝑥) =

⎧

⎪

⎨

⎪

⎩

2
𝑘−1
2

√

𝑤𝑛
𝑃n

(

2𝑘−1𝑥 − n + 1
) n−1

2𝑘−1 ≤ 𝑥 < n
2𝑘−1 ,

0 otherwise.
(3.1)

where 𝑘 and 𝑛 represent the level of resolution and translation param-
eters respectively, with 𝑘 = 1, 2, 3,…, 𝑛 = 1, 2, 3,… , 2𝑘−1, and 𝑃𝑛 is the
m- degree polynomials.30

Additionally, the Fibonacci polynomials power-form representation
appears as follow:

𝑃n(𝑥) =
⌊n∕2⌋
∑

𝑖=0

(

n − 𝑖
𝑖

)

𝑥n−2𝑖, (n ≥ 0),

where ⌊⋅⌋ stands the well recognised floor function. The Fibonacci
polynomial has the following properties:

∫

𝑥

0
𝑃n(𝑠)𝑑𝑠 =

1
n + 1

[

𝑃𝑚+1(𝑥) + 𝑃n−1(𝑥) − 𝑃n+1(0) + 𝑃n−1(0)
]

.

∫

1

0
𝑃n(𝑥)𝑃m(𝑥)𝑑𝑥 =

⌊n∕2⌋
∑

𝑖=0

⌊m∕2⌋
∑

𝑗=0

(

n − 𝑖
𝑖

)(

m − 𝑗
𝑗

)

1
n + m − 2𝑖 − 2𝑗 + 1

.

(3.2)

In particular, if 𝑘 = 2, 𝑀 = 4, the eight basis functions are given
y

𝜓1,0(𝑥) =
√

2

𝜓1,1(𝑥) = 2
√

6𝑥

𝜓1,2(𝑥) =
√

15
14

(

1 + 4𝑥2
)

𝜓1,3(𝑥) =
√

960
38

(

2𝑥3 + 𝑥
)

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

0 ≤ 𝑥 < 1
2
,

𝜓2,0(𝑥) =
√

2

𝜓2,1(𝑥) =
√

6(2𝑥 − 1)

𝜓2,2(𝑥) =
√

30
7

(

2𝑥2 − 2𝑥 + 1
)

𝜓2,3(𝑥) =
√

480
304

(

8𝑥3 − 12𝑥2 + 10𝑥 − 3
)

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

1
2
≤ 𝑥 < 1.

Any function 𝑓 ∈ 𝐿2[0, 1) can be expressed using the FW as

𝑓 (𝑥) ≈
2𝑘−1
∑

m=1

𝑀−1
∑

n=0
𝑔m,n𝜓m,n(𝑥). (3.3)

Where

𝑔m,n =
⟨

𝑓, 𝜓m,n
⟩

= ∫

1

0
𝑓 (𝑥)𝜓m,n(𝑥)𝑑𝑥,

are the coefficients of FW. The following is how (3.3) expressed as a
matrix

𝑇

3

𝑓 (𝑥) = 𝐺 𝛹 (𝑥), (3.4) 𝑥
where 𝐺 is the row vector defined below

𝐺 =
[

𝑔1,0, 𝑔1,1,… , 𝑔1,𝑀−1, 𝑔2,0, 𝑔2,1,… , 𝑔2,𝑀−1,… , 𝑔2𝑘−1 ,0, 𝑔2𝑘−1 ,1,… , 𝑔2𝑘−1 ,𝑀−1
]𝑇 .

(3.5)

The matrix 𝛹 (𝑥) in (3.4) is of order 1 × 2𝑘−1𝑀 FW matrix and is given
by

𝛹 (𝑥)

=
[

𝜓1,0, 𝜓1,1,… , 𝜓1,𝑀−1, 𝜓2,0, 𝜓2,1,… , 𝜓2,𝑀−1,… , 𝜓2𝑘−1 ,0, 𝜓2𝑘−1 ,1,… , 𝜓2𝑘−1 ,𝑀−1
]𝑇 .

(3.6)

Finally, we take into account the collocation point:

𝑥𝓁 = 2𝓁 − 1
2𝑘𝑀

, 𝓁 = 1, 2,… , 2𝑘−1𝑀. (3.7)

The choice of collocation points(nodes) can have a significant impact
on the accuracy and efficiency of numerical methods. It is essential to
carefully consider the problem’s characteristics and requirements when
selecting collocation nodes to ensure that they lead to accurate, stable,
and efficient solutions.

