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Abstract: Paddy leaf diseases encompass a range of ailments affecting rice plants’ leaves, arising
from factors like bacteria, fungi, viruses, and environmental stress. Precision agriculture leverages
technologies for enhanced crop production, with disease detection being a vital element. Prompt
identification of diseases in paddy leaves is critical for curtailing their propagation and reducing
crop damage. However, manually diagnosing paddy diseases in regions with vast agricultural areas
and limited experts proves immensely difficult. The utilization of machine learning (ML) and deep
learning (DL) for diagnosing diseases in agricultural crops appears to be effective and well-suited
for widespread application. These ML/DL methods cannot ensure data privacy, as they involve
sharing training data with a central server, overlooking competitive and regulatory considerations.
As a solution, federated learning (FL) aims to facilitate decentralized training to tackle the identified
limitations of centralized training. This paper utilizes the FL approach for the classification of
rice-leaf diseases. The manuscript presents an effective approach for rice-leaf disease classification
with a federated architecture, ensuring data privacy. We have compiled an unbalanced dataset of
rice-leaf disease images, categorized into four diseases with their respective image counts: bacterial
blight (1584), brown spot (1440), blast (1600), and tungro (1308). The proposed method, called
federated transfer learning (F-TL), maintains privacy for all connected devices using a decentralized
client-server setup. Both IID (independent and identically distributed) and non-IID datasets were
utilized for testing the F-TL framework after preprocessing. Initially, we conducted an effectiveness
analysis of CNN and eight transfer learning models for rice-leaf disease classification. Among them,
MobileNetV2 and EfficientNetB3 outperformed the other transfer-learned models. Subsequently,
we trained these models using both IID and non-IID datasets in a federated learning environment.
The framework’s performance was assessed through diverse scenarios, comparing it with traditional
and federated learning models. The evaluation considered metrics like validation accuracy, loss as
well as resource utilization such as CPU and RAM. EfficientNetB3 excelled in training, achieving
99% accuracy with 0.1 loss for both IID and non-IID datasets. MobilenetV2 showed slightly lower
training accuracy at 98% (IID) and 90% (non-IID) with losses of 0.4 and 0.6, respectively. In evaluation,
EfficientNetB3 maintained 99% accuracy with 0.1 loss for both datasets, while MobilenetV2 achieved
90% (IID) and 97% (non-IID) accuracy with losses of 0.6 and 0.2, respectively. Results indicated the
F-TL framework’s superiority over traditional distributed deep-learning classifiers, demonstrating its
effectiveness in both single and multiclient instances. Notably, the framework’s strengths lie in its
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cost-effectiveness and data-privacy assurance for resource-constrained edge devices, positioning it as
a valuable alternative for rice-leaf disease classification compared to existing tools.

Keywords: federated learning; transfer learning; resource utilization; IID and non-IID

1. Introduction

The agricultural sector plays a vital role in the economic advancement of any country.
It provides fundamental raw materials, which act as the foundation for numerous industries.
The production of agriculture is significantly impacted by rice, a crop that is grown all
over the world. Over 50% of the global population, mainly in Asia, Africa, and America,
relies primarily on rice as a food source. It provides about 13% of the protein consumed
per person daily and about 20% of the daily caloric intake. Sadly, pests and diseases cause
significant losses in the rice harvest for farmers every year, with an estimated average
loss of 37%. It is cultivated in more than a hundred nations around the world, with an
annual harvest that covers about 158 million hectares and yields about 700 million tons of
rice [1]. Asia outperforms other continents in terms of rice cultivation, producing most of
the world’s supply.

