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The quality of speech degrades while communicating over Voice over Internet Protocol applications, for exam-

ple, Google Meet, Microsoft Skype, and Apple FaceTime, due to different types of background noise present

in the surroundings. It reduces human perceived Quality of Experience (QoE). Along this line, this article

proposes a novel speech quality prediction metric that can meet human’s desired QoE level. Our motivation

is driven by the lack of evidence showing speech quality metrics that can distinguish different noise degra-

dations before predicting the quality of speech. The quality of speech in noisy environments is improved by

speech enhancement algorithms, and for measuring and monitoring the quality of speech, objective speech

quality metrics are used. With the integration of these components, a novel no-reference context-aware QoE

prediction metric (CAQoE) is proposed in this article, which initially identifies the context or noise type or

degradation type of the input noisy speech signal and then predicts context-specific speech quality for that

input speech signal. It will have of great importance in deciding the speech enhancement algorithms if the

types of degradations causing poor speech quality are known along with the quality metric. Results demon-

strate that the proposed CAQoE metric outperforms in different contexts as compared to the metric where

contexts are not identified before predicting the quality of speech, even in the presence of limited size speech

corpus having different contexts available from the NOIZEUS speech database.
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1 MOTIVATION AND RELATED WORK

In the era of exponentially increasing number of internet users and mobile devices, the uses of
various Voice over Internet Protocol (VoIP) applications, for example, Google Meet, Microsoft
Skype, and Apple FaceTime, are growing dramatically. For fulfilling the users expectations to meet
better quality of experience (QoE) while using such VoIP applications, it is necessary to mea-
sure and monitor real-time speech quality predictions at different nodes of speech communication
networks. Traditionally, Absolute Category Rating (ACR) [1] method is used to measure speech
quality, where the speech materials are played and speech quality ratings are provided by the sub-
jects. Although it is highly reliable and provides an accurate assessment of speech quality, one
needs to arrange number of subjects who will have no objections in listening the speech material
for speech quality ratings. Moreover, it consumes more time, and thus speech quality monitoring
in real time using this method is impractical. Alternatively, one can utilize objective speech qual-
ity assessment metrics conveniently, which can use different computational algorithms for speech
quality measurement. Measuring and monitoring real-time speech quality at different nodes of
speech communication networks using objective metrics are less costly, faster, and practical.

The International Telecommunication Union (ITU) has standardized various objective
speech quality assessment metrics. For example, Instrumental metrics, as shown in Figure 1, are
used to estimate the average user judgement of the quality of a service [2]. Signal-based metric em-
ploys received (degraded) speech signals for speech quality estimation. Signal-based metrics are of
two types: full-reference metric (also called “intrusive” or “double-ended” metric) and no-reference
metric (also called “non-intrusive” or “single-ended” metric).

Intrusive (reference-based) metrics usually calculate the distance between spectral representa-
tions of the transmitted reference signal and the received degraded signal. For example, Percep-
tual Evaluation of Speech Quality [3], Perceptual Objective Listening Quality Assessment [4], and
ViSQOL [5] and its improved version ViSQOL v3 [6] are some of the popular intrusive metrics.
Since one cannot have the access to the original input reference signal in most of the speech pro-
cessing applications, the intrusive metrics are not appropriate for real-time speech quality moni-
toring at different nodes of communication networks.

Non-intrusive (no-reference) speech quality metrics are preferred for real-time monitoring of
speech quality and the scenarios where a reference speech signal is unavailable. These metrics only
use the degraded speech signal to predict the speech quality and could be easily installed at the end
point of VoIP channels or at any nodes of communication networks for monitoring the quality of
speech. For the assessment of narrow-band speech signals, two no-reference speech quality met-
rics are standardized [2]: first, the ITU recommended P.563 [7] and, second, the American National
Standard Institute standardized “Auditory non-intrusive quality estimation plus (ANIQUE+) [8].”
ANIQUE+ is a perceptual model that simulates the functional roles of human auditory system (that
is, based on human perception of speech or audio) and deploys improved modelling of quality es-
timation by a statistical learning paradigm [8]. An implementation of ANIQUE+ is only commer-
cially available while P.563 is publicly available and currently in force. Moreover, both ANIQUE+
and P.563 metrics are not context-aware or context-sensitive quality metrics.

The examples of non-standardized speech quality prediction metrics include Low Complex-

ity Speech Quality Assessment (LCQA) [9] and Deep Neural Network– (DNN) based speech
quality prediction metrics [10–14]. The LCQA algorithm deploys low complexity (execution time)
to monitor the quality of speech over a network. It estimates the quality of speech by mapping
the global statistical features obtained from speech codecs using Gaussian Mixture Model [15]. For
each frame, the global features of speech like mean, variance, skewness and kurtosis are calculated
from the parameters of speech-coding [16]. Moreover, LCQA is restricted only to the parametric
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Fig. 1. Types of instrumental speech quality metrics: (a) Full-reference signal-based metric, (b) No-reference

signal-based metric, and (c) Parametric metric.

representation of the input speech signal without its perceptual transform. The recent work on
DNN-based speech quality prediction metrics include [10–14]. For example, Reference [12] pre-
dicts speech quality based on extracting Mel Frequency Cepstral Coefficents features and then
training a DNN, and [13] predicts speech quality from the speech signal and then train a convo-
lutional neural network. The author of Reference [14] deploys deep autoencoder and sub-band
autoencoder features to train artificial neural network (ANN) on noisy speech samples for pre-
dicting quality of speech. Reported results indicate that these DNN-based metrics perform poorly
in the scenarios of competing speaker type degradations. Also, these metrics directly predict the
speech quality without identifying/classifying the context (noise class) of the input speech signal
before predicting its speech quality.

Parametric metrics [17], for example, the E-Model [18], estimates the quality of speech using the
network and the terminal parameters. Network delay and packet loss are the key components of
network parameters. Jitter buffer overflow, coding distortions, jitter buffer delay, and echo cancel-
lation are the key components of terminal parameters. Impairments of the received speech signal
are predicted using these parameters, and then the rating factor is converted into Mean Opinion

Score (MOS).1 Some recent study on speech quality monitoring using parametric metric includes
wired, wireless, or atmospheric degradations in speech signals [19–23]. However, the E-model has
limitations, that is, it cannot clearly represent non-linear relationship between perceptual char-
acteristics of speech signal and network planning parameters due to the dynamic change in the
speech signal characteristics. Moreover, the disadvantage of the parametric metric is that it does
not involve the speech signal in the prediction of speech quality, and, therefore, it is not appro-
priate for predicting quality of speech based on the signal-noise characteristics [2]. For real-time
measuring and monitoring of the quality of speech, a no-reference signal-based speech quality
prediction metric is the most appropriate.