4. Operational matrices of Fibonacci wavelet

Utilising block-pulse functions is the goal of this section to produce
integration operational matrices of fractional order for FW is discussed.

4.1. Block pulse function

On the interval [0, 1), the block-pulse functions are defined as

𝑏𝓁(𝑥) =

⎧

⎪

⎨

⎪

⎩

1, 𝓁𝑞 ≤ 𝑥 < (𝓁 + 1)𝑞,

0, otherwise.
(4.1)

where 𝑞 = 1
𝑁 and 𝑁 is positive integer 𝓁 = 0, 1, 2,… , 𝑁 − 1.

The function 𝑓 (𝑥) ∈ 𝐿2[0, 1) estimated via of block plus function.

𝑓 (𝑥) ≃ 𝑓𝑁 (𝑥) =
𝑁−1
∑

𝓁=1
𝑎𝓁𝑏𝓁(𝑥) = 𝐴𝑇𝐶𝑁 , (4.2)

here 𝐶𝑁 = [𝐶0, 𝐶1, 𝐶2,… , 𝐶𝑁 ]𝑇 and 𝐴 = [𝑎0, 𝑎1, 𝑎2,… , 𝑎𝑁 − 1].
ntegrating the vector 𝐶𝑁 (𝑥), we obtain
𝑥

0
𝐶𝑁 (𝑥)𝑑𝑥 ≃ 𝛥𝐶𝑁 (𝑥). (4.3)

he integration operational matrix for block pulse functions is defined
s follow

=
𝑞
2

⎛

⎜

⎜

⎜

⎜

⎝

1 2 2 … 2
0 1 2 … 2
⋮ ⋮ ⋮ ⋯ ⋮
0 0 0 ⋯ 1

⎞

⎟

⎟

⎟

⎟

⎠

. (4.4)

Then, by using block pluse function to describes the operational matrix
of fractional order 𝐹 𝛼 as
(

𝐼𝛼𝐶𝑁
)

(𝑥) ≃ 𝐹 𝛼𝐶𝑁 (𝑥), (4.5)

here

𝛼 = 1
𝑁𝛼𝛤 (𝛼 + 2)

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 𝑥1 𝑥2 𝑥3 … 𝑥𝑁−1
0 1 𝑥1 𝑥2 … 𝑥𝑁−2
0 0 1 𝑥1 … 𝑥𝑁−3
⋮ ⋮ ⋮ ⋮ … ⋮
0 0 … 0 1 𝑥1
0 0 0 … 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (4.6)

here, the 𝑥𝓁 ’s in (4.6) have been defined as:

𝛼+1 𝛼+1 𝛼+1

𝓁 = (𝓁 + 1) − 2𝓁 + (𝓁 − 1) . (4.7)
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4.2. Operational matrix of FW

Using block pulse functions, we will next develop fractional order
integration matrices related to FWs by integrating (3.6) we have

∫

𝑥

0
𝛹 (𝑥)𝑑𝑥 ≈ 𝑈𝛹 (𝑥). (4.8)

Where 𝑈 displays the integration operational matrix for 2𝑘−1𝑀×2𝑘−1𝑀
rder of FW. It is important to note that block-pulse functions (4.1) can
lso be used to represent the FWs (3.6) as

(𝑥) = 𝜓m,n𝐶𝑁 (𝑥). (4.9)

To obtain the integration operational matrix of 𝛼 order for FW, we
define

𝐷𝛼𝜓(𝑥) = 𝑈𝛼
m,n𝜓(𝑥), (4.10)

where the matrix 𝑈𝛼
m,n represent the FW’s integration operational ma-

trix in fractional order, taking into account the relationships (4.5), (4.9)
and (4.10) we get

(𝐷𝛼𝜓) (𝑥) ≈
(

𝐷𝛼𝜓m,n𝐶𝑁
)

(𝑥) = 𝜓m,n
(

𝐷𝛼𝐶𝑁
)

(𝑥) ≈ 𝜓m,n𝐹
𝛼𝐶𝑁 (𝜁 ). (4.11)

Therefore, from (4.10) and (4.11), we get the following:

𝑈𝛼
m,n𝜓(𝑥) = 𝑈𝛼

m,n𝜓m,n𝐶𝑁 (𝑥) = 𝜓m,n𝐹
𝛼𝐶𝑁 (𝑥), (4.12)

which results in the necessary operational matrix for the FWs of general
order integration:

𝑈𝛼
m,n = 𝜓m,n𝐹

𝛼 [𝜓m,n
]−1 . (4.13)

In particular, by taking 𝑘 = 2,𝑀 = 3, 𝛼 = 0.7, we compute the
associated fractional order operational matrix 𝑈0.7

6×6 corresponding with
the FWs as:

𝑈0.7
6×6 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0.2781 0.4872 −0.3112 0.4426 −0.2191 0.2527
−0.5224 0.0947 0.7290 0.3752 −0.2523 0.3088
−0.0845 0.3015 0.1813 0.4247 −0.2405 0.2857

0 0 0 0.2781 0.4872 −0.3112
0 0 0 −0.5224 0.0947 0.7290
0 0 0 −0.0845 0.3015 0.1813

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

(4.14)

Similarly, if we take 𝑘 = 2,𝑀 = 4 and 𝛼 = 0.6, we compute 𝑈0.6
8×8 as:

𝑈 0.6
8×8

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0.9713 0.2499 −1.2400 0.4341 −0.1574 −0.0143 1.1364 −0.4158
−0.8169 0.3068 1.1325 −0.2138 −0.4329 0.0334 1.5242 −0.5715
0.5864 0.0052 −0.7356 0.4852 −0.2955 0.0091 1.3612 −0.5050
−0.6367 −0.1470 0.8813 0.2610 −0.6442 0.0588 2.1052 −0.7929

0 0 0 0 0.9713 0.2499 −1.2400 0.4341
0 0 0 0 −0.8169 0.3068 1.1325 −0.2138
0 0 0 0 0.5864 0.0052 −0.7356 0.4852
0 0 0 0 −0.6367 −0.1470 0.8813 0.2610

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

(4.15)

5. Description of method

Consider the standard harmonic fractional oscillator equation
𝑑𝛼𝜇
𝑑𝑥𝛼

+𝑄𝜇(𝑥) = 𝑓 (𝑥), 1 < 𝛼 ≤ 2, 0 ≤ 𝑥 < 1, (5.1)

with initial condition 𝜇(0) = 𝑎, and 𝜇′(0) = 𝑏, Eq. (5.1) presents a
basic harmonic fractional oscillator. Expanding the higher order term
of Eq. (5.1) we have

𝑑𝛼𝜇
𝛼 =

𝑀−1
∑

2𝑘−1
∑

𝑑𝑚,𝑛𝑈𝑛,𝑚(𝜏) = (𝐷)𝑇𝑈 (𝑥), (5.2)
4

𝑑𝑥 𝑚=0 𝑛=1
𝜇

integrating (5.2) w.r.t 𝑥 and using initial condition, we get

𝜇(𝑥) =
𝑀−1
∑

𝑚=0

2𝑘−1
∑

𝑛=1
𝑑𝑚,𝑛(𝐼𝛼0𝑈𝑛,𝑚(𝑥))+𝜇(0) = (𝐷)𝑇 𝑃 𝛼𝑈 (𝑥)+𝑥𝜇′(0)+𝜇(0), (5.3)

substituting (5.2) and (5.3) into (5.1), we get the following system

(𝐷)𝑇𝑈 (𝑥) +𝑄((𝐷)𝑇 𝑃 𝛼𝑈 (𝑥) + 𝑥𝜇′(0) + 𝜇(0)) = 𝑓 (𝑥), (5.4)

solving the above algebraic equation, the unknown fibonacci coefficient
vector (𝐷)𝑡 is obtained, and the approximate solution of (5.1) is given
by (5.3).

6. Error estimation and numerical results

In this section, we study the error estimation and convergence
analysis of FWs technique. The convergence and error analysis of
the Fibonacci polynomials as a basis functions was deeply studied
in Refs. 3–6 Some numerical examples are presented to show the
accuracy of the FWM.

Theorem 6.1 (Ref. 31). Suppose 𝛩 ∈ 𝐶𝑀 [0, 1) and 𝑌𝑀 = span{𝜓0(𝑥),
𝜓1(𝑥),… , 𝜓𝑀−1(𝑥)}. If 𝛩𝑀 (𝑥) = 𝐴𝑇𝐹 (𝑥) is the best approximation of 𝛩(𝑥)
out of 𝑌𝑀 on the interval [ u−1

2𝑘−1 ,
u

2𝑘−1 ] the error bound of the approximate
solution 𝛩∗(𝑥) by using FW on interval [0, 1) would be obtained in the
following form:

‖𝑒(𝑥)‖2 = ‖

‖

𝛩 − 𝛩∗
‖

‖2 ≤
𝑅

𝑀!
√

2𝑀 + 1
.