Several methods and strategies are available to address the challenges posed by rice
diseases. These include implementing effective equipment and field cleaning practices
between growing seasons, adopting disease-resistant seed varieties obtained from clean
sources, employing appropriate fertilization techniques, promoting the presence of natural
predators to control pests, ensuring proper grain storage, and judiciously using insecti-
cides [2]. Out of the strategies outlined, many are categorized as preventative measures.
However, the utilization of insecticides is a critical and immediate requirement to address
rice-leaf diseases. It is important to note that various types of rice-leaf diseases exist, and
each specific disease necessitates a distinct type of insecticide for effective eradication.
Hence, the choice of insecticides should be tailored to the specific rice-leaf disease at hand,
initiating treatment with the relevant insecticide for the majority of rice-leaf diseases en-
countered in paddy fields [3]. Subsequently, a rotation of insecticides is implemented,
switching to suitable options for different rice-leaf diseases present in the field. The du-
ration of this process can vary, contingent on the number and severity of rice-leaf disease
types. This situation is projected to ameliorate with the advancement of precision agricul-
ture techniques, allowing for the real-time monitoring of rice-leaf diseases and the precise
application of appropriate insecticides, therefore streamlining the treatment process [4].

To address this constraint, Artificial Intelligence (AI) methods enable the creation
of smart applications designed to assist in the diagnosis of crop diseases [5]. Machine-
learning (ML) approaches, particularly supervised learning, necessitate access to data both
centrally and locally during the training process [6]. Nonetheless, computing and storage
assets are distributed across various geographical areas, prompting organizations to adopt
distributed training methods to leverage these resources effectively. Nevertheless, the
presence of diverse and dispersed computing resources gives rise to concerns regarding
privacy and security. As a solution, the concept of (FL) has emerged, presenting a method to
harness the capabilities of distributed resources through collaborative training of a shared
machine model. FL has already demonstrated its potential in various domains, including
but not limited to medicine [7], industrial engineering [8], and mobile devices [9] in recent
practical implementations. This study illuminates the viability of federated learning (FL)
as an appropriate strategy for distributed machine learning within the realm of rice-leaf
diseases. The research emphasizes the utilization and assessment of FL in the context
of diagnosing ailments in rice leaves, leveraging transfer learning (TL), and adopting a
centralized learning framework, which necessitates the data’s central presence on a server
for training purposes. In the FL methodology, data dispersal across training clients is
possible, operating in a distributed and asynchronous manner to construct a central model.
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The proposed work focuses on the classification of diseases in rice leaves, which could
provide valuable assistance to farmers and agricultural researchers in the identification of
crops. The main contributions of this paper are:

i. Implementing a federated transfer learning approach for rice-leaf disease classifica-
tion;

ii. Implementing an enhanced distributed training approach through federated learn-
ing, involving both IID and Non-IID datasets;

iii. The proposed method has shown its efficacy while addressing data privacy and
resource utilization concerns in the classification of rice-leaf diseases.

The proposed federated transfer learning technology shows immense potential for
transforming the agriculture sector. By harnessing data from a variety of sources, including
farms, agricultural experts, and industry stakeholders, this innovation allows for the cre-
ation of highly precise and localized predictive models. Farmers stand to gain personalized
guidance for crop management, pest control, and efficient resource allocation, resulting in
higher yields and cost savings. Agricultural experts can draw upon the collective knowl-
edge embedded in the federated model to make data-informed decisions and offer tailored
advice to farmers. Additionally, stakeholders in the agriculture industry can access valuable
insights into market trends and supply chain dynamics, facilitating improved planning and
risk management. Overall, federated transfer learning technology can boost productivity,
sustainability, and profitability within agriculture, all while upholding the integrity of data
privacy and security.

2. Related Study

Over the years, the field of identifying rice-leaf diseases through image analysis has
witnessed the development of numerous approaches. Petchiammal et al. [10] Introduced
a visual dataset called Paddy Doctor, designed to detect paddy diseases. The compre-
hensive dataset comprises 16,225 annotated images of paddy leaves, distributed among
13 categories encompassing 12 disease types and a category for healthy leaves. The au-
thors subsequently employed this dataset to conduct the classification of rice-leaf diseases
with Convolutional Neural Network (CNN) as well as with VGG16, ResNet34, Xcep-
tion, MobileNet, and four transfer learning models and achieved the highest F1-score
value, i.e., 97.50%. Sudhesh et al. [11] introduced a method for identifying rice-leaf dis-
eases, which leverages a combination of the Dynamic Mode Decomposition technique
and an attention-driven preprocessing approach. Their study focuses on four distinct
classes of rice-leaf diseases, specifically bacterial blight, blast, brown spot, and tungro,
encompassing a total dataset of 3416 images. The authors proceed to employ ten distinct
transfer-learned deep Convolutional Neural Network (CNN) models, integrating them
with three machine-learning classifiers for disease classification. Their analysis concludes
that the XceptionNet model achieves the highest accuracy, notably 94.33%, surpassing the
performance of other transfer-learned models. Haruna et al. [12] developed a specialized
model called StyleGAN2-ADA, which stands for Style-Generative Adversarial Network
Adaptive Discriminator Augmentation. This model was designed to detect diseases in rice
leaves.