The motivation to propose a Context-aware QoE Prediction Metric (CAQoE) came to light
while digging into the literature and knowing that there is no signal-based context-aware speech
quality prediction metric. There are three main components in the proposed metric: (i) a context-
classifier to classify the context of the speech signal (noise type), (ii) a Voice Activity Detec-

tor (VAD) to identify the voiced segments present in the noisy signals, and (iii) Context-specific
Speech Quality Estimation Model (CSQM) to predict context-specific speech quality. To per-
fectly train the context-classifier and the CSQM, one needs to have a large size of noisy speech
database. However, due to the availability of small size database of speech samples of different
noise classes in the NOIZEUS speech corpus, we also have addressed the challenges of small size

1MOS describes the speech quality on a scale from 1 (bad) to 5 (excellent).
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training samples database in building an accurate machine learning (ML) classifier for classify-
ing the context of speech signal and also in training the CSQM for precisely estimating the quality
of speech signal.

The rest of this article is organized as follows: The usage of machine learning and the concept of
QoE in speech processing applications are presented in Section 2. Experimental dataset to evaluate
speech quality is described in Section 3. Section 4 presents the detailed explanation of the proposed
metric and its each associated component. The evaluation methodologies of each component and
overall speech quality metric are described in Section 5. Section 6 presents the system setup to
execute the program and the choices of different parameters and hyper-parameters. The results of
each component and overall proposed metric are presented and discussed in Section 7. Section 8
presents the summary, which includes the key contributions, limitations of the proposed metric
and the plans for the future work.

2 QUALITY OF EXPERIENCE AND MACHINE LEARNING

The degree of delight or annoyance of the user while using a particular application or service
is defined as the QoE. It results from the fulfillment of the customer’s expectations with respect
to the utility and/or enjoyment of that application or service in light of their personality and
current state [24]. There are various factors that influence the QoE while using VoIP applications
for VoIP call, namely system, network, content, context of use, and user. The types of channel
(mono or stereo), position of microphone, central processing unit overload, and so on, are the key
factors of the service and system. Jitter, packet loss, and delay of the transmitted speech signal are
the network factors. Content, that is, the characteristics of speech and voice, may be affected by
processing and can influence the QoE. Location of using the service is the part of contextual factor,
for example, in the noisy environments, such as a car, street, or train, compared to the noiseless
and silence at home. Finally, the good quality is expected by the service users.

In view of this, a novel intelligent technique is necessary to design appropriate data-driven
context-aware QoE metric that can perform real-time prediction of speech quality and can make
its efficient utilization in speech quality monitoring. Using artificial intelligence (AI) and ML
techniques, smart decision making AI-based algorithms can be introduced into the mobile de-
vices to improve the QoE and the performance gains of the end-user. Moreover, the proposed
speech quality prediction metric CAQoE can be easily deployed by the internet service providers
for continuously measuring and monitoring the quality of service performance by detecting the
impairments and potentially identifying the context (noise type). The potential root causes can be
identified using this assistance, and then the QoE-aware management actions can be installed to
react and maintain the end-user QoE levels [25].

3 THE SPEECH QUALITY EVALUATION DATASET

Different datasets have different applicabilities. For example, the ITU-T P.Supplement-23 data-
base [26] contains the coded version of speech utterances used in the ITU-T 8 kbps codec character-
ization tests [27]. Experiment-1 examines the G.729 codec with coded speech samples, which are,
thus, not useful for our experimentation. Experiment-2 investigates the effect of background noise
for transmission quality but not having classified noise such as car, street, train noise, and so on.
Also the method of assessment is comparison category rating not ACR, which is, thus, not suitable
for this work. Experiment-3 investigates effects of channel degradations using coded speech sam-
ples and, thus, not useful for our experimentation. Therefore, the ITU-T P.Supplement-23 database
is not suitable for testing our proposed metric due to the non-availability of different types/classes
of degradations present in speech signal.
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Fig. 2. Block diagram of the proposed context-aware speech quality prediction metric.

As different types of environmental noise degrades the speech, the performance of proposed
context-aware speech quality prediction metric is investigated using noisy speech samples from
a publicly available noisy dataset, that is, NOIZEUS [28]. Three male and three female speakers
pronounced 30 phonetically balanced IEEE English sentences. Four real-world noises: babble, car,
street, and train at two signal-to-noise ratios (SNRs): 5 and 10 dB are used for degrading each
sentences. Noises are taken from the AURORA database [29]. Each sentences are down-sampled
from 25 kHz to 8 kHz, that is, narrow-band noisy speech samples. For down-sampling, the “resam-
ple” function resamples the input speech signal at p/q times the original sampling rate. It applies
an FIR antialiasing low-pass filter to input speech signal and compensates for the delay introduced
by the filter. The average duration of each utterance is 3 seconds. All the noisy speech samples are
saved in .WAV format (16 bit PCM, mono).

4 PROPOSED CAQOE METRIC

The outline of the proposed context-aware speech quality prediction metric is shown in Figure 2.
It is based on three main building blocks/stages: (i) a context/noise classifier for classifying the
context of speech signal, that is, noise type; (ii) a VAD to separate the voiced and non-voiced part
from the noisy speech signal; and (iii) context-specific speech quality models, which are trained
using DNNs for each noise type for evaluating speech quality under that specific noise conditions.
The hypothesis behind developing the proposed CAQoE metric is as follows: “Having the knowl-
edge of the noise-type of the signal under test via classification, which can be routed to a speech
quality assessment model that is trained and optimised for that particular noise degradation.”