Theorem 6.2 (Ref. 31). If a continuous function 𝑓 (𝑥) be a square inte-
grable function defined on [0, 1) which is bounded by some constant �̃� i.e,
𝑓 (𝑥)| ≤ �̃� , then the function 𝑓 (𝑥) can be expanded as the sum of FW and
he series converges to 𝑓 (𝑥) uniformly, i.e,

(𝑥) =
2𝑘−1
∑

m=1

𝑀−1
∑

n=0
𝑔m,n𝜓m,n(𝑥),

here

m,n =
⟨

𝑓 (𝑥), 𝜓m,n(𝑥)
⟩

.

The precision of the FW collocation methods is measured by the
bsolute error 𝐿2 and maximum absolute errors 𝐿∞ by using the
ormulas given as

2 = ‖𝜇(𝑥) − 𝜇𝑚(𝑥)‖,

∞ = 𝑚𝑎𝑥|𝜇(𝑥) − 𝜇𝑚(𝑥)|,

here 𝜇(𝑥) and 𝜇𝑚(𝑥) are the exact and approximate solutions respec-
ively.

.1. Numerical results

Here, we go over the numerical outcomes of the suggested approach
o solve the FROM (1.5). Some particular instances on Eq. (1.5) have
een taken into account for representing the competence and relevancy
f the suggested method. The following cases are taken into consider-
tion since the literature already contains the analytical solutions to
ome of them. This enables us to compare our results to the analytical
olution. All the computation work is performed using the MATLAB
R2022b) software.

xample 6.1. Take a look at the following relaxation–oscillation
quation
𝛼𝜇(𝑥) +𝑄𝜇(𝑥) = 𝑓 (𝑥), 𝑥 > 0, 𝜇(0) = 𝜆, (6.1)

ubject to the conditions

(0) = 1, 0 < 𝛼 ≤ 1, 𝑎𝑛𝑑 𝜇(0) = 1, 𝜇′(0) = 0, 1 < 𝛼 ≤ 2.
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Fig. 1. Graphs of approximate and exact solutions at 𝛼 = 2.

Table 1
Absolute error at 𝛼 = 2 and at resolution level 𝑘 = 3,𝑀 = 4 of Example 6.1.
𝑥 𝛼 = 1 𝛼 = 2 Absolute error 𝐿2

(0.2) 0.969697 0.999349 8.0752e−05
(0.3) 0.855720 0.987661 6.3710e−05
(0.4) 0.755139 0.960565 4.5413e−05
(0.5) 0.666380 0.918485 2.5982e−05
(0.6) 0.588055 0.862078 5.5483e−06
(0.7) 0.518935 0.792222 3.7848e−06
(0.8) 0.457940 0.710079 2.1453e−07
(0.9) 0.379622 0.616717 1.3328e−07

Table 2
Absolute error at resolution level 𝑘 = 3,𝑀 = 5 of Example 6.2.
𝑥 GTMM38 HAM20 Absolute error 𝐿2

(FWM)

(0.2) 0.1358 × 10−4 0.2096 × 10−4 5.6680e−07
(0.3) 0.8375 × 10−4 0.2292 × 10−4 3.3044e−07
(0.4) 0.3037 × 10−3 0.1484 × 10−3 7.1240e−06
(0.5) 0.8230 × 10−3 0.5838 × 10−6 3.8040e−06
(0.6) 0.1854 × 10−2 0.1289 × 10−4 7.9070e−05

Exact solution is 𝜇(𝑥) = cos(𝑥).
In Fig. 1, we have compared the exact and approximate solution

at 𝛼 = 2 of example 6.1. Fig. 2, depicts the behaviour of approximate
solution at 𝛼 = 1.25, 1.50, 1.75, 1.95. The absolute error are presented in
Table 1, at resolution level 𝑘 = 3,𝑀 = 4 of Examples 6.1 shows the
accuracy of the method.

Example 6.2. Consider the following

𝐷3∕2𝜇(𝑥) +𝑄𝜇(𝑥) = 0, 0 < 𝑥 ≤ 1, (6.2)

with following conditions

𝜇(0) = 1, and 𝜇′(0) = 0.