Patil et al. [13] introduced an innovative AI model for grading rice, which employs an
enhanced strategy employing the faster-region-based convolutional neural network (FR-
CNN). This method is utilized to accurately determine the sizes of individual leaf instances
and identify regions affected by infections. The model’s effectiveness was evaluated in
comparison to other CNN architectures. The backbone of the system, the EfficientNet-
B0 architecture, was chosen due to its exceptional accuracy performance, achieving an
impressive accuracy rate of 96.43%. Furthermore, Patil et al. [14] introduced an innovative
multimodel approach called Rice-Fusion to effectively diagnose rice diseases. This method
involved combining data from two distinct sources: agro-meteorological sensors and a
camera. By extracting numerical characteristics from the agro-meteorological sensor data,
and visual attributes from images of the rice, they achieved an impressive testing accuracy
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of 95.31% using the Rice-Fusion framework. In comparison, other approaches that relied
solely on a single source of data achieved lower accuracies: 82.03% using a Convolutional
Neural Network (CNN) and 91.25% using a Multi-Layer Perceptron (MLP) architecture.
This showcases the superior performance of the Rice-Fusion method in diagnosing rice
diseases. Salamai et al. [15] have presented a lesion-aware visual transformer approach
designed to enhance the precise and dependable detection of paddy leaf diseases. This
innovative method focuses on identifying distinct lesion features that play a crucial role
in the process. They have introduced a novel network for multi-scale contextual feature
extraction, which effectively captures both local and global contextual representations of
disease-related features across various scales and channels. Remarkably, their approach
achieved remarkable results, attaining an accuracy of 98.74% along with an impressive F1-
score of 98.18%. Gulzar et al. [16] employed five deep-learning models, including AlexNet,
VGG16, InceptionV3, MobileNetV3, and EfficientNet, for the classification of sunflower
disease detection. Their findings revealed that the EfficientNetB3 model achieved the high-
est accuracy, reaching 97.9%. Mamat et al. [17] implement an automatic image annotation
system to classify the ripeness of oil palm fruit. The approach utilizes deep learning in
combination with the You Only Look Once (YOLO) algorithm. The mean Average Precision
(mAP) achieved for oil palm fruit classification was 98.7%, while for other fruit, it reached
99.5%. The proposed technique effectively and accurately annotated a substantial number
of images.

All the aforementioned research endeavors employed traditional machine-learning
methodologies, wherein an aggregated server or computing device handled both the
storage of data and the training of the model. Consequently, the requirement emerged for
all data to be centralized before commencing the training process. Traditional ML methods
necessitate a model designed to learn from an extensive set of training samples, a task that
can prove challenging at times due to privacy concerns that hinder the collection of such
data [18], However, in the FL framework, models undergo individual training on local
sites, and updated weights are subsequently transmitted to a central server for aggregation.
As a consequence, the central server remains unaware of raw data, solely receiving model
characteristics such as parameters, gradients, and weights [19].