4.1 Context Classifier

The first component in the proposed metric is a context-classifier. Since different speech enhance-
ment algorithms have different associated noise estimation techniques, resulting in varying per-
formance in enhancing the noisy speech signals and degraded under different noise contexts, we
apply this knowledge in building the context-classifier. With this knowledge, the metric processes
each noisy speech signal with 12 standard speech enhancement algorithms [28, 31] as presented
in Table 1. Each class of speech enhancement algorithm has different speech enhancement algo-
rithms. For example, Adaptive filtering has WT, Wiener-as, AudSup; Spectral subtraction has RDC,
MB; Statistical-model based has MMSE-SPU, logMMSE, logMMSE-ne, logMMSE-SPU, pMMSE;
and Signal-subspace has KLT and pKLT [28, 31]. Including one original unprocessed noisy speech
signal and 12 processed noisy speech signals, we obtain 13 variations of input signals. These
13 signals (12 processed + 1 unprocessed) are then passed to the P.563 metric [7] to obtain 13
different predictions of speech quality, called “MOS scores.” These MOS scores are combined and
then deployed as an input feature vector for training the ML classifiers. The flow diagram of the
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Table 1. Classes of the Speech Enhancement Algorithms with Corresponding Noise Estimation

Techniques [28, 31]

Class of SE Algorithms No. of SE Noise Estimation Techniques
Algorithms

Adaptive filtering 3 Wiener filtering [32] and
A-priori signal to noise

estimate [33]

Spectral subtraction [34] 2 Adaptive gain averaging and
reduced delay convolution [35]

Statistical model-based [36] 5 Minimum mean square error
(MMSE) [37] & log-MMSE [38]

Signal-subspace [39] 2 Karhunen-Loeve transform [40]

Fig. 3. Flow diagram of context-classifier showing feature extraction technique to train ML classifiers [30].

context-classifier demonstrating feature extraction technique is shown in Figure 3. The two sub
components of the context-classifier and the used ML classifiers are discussed as follows:

4.1.1 Speech Enhancement. To enhance the degraded speech, speech enhancement (SE) al-
gorithms are used. The selection of SE algorithms depends on the characteristics of the noise and
the noise estimation techniques associated with it. The 12 standard SE algorithms as discussed in
Section 4.1 consist of four classes of implementations. Each speech enhancement algorithm is de-
veloped by deploying a separate noise estimation algorithm, which are able to enhance the target
speech with varying success as presented in Table 1.

4.1.2 No-Reference Speech Quality Metric (P.563). ITU standardized P.563 [7] metric was de-
signed for assessing samples of active speech and is used for narrow-band speech signals. The P.563
metric is based on three principles [41], namely a physical model of vocal tract, a reconstruction of
intermediate reference signal to assess unmasked distortions, and focusing on specific distortions,
e.g., temporal clipping, robotization, and noise. Quality prediction by P.563 involves several steps:
pre-processing, classification of dominant distortion class, and perceptual mapping. The degraded
speech signal is pre-processed, which involves reverse filtering, speech level adjustment, identi-
fying speech portions, and calculating speech and noise levels via a VAD [7]. Distortion classes
include unnaturalness of speech, robotic voice, beeps, background noise, SNR, mutes, interrup-
tions, and so on, extracted from the voiced parts. A dominant distortion class is then determined
and mapped to a single mean opinion score referred to as a Mean opinion score of objective
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Fig. 4. Overall structure of P.563 metric [41].

Table 2. Requirements of Speech Signals in P.563 [7]

Sampling frequency 8,000 Hz

Amplitude resolution 16-bit linear PCM

Minimum active speech in file 3.0 seconds

Maximum signal length 20.0 seconds

Minimum speech activity ratio 25%

Maximum speech activity ratio 75%

Range of active speech level –36.0 to –16.0 dBov

listening quality (MOS-LQO). Figure 4 shows the overall structure of the P.563 metric, and Ta-
ble 2 presents the requirements of speech signals to be assessed in the P.563 metric.

We anticipate that the ML classifiers will be able to learn the relationship between the quality
estimates of unprocessed and enhanced speech samples while correctly classifying the context of
speech signal.

4.1.3 ML Classifiers Used. In our data-driven approach, a major challenge is to build a highly
accurate and reliable classifier with fewer available speech samples that has the ability to distin-
guish the context (noise class) of the input signal based on the effective feature set. Therefore, we
investigate seven different ML classifiers, which are described as follows.

(i) XGBoost: (Extreme Gradient Boosting, known as XGBoost) is an ensemble of classi-
fication and regression trees [42]. Gradient boosting2 [43] is used to optimize the trees in
XGBoost. Boosting is a sequential technique that works on the principle of an ensemble of
weak learners to deliver improved accuracy. Let x being the input vector and wq being the
score of the corresponding leaf q, then tree output is as follows:

f (x ) = wq (xi ). (1)

The ensemble of K trees lead to an output as [44]

yi =

K∑
k=1

fk (xi ). (2)

2Gradient boosting is a boosting technique that minimises the loss function of the model by adding weak learners using

gradient descent.
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The objective function J at step t is minimised by the XGBoost algorithm as [44]

J (t ) =
n∑

i=1

L
(
yi , ŷi

t−1 + ft (xi )
)
+

t∑
i=1

Ω( fi ), (3)

where the first part comprises the train loss function L (e.g., mean square error for regression
and binary cross entropy for classification) between the actual class y and the predicted out-
put ŷ forn samples. The second part comprises the regularizer for controlling the complexity
of the model and helping to avoid overfitting.

(ii) Decision Tree (DT): This is the combination of decision nodes and leaf nodes. Each decision
node corresponds to a test X over a single attribute of the input data and has a number of
branches, each of which handles an outcome of the test X . Each leaf node represents a class,
that is, the result of decision for a case. Decision Tree is constructed based on the principle
of divide and conquer [45, 46]. A set T of training data consists of k classes (C1,C2, . . . ,Ck ).
If T only consists of one single class, then T will be a leaf. If T contains no case, then T is a
leaf and the associated class with this leaf will be assigned with the major class of its parent
node. IfT contains more than one class, then a test based on some attribute ai of the training
data will be carried and T will be split into n subsets (T1,T2, . . . ,Tn ), where n is the number
of outcomes of test over attribute ai . The same process of constructing DT is recursively
performed over each Tj ; 1 ≤ j ≤ n, until every subset belongs to a single class.

(iii) Random Forest (RF): It is the combination of several decision trees. Each tree gives a clas-
sification result and the forest chooses the class that has the highest votes [47]. The random
forest classifier [48] uses the Gini index [49] as an attribute selection measure, which mea-
sures the impurity of an attribute with respect to the classes. For a given training set T ,
selecting one case at random and saying that it belongs to some classCi , the Gini index can
be written as follows: ∑∑

j�i

( f (Ci ,T )/|T |) ( f (Cj ,T )/|T |), (4)

where f (Ci ,T )/|T | is the probability that the selected case belongs to the class Ci . For gen-
erating a random forest classifier, two parameters, namely; number of features used at each
node to generate a tree and number of trees to be grown are needed.