Exact solution is 𝜇(𝑥) = 𝐸𝛼(−𝑥𝛼) where

𝐸𝛼(𝑥) =
∞
∑

𝑘=0

𝑥𝑘

𝛤 (𝛼𝑘 + 1)
.

In Fig. 3, the comparison of exact and approximate solution are
epicted of Example 6.2. The absolute error are calculated (see Table 2)
nd the results are compared with other methods20,38 to show the

efficiency of the methods. FWM give more precise solutions for these
models.
5

s

Table 3
Absolute error at 𝛼 = 1 and at resolution level 𝑘 = 3,𝑀 = 4 of Example 6.3.
𝑥 GTMM38 Method in Ref. 24 Absolute error 𝐿2

(FWM)

(0.2) 1.10 × 10−3 1.10e−02 5.7041e−05
(0.3) 0.1002 × 10−2 9.13e−03 4.2563e−05
(0.4) 0.2655 × 10−2 9.84e−03 7.6321e−04
(0.5) 0.5638 × 10−2 7.51e−03 3.4256e−04
(0.6) 0.1041 × 10−1 4.60e−03 1.4770e−04

Table 4
Absolute error at 𝛼 = 1 and at resolution level 𝑘 = 4,𝑀 = 5 of Example 6.4.
𝑥 FWM FWM HAM20 DTM26

k = 2, M = 4 k = 3, M = 4

(0.2) 0.98617952 0.98684367 0.98712230 0.98712227
(0.3) 0.97336972 0.97408218 0.97442147 0.97442100
(0.4) 0.95707929 0.95799266 0.95844874 0.95844541
(0.5) 0.93787452 0.93863115 0.93956673 0.93955156
(0.6) 0.91594528 0.91659420 0.91807156 0.91801913
(0.7) 0.89150255 0.89167981 0.89423459 0.89408505
(0.8) 0.86433118 0.86424646 0.86833023 0.86795946

Example 6.3. Consider

𝐷1∕2𝜇(𝑥) +𝑄𝜇(𝑥) = 0, 0 < 𝑥 ≤ 1, (6.3)

ith following conditions

(0) = 1, and 𝜇′(0) = 0.

Exact solution is 𝜇(𝑥) = 𝐸1∕2(−𝑥1∕2) where

𝐸𝛼(𝜏) =
∞
∑

𝑘=0

𝜏𝑘

𝛤 (𝛼𝑘 + 1)
.

In Fig. 4, the comparison of exact and approximate solution are
depicted of Example 6.3. The absolute error (see Table 3) are calculated
and the results are compared with generalized taylor matrix method
(GTMM)24 and method in Ref. 38 to show the efficiency of the FW
method.

In above three example we have considered the relaxation oscilla-
tion equations of fractional order with 𝑄 = 1. The results are plotted
and also presented in Tables to shows the accuracy of the proposed
method.

Example 6.4.
Consider the following

𝑑𝛼𝜇
𝑑𝑥𝛼

+𝑤𝛼𝜇(𝑥) = 𝑓 (𝑥), 1 ≤ 𝛼 ≤ 2, 0 ≤ 𝑥 ≤ 1, (6.4)

ith conditions

(0) = 1, 𝜇′(0) = 0.

xample 6.5.
𝑑𝛼𝜇
𝑑𝑥𝛼

+𝑤𝛼𝜇(𝑥) = sin(𝑤𝑥), 1 ≤ 𝛼 ≤ 2, 0 ≤ 𝑥 ≤ 1, (6.5)

with conditions

𝜇(0) = 0, 𝜇′(0) = 0.

In Examples 6.4 and 6.5, we considered fractional oscillator equa-
tions in which the exact solution is not known. Take, 𝑤 = 0.5, 0.3 for
xamples 6.4 and 6.5, respectively. In Fig. 5(a), the comparison of
ifferential transform method (DTM)26, Homotopy asymptotic method
HAM)20 and FWM are presented. Also the behaviour of the FWM
olutions at 𝛼 = 1.8, 1.85, 1.9 are shown in Fig. 5(b). In Table 4, ab-
olute error is presented with different resolution levels and the results
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Fig. 3. Graph of exact and approximate solution.