Antico et al. [20] presented a study showcasing how FL effectively addresses chal-
lenges while also emphasizing the obstacles that demand attention. Their research involved
the implementation of a federated learning framework utilizing five Convolutional Neural
Network (CNN) models. This framework was employed to accurately identify diseases
affecting Maize crops, all while maintaining data privacy across varied domains. Kabala
et al. [21] delved into the utilization of federated learning (FL) for the categorization of
crop diseases through image analysis. They devised and examined Convolutional Neu-
ral Network (CNN) models that incorporated attention mechanisms, including vision
transformers, within a federated learning framework, leveraging an accessible plantvil-
lage dataset platform, they determined that ResNet50 exhibited superior performance
in multiple experiments compared to alternative models. Additionally, ResNet50 was
identified as an ideal and well-suited choice within the context of a federated learning
scenario. Khullar and Singh. [22] Presented a federated framework termed f-FNC, aimed at
classifying fake news. This framework functions using a decentralized client-server struc-
ture, emphasizing the privacy of data for all interconnected clients or edge devices. The
methodology involves the application of LSTM, BiLSTM, CNN-LSTM, and CNN-BiLSTM
DL algorithms. These algorithms were employed on datasets exhibiting both IID and
non-IID characteristics. Through the adoption of a multiclient FL approach, the framework
achieved notable accuracy, ranging between 90% and 92%, for the classification of fake
news. Table 1 demonstrates the comparative study for rice-leaf disease image classification
using ML, DL, and FL techniques.
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Table 1. Comparative analysis of related technique.

Reference Study Area Approach Used Training Place Accuracy Privacy Support

[10] Rice Diseases DL Centralized F1-Score = 97.50% No

[11] Rice Diseases DL Centralized Accuracy = 94.3% No

[12] Rice Diseases DL Centralized
mean Average Precision
(mAP) = 0.93% and
0.91%

No

[13] Rice Diseases DL Centralized Accuracy = 96.4% NO

[14] Rice Diseases DL Centralized Accuracy = 95.3% NO

[15] Rice Diseases DL Centralized Accuracy = 98.7% NO

[16] Sunflower
Diseases DL Centralized Accuracy = 97/9% NO

[17] Oil Palm Fruit
Ripeness DL Centralized mean Average Precision

(mAP) = 98.7% NO

[20] Maize Diseases FL Distributed Accuracy = 96.87% YES

3. Methods and Materials

The conventional machine-learning technique collected and processed the data in
a centralized manner for rice-leaf disease prediction. The process involves gathering a
dataset of rice-leaf images, where each image is labeled with the corresponding disease
category.

The centralized nature of data collection and processing is the major disadvantage
of conventional machine-learning techniques [23]. Federated learning can mitigate this
issue by allowing models to be trained on data distributed across multiple clients or data
sources. This distributed nature enables a more diverse and representative dataset to be
used for training, as each client may have its own unique data distribution. By aggre-
gating the model updates from multiple clients, federated learning can capture a more
comprehensive understanding of the underlying data distribution and improve the model’s
generalization performance [24]. This section describes the techniques and computational
processes utilized in the research study. The F-TL framework, as proposed, comprises three
primary steps: (1) Data preprocessing involves resizing images to a 75 × 75 dimension and
converting them to grayscale. (2) Model training and analysis encompass the utilization of
CNN and eight transfer learning models, including DenseNet201, EfficientNetB3, Incep-
tionNetResNetV2, MobileNetV2, VGG16, VGG19, Xception, and ResNet152V2, to identify
the best-performing model. (3) The implementation of the federated learning approach
with both IID and non-IID datasets is executed to address concerns related to data privacy
and computational resource usage. The steps followed in the proposed approach is shown
in Figure 1. The paper introduces a federated transfer learning framework designed to
tackle concerns regarding data privacy and resource utilization in rice-leaf diseases image
classification.

3.1. Federated Learning

FL is an ML approach that permits the training of a shared model through multiple
decentralized devices or servers without the need to directly transfer or centralize their data.
In FL, instead of sending raw data to a central server for the training of the model, training
occurs directly on the devices or servers at a local level [25]. The models are then updated
collaboratively by aggregating the locally trained model parameters or gradients. The
fundamental principle of federated learning is to bring the model training process closer to
the data sources while preserving data privacy and security. Federated Learning ensures
data privacy by enabling devices to collectively improve a global model without disclosing
raw data. Instead of sharing data, it aggregates model updates, and privacy-enhancing
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methods such as differential privacy or secure aggregation bolster the protection of indi-
vidual data privacy, rendering it a dependable solution for privacy-conscious applications.
This is particularly valuable in scenarios where data are sensitive, distributed, or reside on
devices with limited resources or unreliable network connectivity [26]. The main principle
of FL is the minimize-loss function.
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In federated learning, the overall process typically consists of three main steps.