(iv) Logistic Regression (LR): It predicts the presence or absence of a classifier outcome based
on the values of set of predictor variables. It uses the logistic function to squeeze the output
of a linear equation between 0 and 1 because for classification, the probabilities lie between
0 and 1. With P (y = 1) being the probability of presence, and β0, β1, . . . , βp being the coef-
ficients of explanatory variables x0,x1, . . . ,xp , LR model for p independent variables can be
written as

P (y = 1) =
1

1 + exp−(β0x0+β1x1+β2x2+· · ·+βp xp )
. (5)

(v) K-nearest Neighbors (KNN): In KNN, majority votes of class labels of neighbors are used
to find the class of each test sample [47]. The most frequent class label in the first “k” training
samples (nearest neighbors) are assigned as the class of the test sample, by computing and
sorting the distances between the test sample and each training sample. For finding the
nearest neighbors, Euclidean, Manhattan, and Minkowski distances are used [50].

(vi) Support Vector Machine (SVM): It works on the principle of structural risk minimiza-
tion [51]. For classification, it finds an optimal separating hyperplane to maximize the mar-
gin between two classes of data. The margin is the sum of distances to the hyperplane from
the closest points of two classes. Suppose that there are m instances of training data. Each
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instance consists of an (xi ,yi ) pair where xi ∈ RN is a vector containing attributes of
the ith instance, and yi ∈ {+1,−1} is the class label for the instance. The objective of the
SVM is to find the optimal separating hyperplane w .x + b = 0 between the two classes of
data. Quadratic programming optimization techniques are used to find optimal separating
hyperplane.

(vii) Naive Bayes (NB): It is a probabilistic classifier that works on Bayes’s theorem [52] with the
assumption that features are independent given class. Despite this unrealistic assumption,
the classifier is effective and is particularly suited when the dimensionality of inputs is high.
Basically the NB classifier ignores the possible dependencies, namely correlations among
the inputs and reduces a multivariate problem to a group of univariate problems.

4.2 Voice Activity Detection

The VAD is second component in the proposed metric. Based on the speech features, the VAD
identifies the active voiced segments in the input noisy speech signal. It works as a pre-processing
block to process the input noisy speech signal before sending it to the speech quality estimation
metric. Our previous study [53] reflects that a weighted spectral centroid (WS) VAD performs
outstanding in identifying and separating the voiced segments from the noisy speech signal.

The WS VAD extracts one of the speech feature, that is, spectral centroid from the noisy speech
signal. Spectral centroid is barycenter of spectrum and its high value corresponds to the “bright-
ness” of the sound. To design the WS VAD, one can divide the speech samples into overlapping
frames of size 25 ms with a 10-ms shift and then compute short-time spectral centroid for each
frame as [53]

Ci =

∑N
k=1 (k + 1)Xi (k )∑N

k=1 Xi (k )
, (6)

where Xi (k ), k = 1, 2, . . . ,N , is the Discrete Fourier Transform coefficients of the ith short-time
frame of frame-length N . A smoothing filter, namely; median filter3 [54] is applied throughout
the feature sequence. Then, the histogram is computed and its local maxima are detected. The
threshold T is computed dynamically using the weighted average between the first and second

local maxima, given by T = W1M1+W2M2

W1+W2
, where M1 and M2 are the first and second local maxima,

respectively. W1 and W2 are the user-defined weights and are set as W1 = 5 and W2 = 1. For
extracting voiced segments, a threshold is applied to each frame of signal.

4.3 Speech Quality Estimation

The third component in the proposed metric is the context-specific speech quality prediction met-
ric, which is a collection of DNNs, each trained and optimised for a particular context (noise type).
For building context-specific speech quality prediction metric, fully connected DNNs and lasso
feature selections are used.

4.3.1 Fully connected DNN. A DNN as shown in Figure 5 is an ANNs, which consists of multiple
number of hidden layers between the input and the output layer, each of which consisting of a
linear operation followed by a pointwise non-linearity, also known as activation function. Consider
a feed-forward DNN with L layers, labelled l = 1, . . . .,L and each with a corresponding dimension
ql . The layer l is defined by the linear operation Wl ∈ Rql−1×ql followed by a non-linear activation
function σl : Rql → Rql . Layer l receives input from the l − 1 layer denoted as, wl−1 ∈ Rql−1 , the
resulting output of the layer l, wl ∈ Rql , is then computed as wl := σl (Wl wl−1), where σl (·) is the
pointwise activation function. The final output of the DNN, wL , is then related to the input w0 by

3A median filter is a non-linear filtering technique used to remove noise from the signal [54].
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Fig. 5. A simple feed-forward DNN to design speech quality model (SQM) for each noise class.

propagating through the various layers of the DNN aswL = σL (WL (σL−1 (WL−1 (. . . .(σ1 (W1w0)))))).
The DNN learns the layerwise weights w1,w2, . . . ,wL [55].

The input to the designed DNN is the noisy speech signal processed via WS VAD (that is, silence
separated speech signals) and the context-specific training data. It is important to note here that
zero padding is used at the end of the processed speech samples to make the length of each pro-
cessed speech sample same before feeding to the DNN. The output of the DNN is the subjective
speech quality score (MOS-LQS). The hidden layer’s activation function σl includes a rectified

linear unit (ReLU), defined as σl (x ) = 0 for x < 0 and x for x > 0, and the output layer’s acti-
vation function σo includes a linear activation function, defined as σo (x ) = cx where c is constant.
The classifier, first, classifies the input noisy speech signal and then activates the corresponding
trained DNN to evaluate that noisy speech signal, which provides a predicted speech quality (MOS
score).

4.3.2 Lasso Feature Selection. To analyze and reduce the complexity of the data-driven models,
high-dimensional feature selection technique, such as lasso [56, 57], is deployed, which separates
relevant features from the irrelevant ones. The tuning parameters are adjusted properly to all
aspects of the model using cross-validation. The combination of square error loss and L1 penalty
on the regression coefficients are minimized by the lasso. With {xn ,yn }Nn=1 being the training data,
b being the intercept, λ being the Lagrange multiplier, the loss function to be minimized, is given
as [58]

β̂ ← argmin
β

⎧⎪⎪⎨⎪⎪⎩

N∑
n=1

�
�
yn − b −

D∑
d=1

βdxdn
�
	

2⎫⎪⎪⎬⎪⎪⎭
+ λ | |β | |1. (7)

A competition between the regression coefficients is imposed by the L1 norm, leading to shrinking
some of them to 0, and then producing a sparse model that can explain the data with less features.
The λ is typically inferred from cross-validation. Fivefold cross-validation is used to perform this
optimization.