Fig. 4. Comparison of exact and approximate solutions.

re compared with other existing methods.22,38 For Example 6.5, the
Fig. 6(a) shows the comparison of HAM and FW approximate solutions.
6
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Also the behaviour of the FW approximate solution is presented at
different values of 𝛼 in Fig. 6(b).

Example 6.6. Consider the following nonlinear fractional oscillator
equation
𝑑𝛼𝜇(𝑥)
𝑑𝑥𝛼

+ 2𝜇(𝑥) + 𝜇2(𝑥) = 0, 1 < 𝛼 ≤ 2, 0 ≤ 𝑥 < 1, (6.6)

ith conditions 𝜇(0) = 0.1, 𝜇′(0) = 0. Expands the derivatives terms
sing FW as

𝑑𝛼𝜇
𝑑𝑥𝛼

=
𝑀−1
∑

𝑚=0

2𝑘−1
∑

𝑛=1
𝑑𝑚,𝑛𝑈𝑛,𝑚(𝑥) = (𝐷)𝑇𝑈 (𝑥). (6.7)

ntegrating (6.7) and using initial conditions we obtain

(𝑥) =
𝑀−1
∑

𝑚=0

2𝑘−1
∑

𝑛=1
𝑑𝑚,𝑛(𝐼𝛼0𝑈𝑛,𝑚(𝑥)) + 𝜇(0) = (𝐷)𝑇 𝑃 𝛼𝑈 (𝑥) + 0.1. (6.8)

ubstituting (6.7) and (6.8) in (6.6) we have

𝐷)𝑇𝑈 (𝑥) + 2.2(𝐷)𝑇 𝑃 𝛼𝑈 (𝑥) + ((𝐷)𝑇 𝑃 𝛼𝑈 (𝑥))2 = 2.2. (6.9)

fter solving the system of Eq. (6.9) using matlab f-solve command
e find the unknown coefficient and substitute in (6.8) to find the
pproximate solutions. In Fig. 7 we have shown the comparison of
ariation iteration method (VIM)39 and FWM. The obtained results
ndicates that FWM are effective for solving linear and non-linear
ROM.

. Conclusion

In this paper, we have developed an effective numerical method
ased on FW to solve FROM. By employing block-pulse functions, we
reated FW fractional-order operational matrices of integration. The
ROM were reduced to a systems of equations, which are computed
y the Newton iteration method. We solved the six test problems
oth linear and non-linear concerning a minimum level of resolution
o strengthen our results. The obtained results are compared with
he exact solution and other existing numerical methods such as the
TM,26 HAM,20 GTMM,24,38 and VIM39 to check the efficiency and
ccuracy of FWM. The convergence analysis for the proposed method
s drawn in terms of the theorems. The absolute error is calculated
n Table 1–4 and are compared with the existing literature. Fig. 1–7
resents the approximate solutions graphically for the particular value
f the fractional parameter 𝛼. Different values of the parameters 𝛼 are
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Fig. 7. Comparison of FWM and variation iteration method (VIM) at 𝛼 = 1.5.

sed to illustrate how well the FW collocation approach works. The
indings of this study indicate that the combination of Caputo fractional
erivatives and FWM offers a reliable and robust numerical approach
7

p

or investigating fractional order dynamics in FROM. This method
ffers a strong and useful choice for effectively analysing these kinds of
DEs and can be applied to similar problems. In future one can use this
ethod to solve fractional order models, fractional integrodifferential

quations and system of ordinary differential equations.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

ata availability

No data was used for the research described in the article.

cknowledgements

We are highly thankful to Central University of Haryana for pro-
iding basic facilities to carry out this research. Also this study is
upported via funding from Prince Sattam bin Abdulaziz University
roject number (PSAU/2023/R/1444).



Partial Differential Equations in Applied Mathematics 8 (2023) 100568S. Jahan et al.
References

1. Kumar S, Kumar R, Osman MS, Samet B. A wavelet based numerical scheme for
fractional order SEIR epidemic of measles by using Genocchi polynomials. Numer
Methods Partial Differ Equ. 2021;37(2):1250–1268.

2. Yadav P, Jahan S, Shah K, Peter OJ, Abdeljawad T. Fractional-order modelling
and analysis of diabetes mellitus: Utilizing the Atangana-Baleanu Caputo (ABC)
operator. Alex Eng J. 2023;81:200–209.

3. Abd-Elhameed WM, Youssri Y. Spectral tau algorithm for certain coupled system
of fractional differential equations via generalized Fibonacci polynomial sequence.
Iran J of Sci and Technol Trans Sci. 2019;43:543–554.