1. Training task and global model initialization: During this preliminary stage, the central
server outlines the training task and delineates the intended application. The server
generates an initial global model, by setting the hyperparameters and determining
the objective function i.e., represented by J(θ, D_i) for each client i. Subsequently, the
server disseminates this initialized global model to the chosen local participants who
will play a role in the training procedure.

The mathematical representation of the objective function is as follows:

J(θ, D_i) = ∑(L(f(θ, x), y)) (1)

where global model parameters represented by θ and D_i denote the local dataset for
each client. The objective function quantifies the difference between the model’s predicted
outputs and the actual labels for the local dataset. f(θ, x) represents the model’s prediction
for input x using the global model parameters θ, and y represents the true label. L denotes
the loss function.

2. Local model training: During the FL process, each participating client within the
network holds its own individual set of data. These clients perform local model
updates using their respective data. For each training round, select a subset of clients
or devices, C_i, where i = 1, 2,. . . , M, and M is the number of selected clients for the
round. For each selected client C_i, perform local model training using its local dataset
D_i. This involves optimizing the client’s local model parameters θ_i to minimize
the objective function J(θ_i, D_i). This can be achieved through iterative optimization
algorithms, such as stochastic gradient descent (SGD), represented as:

θ_i(k + 1) = θ_i(k) − η × ∇J(θ_i(k), D_i) (2)

Here, η is the learning rate, k denotes the iteration or epoch, and ∇J represents the
gradient of the objective function with respect to the client’s local model parameters θ_i.
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3. Aggregation of Local Model Updates: After local training, the local model updates
from the selected clients are aggregated to obtain an updated global model. This can
be achieved through techniques such as weighted averaging or simple averaging,
represented as:

θ_global(k + 1) = (1/N) ×∑(θ_i(k + 1)) (3)

Here, θ_global represents the updated global model parameters after aggregation.
The process of minimizing the training function in federated learning includes go-

ing through these steps across several training rounds. During each round, the global
model parameters are adjusted using the combined updates from local models, continuing
until convergence or a predetermined stopping condition is reached. Table 2 presents a
comparative analysis of federated learning with traditional approaches [27]. It emerges as
a promising approach, offering respectable learning accuracy while prioritizing privacy
preservation and maintaining minimal communication overhead.

Table 2. Comparative analysis of federated learning with other approaches.

Centralized Learning Centralized
Distributed Learning

Decentralized
Distributed Learning Federated Learning

Definition
Data are collected at
the central server and
processed.

Data are shared
between multiple
servers and processed
in parallel.

There is no central
server. Multiple clients
process the data locally
and then share training
updates between all
clients.

Multiple clients trained
their model with local data
and then shared this local
model with the
aggregation server.

Communication
Overhead

Large, as all data are
collected at the server.

Large, as raw data are
shared between
servers.

Large, as compared to
FL as it needed a
synchronization
between multiple
clients.

Smaller, as compared to
other approaches as no raw
data are shared between
clients and server.

Data
privacy

All data are aggregated
at a central server, so
data privacy is a
concern.

All data are shared
with a central server, so
data-privacy risk exists.

Data privacy is maintained through the avoidance of
raw data-sharing.