5 EVALUATING THE SPEECH QUALITY METRIC

This section presents the evaluation methodology used for the proposed CAQoE metric and its
components, which include context-classifier, WS VAD, and the context-specific speech quality
estimation metric.
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5.1 Evaluating the Context-classifier

The context-classifier takes 30 noisy speech samples of each noise type: babble, car, street and
train at two SNRs: 5 and 10 dB from the NOIZEUS speech corpus. Therefore, each noise class/type
has 60 (30 × 2) noisy speech samples, resulting in total 240 (30 samples × 4 noise types × 2 SNRs)
noisy speech samples. These noisy speech samples are in the original form, that is, having both
voiced and unvoiced segments. Each noisy speech sample is processed with 12 standard speech
enhancement algorithms (see Table 1) and one sample remains present in the original unprocessed
form. Further, these 12 processed samples along with the one original unprocessed sample, that is,
n̂1 (t ), n̂2 (t ), . . . , ˆn13 (t ), are injected to the P.563 metric (see Figure 3) to obtain 13 different objective
speech quality prediction scores, that is, MOS1,MOS2, . . .MOS13. These 13 MOS scores are then
combined and used as an input feature vector for training the ML classifiers for classifying the
context of speech signal [30].

There are only 60 noisy speech samples in each noise class,4 which is a very small amount of data
(sample) for training any data-driven model, while training a ML classifier directly with these small
amounts of data resulted in an classification accuracy of only 35%. Therefore, we switched our
attention to perform one-vs.-all approach of multi-class classification, that is, binary classification
with imbalanced datasets [59] for each noise class. Of four noise classes, we assigned the first
noise class (e.g., Babble) as “class 1” and the remaining three noise classes as “class 0” and labelled
it as “Babble.” Similarly, we assigned the second noise class as “class 1” and the remaining three
noise classes as “class 0” and labelled it as “Car.” The same strategy is followed for the remaining
noise classes. For balancing both the majority and minority noise classes, we reduced the size of
the majority noise class (class 0) to be equal to the size of minority noise class (class 1) using an
under-sampling technique [60, 61]. After balancing both noise classes, we divide the data of each
noise class into a 80:20 ratio for training and testing the classifier.

F-score (FS), or test accuracy, and geometric mean (G-mean), or balanced accuracy, are em-
ployed to measure the performance of ML classifiers. The FS is the weighted harmonic mean of
precision (PR) and recall (RC), given as [30]

PR =
TP

TP + FP
, RC =

TP

TP + FN
, FS =

2(PR × RC )

(PR + RC )
. (8)

G-mean [62] is the geometric average of the classification precision of the minority and the
majority class. It evaluates the model’s ability to correctly classify the minority and majority class
and is given as [30]:

G −mean =

√
TP

TP + FN
× TN

TN + FP
. (9)

Here, TP, TN, FP, and FN are true positive, true negative, false positive, and false negative,
respectively [30].

5.2 Evaluating the VAD

The VAD mask, which is the binary mask,5 is obtained for noisy speech samples (framewise) using
the WS VAD and compared to the ground truth (GT) mask6 to obtain the TP, TN, FP, and FN,
which measures the performance of a particular VAD using PR, RC, and FS as in our previous

4A noise class refers to noisy samples obtained by combining noisy samples at two SNRs 5 and 10 dB, e.g., Babble.
5Binary mask is binary decision taken by a VAD. If measured value exceeds a threshold, then VAD = 1, that is, voiced

segment, else, VAD = 0, that is, noise/silence.
6The GT mask is the ideal binary mask, which is computed as silence, if the frame’s sample value = 0; and voiced segments,

otherwise; for the reference speech samples. This mask is representation of the perfect VAD.
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study [53]. F-score measures accuracy and its maximum value is 1 (PR = RC = 1), which means
that the voice activity decision of a certain VAD algorithm is equal to the reference transcription.

5.3 Evaluating the Speech Quality Metric

The success of DNN models in replicating different optimization-based speech quality solution
relies heavily on the availability of sufficiently large learning datasets. However, getting large
datasets to satisfy the data hungry nature of DNN models is not possible because most of the real
data is publicly unavailable and/or costly to obtain. One alternative is to generate realistic data
using advanced deep learning techniques, such as Generative Adversarial Networks (GANs)7

[64, 65]. However, that is beyond the scope of this research. The original noisy speech samples
are processed via the WS VAD to obtain the voiced segments of the speech samples as the voiced
segments contribute in speech quality prediction only [53]. Further, the processed speech samples
of each noise class via WS VAD and the training data of each noise class (see Figure 5) are fed as
the input to the DNNs. The subjective prediction scores (MOS-LQS) of each noise class obtained
from Dubey [66] are fed as the output to the DNNs. A collection of DNNs (see Figure 5) are trained
and optimised for each noise class to obtain noise-specific speech quality prediction metric. The
motivation for exploiting DNNs is primarily due to its universal approximation capability [67]
and supplemented by the fact that trained DNN models are computationally very simple [68] to
execute.

To extract most appropriate features for training the DNNs of each noise class, lasso feature
selection technique is deployed. The layers of DNNs are densely connected. We experimented with
various combinations of layers and weights to achieve best DNN models of each noise class that
could be trained in the reasonable time. For the performance evaluation of the DNNs, the training
and testing mean square error (MSE) of each noise class are calculated. MSE is the average of
the square of the differences between the actual and the predicted quality scores. With n being
the number of speech samples, y1,y2, . . . ,yn and ŷ1, ŷ2, . . . , ŷn being the actual and the predicted
quality scores, respectively, MSE is given as

MSE =
1

n

n∑
i=1

(yi − ŷi )2. (10)

5.4 Evaluating the Overall Proposed CAQoE Metric

The performance evaluation of the proposed CAQoE metric is quantified in terms of the Pearson

correlation coefficients (PCC), Spearman’s correlation coefficients (SCC), and root mean

square error (RMSE) between the objective predicted quality scores (MOS-LQO), obtained by
the proposed speech quality metric for each noise class and their corresponding subjective lis-
tener quality scores (MOS-LQS). With n being the number of speech samples used in evaluation,
y1,y2, . . . ,yn and ŷ1, ŷ2, . . . , ŷn being the subjective and the predicted speech quality scores, respec-
tively, μy and μŷ being the mean of subjective and predicted speech quality scores, respectively,
anddi being the difference between ranks of the subjective and the predicted speech quality scores,
these measures are given by Equations (11), (12), and (13), respectively, as