4. Abd-Elhameed WM, Youssri YH. A novel operational matrix of Caputo fractional
derivatives of Fibonacci polynomials: Spectral solutions of fractional differential
equations. Entropy. 2016;18(10):345.

5. Atta AG, Moatimid GM, Youssri YH. Generalized Fibonacci operational
Tau algorithm for fractional Bagley–Torvik equation. Prog Fract Differ Appl.
2020;6(3):215–224.

6. Youssri YH. Two Fibonacci operational matrix pseudo-spectral schemes for non-
linear fractional Klein–Gordon equation. Int J Mod Phys C. 2022;33(04):2250049.

7. Khan MA, Ullah S, Kumar S. A robust study on 2019-nCOV outbreaks through
non-singular derivative. Eur Phys J Plus. 2021;136:1–20.

8. Chen W, Zhang XD, Korosak D. Investigation on fractional and fractal derivative
relaxation-oscillation models. Int J Nonlinear Sci Numer. 2010;11(1):3–10.

9. Kumar S, Kumar A, Samet B, Gômez-Aguilar JF, Osman MS. A chaos study of
tumor and effector cells in fractional tumor-immune model for cancer treatment.
Chaos Solit Fractals. 2020;141:110321.

10. Kumar S, Chauhan RP, Momani S, Hadid S. Numerical investigations on COVID-
19 model through singular and non-singular fractional operators. Numer Methods
Partial Differ Equ. 2020.

11. Kumar S, Kumar A, Samet B, Dutta H. A study on fractional host-parasitoid
population dynamical model to describe insect species. Numer Methods Partial
Differ Equ. 2021;37(2):1673–1692.

12. Kumar S, Kumar R, Cattani C, Samet B. Chaotic behaviour of fractional
predator–prey dynamical system. Chaos Solit Fractals. 2020;135:109811.

13. Adolfsson K, Enelund M, Olsson P. On the fractional order model of viscoelasticity.
Mech Time-Depend Mater. 2005;9:15–34.

14. Enelund M, Olsson P. Damping described by fading memory-analysis and
application to fractional derivative models. Int J Solids Struct. 1999;36(7):939–970.

15. Bagley RL, Torvik PJ. Fractional calculus-a different approach to the analysis of
viscoelastically damped structures. AIAA J. 1983;21(5):741–748.

16. Mainardi F. Fractional relaxation-oscillation and fractional diffusion-wave
phenomena. Chaos Solit Fractals. 1996;7(9):1461–1477.

17. Yang TQ. Theory of Viscoelasticity. Wuhan, China: Huazhong Science and
Technology University Press; 1990.

18. Tofighi A. The intrinsic damping of the fractional oscillator. Phys A: Stat Mech
Appl. 2003;329(1–2):29–34.

19. Yadav P, Jahan S, Nisar KS. Solving fractional Bagley–Torvik equation by
fractional order FW arising in fluid mechanics. Ain Shams Eng J. 2023:102299.
8

20. Hamarsheh M, Ismail A, Odibat Z. Optimal homotopy asymptotic method (HAM)
for solving fractional relaxation-oscillation equation. J Interpolat Approx Sci
Comput. 2015;2:98–111.

21. Muhammadhaji A, Halik A. Dynamic analysis of a model for Spruce Budworm
populations with delay. J Funct Spaces. 2021;2021:1–7.

22. Saha T, Pal PJ, Banerjee M. Relaxation oscillation and canard explosion in a
slow-fast predator–prey model with Beddington–DeAngelis functional response.
Nonlinear Dynam. 2021;103:1195–1217.

23. Maleknejad K, Rashidinia J, Eftekhari T. Numerical solutions of distributed order
fractional differential equations in the time domain using the Müntz-Legendre
wavelets approach. Numer Methods Partial Differ Equ. 2021;37(1):707–731.

24. Izadi M. A computational algorithm for simulating fractional order relaxation-
oscillation equation. SeMA J. 2022;79(4):647–661.

25. Admon MR, Senu N, Ahmadian A, Majid ZA, Salahshour S. A new accurate method
for solving fractional relaxation-oscillation with Hilfer derivatives. J Comput Appl
Math. 2023;42(1):10.

26. Al-rabtah A, Ertürk VS, Momani S. Solutions of a fractional oscillator by using
differential transform method (DTM). Comput Math Appl. 2010;59(3):1356–1362.