PCC =

∑n
i=1 (ŷi − μŷ ) (yi − μy )√∑n
i=1 (ŷi − μŷ )2 (yi − μy )2

. (11)

7GANs is a new class of generative methods for data distribution learning where the objective is to learn a model that can

generate samples close to the target distribution [63, 64].
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SCC = 1 −
6
∑n

i=1 d
2
i

n(n2 − 1)
. (12)

RMSE =

√√
1

n

n∑
i=1

(yi − ŷi )2. (13)

6 SYSTEM SETUP

This section presents the simulation platform used and different parameters and hyper-parameters
selected for the classifiers and the DNN models trained to obtain the speech quality estimation met-
ric. The VAD program is implemented in MATLAB 2018a. The standard objective speech quality
metric (P.563) is programmed in “C” language. The ML classifiers and the DNN-based speech

quality metrics (SQMs) are implemented in Python 3.7.3 with TensorFlow 2.2.0 on Windows
10 laptop having Intel Core i5 8th generation processor, Intel UHD Graphics 620, and 16 GB of
memory.

6.1 Choice of Parameters and Hyper-Parameters

To obtain accurate context-classifier for classifying the context of speech signal and to build robust
DNN-based SQM trained for each noise class separately, we experiment with different choices of
parameters and hyper-parameters. We also perform grid search to obtain optimal parameters.

For the tested ML classifiers, namely XGBoost, Gradient Boosting, DT, RF, LR, KNN, SVM, and
NB, the choices of parameters and hyper-parameters are outlined in Table 3.

To obtain robust DNN-based SQM for each noise class, we train DNNs with different number of
hidden layers, each having a variable number of neurons. ReLU is used as the activation function
to the hidden layers and linear to the output layer. The weights of DNN models are initialized
randomly. MSE is used as the loss function and RMSprop and NADAM [69] optimizer for the sto-
chastic optimization of DNNs. We select the proper learning rate of the optimizer and employ
different sizes of mini-batch for each SQM. To minimize the overfitting, and to speed up the train-
ing, dropouts [70] of different values are used after each hidden layer. We standardize dataset by
taking the mean and scaling to unit variance. The choices of parameters and hyper-parameters of
DNN-based speech quality metrics for each noise class are presented in Table 4.

6.2 Training Stage

For training the DNN-based SQM model, we divide the data of each noise class into a 80:20 ratio,
that is, we use 80% data/sample for the training and 20% data for testing of DNNs. We use the en-
tire training data to optimize the weights of each DNN models. MSE between the predicted quality
scores and the output of the network (subjective prediction scores) is used as the cost/loss func-
tion. We employ an efficient implementation of mini-batch stochastic gradient descent, called the
RMSprop algorithm for optimization, which divides the gradient by a running average of its recent
magnitude [71]. We also employ Nadam [69] optimizer, which is the same as Adam optimizer [72]
with Nesterov momentum. The choice of optimizers used for each SQM is presented in Table 4.

6.3 Testing Stage

During testing, the test samples of each noise class are passed to the seven trained classifies for
automatically (correctly) recognizing that test sample, that is, from the class it belongs to. After
recognizing its class, the test sample is passed to the corresponding trained and optimized SQM
to obtain the optimized objective speech quality predictions (MOS-LQO). Further, we also collect
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Table 3. Parameters and Hyper-parameters of Classifiers for Each Noise Class

Babble noise class

XGBoost DT RF LR KNN SVM NB

Estimators = 200 Split = entropy Ests = 100 Regul = L2 Neighbors = 7 Penalty = 2 var. = 2

Depth = 6 criterion Depth = 1 Penalty = 1 Weights = uni. Kernel = rbf smooth

Child weight = 0.0606 Depth = 1 Split = gini Solver = liblin. Algo = bf Degree = 3

Subsample = 0.181818 Splitter = best criterion Weight = bal. Dis = Eucl. Weight = bal.

Learning rate = 1 Weight = bal. Iters = 100 Leaf size = 30 Iters = 10

Car noise class

XGBoost DT RF LR KNN SVM NB

Estimators = 200 Split = entropy Ests = 100 Regul = L2 Neighbors = 7 Penalty = 1 var. = 2

Depth = 6 criterion Depth = 3 Penalty = 1 Weights = uni. Kernel = rbf smoot

Child weight = 1.0 Depth = 3 Split = entropy Solver = lbfgs Algo = auto Degree = 3

Subsample = 0.188889 Splitter = best criterion Weight = 1.0 Dis. = Eucl. Weight = 1.0

Learning rate = 0.5 Weight = 1.0 Iters = 100 Leaf size = 30 Iters = 10

Street noise class

Gradient Boosting DT RF LR KNN SVM NB

Estimators = 100 Split = entropy Ests = 100 Regul = L2 Neighbors = 7 Penalty = 1 var. = 2

Val. frac. = 0.2 criterion Depth = 1 Penalty = 1 Weights = uni. Kernel = rbf smooth

Iters. no change = 1000 Depth = 3 Split = gini Solver = lbfgs Algo. = auto Degree = 3

Tolerance = 0.01 Splitter = best criterion Weight = 1.0 Dis. = Eucl. Weight = 1.0

Learning rate = 0.2 Weight = 1.0 Iters = 100 Leaf size = 30 Iters = 50

Train noise class

Gradient Boosting DT RF LR KNN SVM NB

Estimators = 100 Split = entropy Ests = 100 Regul = L2 Neighbors = 7 Penalty = 2 var. = 2

Val. frac. = 0.2 criterion Depth = 1 Penalty = 1 Weights = uni. Kernel = rbf smooth

Iters. no change = 100 Depth = 3 Split = gini Solver = lbfgs Algo. = auto Degree = 3

Tolerance = 0.01 Splitter = best criterion Weight = 1.0 Dis. = Eucl. Weight = 1.0

Learning rate = 2 Weight = bal. Iters = 100 Leaf size = 30 Iters = 10

Table 4. Parameters and Hyper-parameters for Each DNN-based SQMs

Default to all SQMs Babble SQM Car SQM Street SQM Train SQM

Input layer neurons = 10 Neurons 13,3,10 13,3,10 13,2,10 13,3,10
Number of hidden layers = 3 Dropout 0.15,0.15,0.15 0.2,0.2,0.2 0.1,0.1,0.1 0.2,0.2,0.2
Hidden layers act. fun. = ReLU Optimizer Nadam RMSprop RMSprop Nadam
Output layer neurons = 1 Learning rate 0.0008 0.01 0.01 0.0008
Output layer act. fun. = Linear No. of epochs 1100 130 220 1900
Weight initialization = Random batch size 5 10 10 10
Max. no. of iterations = 100,000
of LassoCV

all test samples together and pass it to the seven trained classifiers for detecting its noise class
automatically and then to obtain corresponding objective speech quality predictions (MOS-LQO).