27. Yildirim A, Momani S. Series solutions of a fractional oscillator by means of the
homotopy perturbation method. Int J Comput Math. 2010;87(5):1072–1082.

28. Lepik Ü, Hein H. Haar wavelets. In: Haar Wavelets: With Applications. Cham:
Springer International Publishing; 2014:7–20.

29. Rehman M, Saeed U. Gegenbauer wavelets operational matrix method for
fractional differential equations. J Korean Math Soc. 2015;52(5):1069–1096.

30. Sabermahani S, Ordokhani Y. Fibonacci wavelets and Galerkin method to investi-
gate fractional optimal control problems with bibliometric analysis. J Vib Control.
2021;27(15–16):1778–1792.

31. Sabermahani S, Ordokhani Y, Yousefi SA. Fibonacci wavelets and their applica-
tions for solving two classes of time-varying delay problems. Optim Control Appl
Methods. 2020;41(2):395–416.

32. Ahmed S, Shah K, Jahan S, Abdeljawad T. An efficient method for the fractional
electric circuits based on Fibonacci wavelet. Results Phys. 2023:106753.

33. Chen CF, Hsiao CH. Haar wavelet method for solving lumped and
distributed-parameter systems. IEE Proc Control Theory Appl. 1997;144(1):87–94.

34. Zada L, Aziz I. Numerical solution of fractional partial differential equations via
Haar wavelet. Numer Methods Partial Differ Equ. 2022;38(2):222–242.

35. Yadav P, Jahan S, Nisar KS. Fibonacci wavelet collocation method for Fredholm
integral equations of second kind. Qual Theory Dyn Syst. 2023;22(2):82.

36. Ahmed S, Jahan S, Nisar KS. Hybrid Fibonacci wavelet method to solve
fractional-order logistic growth model. Math Methods Appl Sci. 2023:1–14.

37. Debnath L. A brief historical introduction to fractional calculus. Internat J Math
Ed Sci Tech. 2004;35(4):487–501.

38. ülsu M, Öztürk Y, Anapali A. Numerical approach for solving fractional
relaxation-oscillation equation. Appl Math Model. 2013;37(8):5927–5937.

39. Ahmad J, Mohyud-Din ST. An efficient approach for nonlinear oscillator equations
using Jumarie’s fractional derivative. Int J Basic Sci Appl Res. 2013;2(9):804–809.

http://refhub.elsevier.com/S2666-8181(23)00081-5/sb1
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb1
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb1
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb1
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb1
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb2
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb2
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb2
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb2
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb2
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb3
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb3
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb3
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb3
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb3
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb4
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb4
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb4
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb4
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb4
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb5
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb5
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb5
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb5
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb5
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb6
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb6
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb6
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb7
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb7
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb7
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb8
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb8
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb8
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb9
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb9
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb9
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb9
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb9
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb10
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb10
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb10
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb10
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb10
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb11
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb11
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb11
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb11
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb11
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb12
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb12
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb12
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb13
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb13
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb13
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb14
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb14
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb14
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb15
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb15
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb15
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb16
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb16
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb16
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb17
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb17
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb17
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb18
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb18
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb18
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb19
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb19
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb19
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb20
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb20
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb20
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb20
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb20
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb21
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb21
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb21
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb22
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb22
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb22
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb22
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb22
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb23
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb23
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb23
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb23
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb23
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb24
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb24
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb24
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb25
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb25
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb25
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb25
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb25
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb26
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb26
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb26
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb27
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb27
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb27
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb28
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb28
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb28
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb29
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb29
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb29
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb30
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb30
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb30
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb30
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb30
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb31
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb31
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb31
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb31
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb31
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb32
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb32
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb32
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb33
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb33
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb33
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb34
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb34
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb34
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb35
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb35
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb35
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb36
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb36
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb36
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb37
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb37
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb37
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb38
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb38
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb38
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb39
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb39
http://refhub.elsevier.com/S2666-8181(23)00081-5/sb39

	Fibonacci wavelet method for the numerical solution of a fractional relaxation–oscillation model
	Introduction
	Fractional calculus 
	Fibonacci wavelet and function approximation
	Operational matrices of Fibonacci wavelet 
	Block pulse function
	Operational matrix of FW

	Description of method
	Error estimation and numerical results
	Numerical results 

	Conclusion
	Declaration of competing interest
	Data availability
	Acknowledgements
	References