7 RESULTS AND DISCUSSIONS

This section presents the numerical results, which fits into our proposed metric and offers solution
to the gap discovered in the literature. It also discusses the results of each component to showcase
the effectiveness of the proposed metric.
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Table 5. F-score of Classifiers for Each Noise Class

Classifier XGBoost DT RF LR KNN SVM NB
Noise class

Babble 0.95 0.50 0.66 0.54 0.70 0.54 0.54

Car 0.91 0.62 0.62 0.62 0.70 0.62 0.54

Street 0.95 0.62 0.70 0.66 0.66 0.70 0.66

Train 0.91 0.54 0.66 0.75 0.62 0.66 0.54

Average 0.93 0.57 0.66 0.64 0.67 0.63 0.57

Table 6. G-Mean of Classifiers for Each Noise Class

Classifier XGBoost DT RF LR KNN SVM NB
Noise class

Babble 0.95 0.27 0.64 0.54 0.70 0.52 0.50

Car 0.91 0.50 0.62 0.61 0.67 0.55 0.45

Street 0.95 0.50 0.67 0.66 0.66 0.64 0.57

Train 0.91 0.39 0.66 0.74 0.61 0.66 0.39

Average 0.93 0.41 0.64 0.63 0.66 0.59 0.47

7.1 Context-classifier Response

The F-score and G-mean of each classifier for each noise class are presented in Tables 5 and 6,
respectively. Both tables reflect that XGBoost8 classifier is performing better and has an average
test accuracy and balanced accuracy of 93% for each noise class, which is the highest among all the
classifiers. Therefore, XGBoost classifier is used further to develop the complete proposed metric.

7.2 VAD Response

Figure 6 illustrations a test clean speech sample sp12.wav having “The drip of the rain
made a pleasant sound,” pronounced by a male speaker and the corresponding noisy speech
sp12_train_sn5.wav degraded by train noise at 5 dB and its framewise VAD masks computed
from different VAD algorithms, namely Energy (E) VAD, Weighted energy (WE)9 VAD, and WS
VAD, as compared to the GT mask. It can be seen that E and WE VAD are under-estimating the
speech components, resulting in poor accuracy as compared to the GT VAD. However, WS VAD ob-
serves Precision of 1, Recall of 0.98, and F-score of 0.99, resulting in the best detection/separation
of the speech and the non-speech segments in the input noisy speech signal.

The performance of each VAD algorithm is also measured on speech samples of each noise
class of the NOIZEUS dataset at two SNRs: 5 and 10 dB to investigate their effectiveness. The Pre-
cision, Recall, and F-score are calculated for each noise degradation and the F-score is presented in
Table 7. It can be noticed that the E and WE VAD are inaccurately identifying the voiced segments
as compared to the GT VAD, resulting in poor accuracy. However, WS VAD performs outstand-
ing in correctly identifying the speech components for each noise class/degradation type with its
higher F-score, resulting in best accuracy among all other VADs. Hence, WS VAD is highly ro-
bust to pre-process the speech samples in our proposed metric. We integrate WS VAD further for
developing the complete metric.

8XGBoost is used for babble and car and gradient boosting is used for street and train noise class.
9Energy and weighted energy VAD are developed by extracting the energy features of the speech samples [53].
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Fig. 6. Illustration of clean speech, noisy speech and framewise VAD masks compared to the GT mask for

the test sample.

Table 7. F-score of VAD for Each Noise Class at Two SNRs

VAD Babble Car Street Train
5 dB 10 dB 5 dB 10 dB 5 dB 10 dB 5 dB 10 dB

GT 1 1 1 1 1 1 1 1

E 0.293 0.265 0.296 0.268 0.300 0.266 0.298 0.265

WE 0.571 0.500 0.530 0.503 0.585 0.517 0.565 0.510

WS 0.931 0.950 0.958 0.957 0.954 0.963 0.971 0.960

Table 8. Model Learning for Each SQM

MSE Babble SQM Car SQM Street SQM Train SQM

Train 0.016 0.104 0.108 0.032

Test 0.031 0.138 0.109 0.063

7.3 Speech Quality Metric Response

The training and testing errors obtained while training the DNN models of each speech quality
metric are presented in Table 8. It can be observed that the accuracy, that is, the test MSE of each
speech quality metric is comparable to its counter training part. All speech quality predictions of
test samples can be estimated with a small error in the range of 0.03 to 0.13. However, the errors
between the training and testing quality estimates are significantly different for individual SQMs.
Thus, the results imply a better quality predictions for our SQMs.

Figure 7 shows the accuracy in terms of MSE for each SQM. It can be visualized that the individ-
ual model learning is converging toward the local minima, that is, with the increase in number of
training epochs, there is the decrease in the training loss. The testing model follows and achieves it,
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Fig. 7. Accuracy in terms of MSE for each speech quality metric (a) Babble SQM, (b) Car SQM, (c) Street

SQM, and (d) Train SQM.

resulting in optimized accuracy. Therefore, these context-specific optimized speech quality models
(SQMs) can be combined in our proposed metric.

7.4 Overall Proposed Metric Response

This section presents PCC, SCC, and RMSE between the objective quality scores (MOS-LQO) ob-
tained for each noise class and their corresponding subjective listener quality scores (MOS-LQS).
Three different scenarios are tested to investigate the effectiveness of our proposed metric.

7.4.1 Scenario A: Proposed Metric without Context-classifier. The context-classifier is removed
here, that is, the context (noise class) of the input noisy speech samples are not classified. The
input noisy speech samples are directly injected to the WS VAD and then the processed samples
are passed through P.563 metric to obtain the objective quality scores (MOS-LQO). Table 9 presents
PCC, SCC, and RMSE for each noise class in this scenario.

7.4.2 Scenario B: Proposed Metric without Context-classifier and VAD. The context-classifier and
the VAD both are removed here, that is, neither the context (noise class) of the input noisy speech
samples are classified nor the input noisy speech samples are processed by the VAD. The input
noisy speech samples are directly passed through P.563 metric to obtain the objective quality scores
(MOS-LQO). Table 10 presents PCC, SCC, and RMSE for each noise class in this scenario.

7.4.3 Scenario C: Proposed CAQoE Metric. This is our proposed CAQoE metric scenario where
both context-classifier and VAD are present, that is, the context (noise class) of the input noisy
speech samples are first classified and then processed with a VAD. Thereafter, it is passed through
P.563 metric to obtain objective quality scores (MOS-LQO). Table 11 presents PCC, SCC, and RMSE
for each noise class in this scenario.
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Table 9. PCC, SCC, and RMSE for Each Noise Class with a Grouped Results for

All Noise Classes without Context-classifier

Noise class→ Babble Car Street Train All

PCC 0.456 0.451 0.587 0.539 0.509

SCC 0.472 0.449 0.625 0.532 0.522

RMSE 0.733 0.844 0.833 0.772 0.797

Table 10. PCC, SCC, and RMSE for Each Noise Class with a Grouped Results for

All Noise Classes without Context-classifier and VAD

Noise class→ Babble Car Street Train All

PCC 0.463 0.468 0.599 0.537 0.516

SCC 0.506 0.491 0.645 0.523 0.536

RMSE 0.677 0.858 0.842 0.738 0.782

Table 11. PCC, SCC, and RMSE for Each Noise Class with a Grouped Results for

All Noise Classes in Proposed Metric

Noise class→ Babble Car Street Train All

PCC 0.995 0.803 0.943 0.927 0.833

SCC 0.974 0.785 0.799 0.983 0.884

RMSE 0.043 0.311 0.349 0.190 0.254

It can be observed from Tables 9, 10, and 11 that the PCC, SCC, and RMSE of the proposed met-
ric (Scenario C) are better than the Scenario A and Scenario B for each noise class tested and for
all noise classes together. The PCC and SCC are highest and the RMSE is lowest for our proposed
metric. This reflects that our proposed metric is performing outstanding as compared to these two
different baseline scenarios. The usages of both the context-classifier for classifying the context of
speech signal (noise class) and the VAD for separating the voiced segments, are the key compo-
nents of the proposed metric. In particular, it is the context sensitivity that is leading to the better
results.

Further, it can be observed from Table 11 of our proposed CAQoE metric that the PCC and
SCC of babble class are high and RMSE is less among all other noise classes. The train class also
has high PCC and SCC. The car class is having around 80% PCC and SCC, with little high RMSE,
which is in the acceptable range. The PCC of street class is also high. The overall proposed metric
performs well, giving around 85% average accuracy in terms of correlations with all noise classes
tested together. An improvement of around 40 % accuracy in terms of correlations can be observed
as compared to both baseline scenarios.

To explore the impact of the proposed metric, the scatter plot for the objective speech quality
predictions obtained from each speech quality model trained by each noise class (denoted by MOS-
LQO) is compared to the subjective speech quality results (denoted by MOS-LQS) in Figure 8. A
good correlation can be observed here for each noise class.

The overall simulation results of the proposed CAQoE metric show that the deep learning-based
approach has a great advantage when the speech signals are degraded by various types of degra-
dations. It demonstrates that DNNs have the great capability to remember and analyze the compli-
cated characteristics of the speech signals. Therefore, we believe that our proposed CAQoE metric
can be deployed by the internet service providers for measuring and monitoring real-time speech
quality in the environments where the speech quality is degraded due to the presence of different
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Fig. 8. Subjective vs. objective quality prediction of each noise class.

types of background noises and then, QoE-aware management actions can be installed to react
and maintain the end-user QoE levels.

8 SUMMARY

In this article, we have proposed a framework for context (noise class) detection-based speech
quality prediction metric (CAQoE) for measuring and monitoring real-time quality of speech in
VoIP applications.

8.1 Key Contributions

The key contributions of the proposed work include the following:

• Presenting the speech quality monitoring problem using a context-aware speech quality
metric from noisy speech samples.
• Using a three-step process for speech quality monitoring problem: (1) to obtain context-

classifier; (2) to perform pre-processing using VAD; and (3) to develop context-specific
speech quality metric. All three steps have separate relevance and can be integrated to de-
velop context-aware speech quality monitoring metric.
• Developing a context-classifier using a novel feature extraction technique comprising speech

enhancement algorithms and objective speech quality metric (P.563).
• Developing a VAD algorithm to detect the presence of active speech segments.
• Developing a group of DNNs that are trained and optimized for specific noise classes, that

is, context sensitive.
• Classifying the context (noise class) of the input speech signal and then switching to a spe-

cific SQM can result in better speech quality prediction and it will allow the end-user to
perceive a better QoE over VoIP applications.
• CAQoE experiments on NOIZEUS speech corpus containing different noise degradations

demonstrating the advantages of the proposed technique.
• The effectiveness of the proposed metric is validated through the correlation and RMSE

between the subjective and objective speech quality predictions, which is high and less, re-
spectively, for each noise class.
• Analysis of the CAQoE metric reflects that detecting the context of input speech samples

by the context-classifier and then passing through the corresponding SQM, results in better
correlation with the subjective speech quality.
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• The proposed three-stage CAQoE framework shows improved performance and a signifi-
cant advantage over the simple speech quality metrics where the speech quality is predicted
directly without identifying the context (noise class).

8.2 Limitations

Some limitations of the proposed work include the following:

• The proposed approach is empirical. The model is proposed and analyzed based on the per-
formance metrics.
• The proposed model is investigated with less number of narrow-band speech signals avail-

able from the NOIZEUS corpus.

8.3 Future Works

The current work constitutes a preliminary step toward understanding the ability of the DNNs for
this type of problems. Many interesting questions can be addressed in the future and some of them
are listed below:

• Extending dataset further to produce even more better results.
• Developing dataset for different contexts (noise classes) and for noise coming from multiple

sources. It could be used to validate the proposed VoIP monitoring metric.
• Performing subjective listening test to obtain subjective MOS score to compare the proposed

metric performance.
• The DNN model should have a good generalization ability in real-world applications, such

that when one deploys the model online and the conditions do not match completely with
the noisy speech class data then it should still work efficiently. An initial experiment is
performed in this article to demonstrate the generalization ability of the DNN model with
respect to some parameters of the noisy speech data. More experiments, rigorous analysis
and comprehensive discussions are the part of future considerations.
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