Accuracy High Moderate Moderate Low

3.2. Data Collection and Preprocessing

We collected a heterogeneous dataset for rice-leaf disease images. The dataset contains
a total of 5932 images. There exist 1584 images depicting bacterial leaf blight, 1440 im-
ages portraying blast, 1600 images illustrating brown spot, and 1308 images showcasing
tungro [28]. All images are saved in JPG format and properly labeled. Figure 2 shows
some samples of our collected dataset. The dataset was split into training and testing
subsets at an 80:20 proportion. To create a simulated federated environment for both IID
and non-IID datasets, the data were normalized to standard input values and shuffled to
prevent sequential bias. In non-IID scenarios, additional steps may involve careful data
partitioning to create balanced client datasets. Each client received an exclusive and varied
portion of the dataset. This allocation was structured to replicate a situation in which each
client holds a distinct dataset of their own, therefore enhancing the diversity within the
overarching federated learning environment.
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Each client performs local preprocessing on its assigned data partition. This prepro-
cessing step can involve various tasks, such as data cleaning, normalization, resizing, and
augmentation. The preprocessing procedures carried out by each client can vary based on
the characteristics of the data and the demands of the federated learning assignment [19].
To meet the requirements of the model, the dataset underwent preprocessing steps. The
images underwent resizing to achieve a standardized dimension of 75× 75 pixels, ensuring
uniformity in the input dimensions for the model. Additionally, the images were converted
to grayscale, which reduces the color channels from RGB to a single grayscale channel.
These preprocessing steps were performed to prepare the dataset for training the federated
learning model effectively.

3.3. Transfer Learning

A powerful deep-learning technique known as transfer learning leverages the insights
gained from pretrained models to address new and related tasks. It entails applying
a pretrained model—typically trained on a large dataset—to a task or dataset that is
different but related and that contains fewer labeled examples. This method achieves
high performance on the target task while using fewer computational resources and less
training time. This approach is adopted due to the extensive time and computational
resources required to train complex parameters in deep-learning architectures. Acquiring a
substantial labeled dataset for model training poses a significant challenge. Consequently,
transfer learning has emerged as a favored strategy and is naturally integrated into practical
applications. This involves utilizing a pretrained network, where only the parameters of
the final classification layers are retrained from scratch using the training set [29].

The current study uses CNN along with transfer learning models for rice-leaf disease
classification as shown in Figure 3. CNNs are a specialized type of deep neural network
architecture that effectively processes and analyzes visual data. By leveraging convolutional
layers, pooling layers, Dropout layers, and fully connected layers, CNNs can acquire
hierarchical representations and extract significant features from images [30,31]. Their
ability to capture local patterns and spatial relationships has made them a go-to choice for
image classification, object detection, and other computer vision tasks.
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Figure 3. Rice-leaf disease classification using CNN and transfer learning.

3.4. IID and Non-IID Data

In federated learning, the distribution of data among participating clients can be
categorized into two main types: IID (Independent and Identically Distributed) and non-
IID data. IID data pertains to a situation in which the distribution of data among the
clients is similar, and each client’s data are representative of the overall dataset. This
assumption simplifies the federated learning process as the global model can be trained on
local updates from clients without any additional considerations. On the other hand, non-
IID data describes a situation where the data-sharing among the clients is heterogeneous or
imbalanced. This implies that each client could have a distinct data arrangement, and the
data samples within each client might not accurately represent the entire dataset [24]. The
reasons for non-IID data can vary, such as variations in data collection sources, different
demographics of clients, or variations in local data distributions [32].

Figure 4 illustrates two scenarios: an IID dataset and a non-IID dataset distributed
among four Farmer’s sites.
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3.5. Resource Utilization

Resource utilization in federated learning refers to the efficient allocation and usage of
computational resources during the training process across multiple clients or devices. It
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aims to optimize resource utilization to achieve effective and scalable federated learning
while minimizing overhead and ensuring efficient communication. Efficient resource
utilization in federated learning is crucial to ensure scalability, reduced training time, and
effective utilization of computational resources across distributed clients and servers. By
optimizing resource allocation, minimizing communication overhead, and employing
efficient model optimization techniques, federated learning can achieve high performance
while utilizing resources efficiently [33]. To determine the cost efficiency of a system, one of
the measures taken into consideration is the efficient utilization of available resources. In
this case, the analysis focused on the utilization of CPU and RAM in both the traditional
system and the proposed system [22]. By examining the CPU and RAM utilization, the
goal was to assess how efficiently the system utilized these resources in comparison to the
proposed system.

3.6. Model Training

The model was implemented utilizing Keras and Tensorflow 2.0. The results were
executed on a laptop equipped with an Intel Core i7 CPU, 32 GB of RAM, and a solid-state
drive.in our proposed system we used CNN, DenseNet201, EfficientNetB3, Inception-
NetResNetV2, MobileNetV2, VGG16, VGG19, Xception, and ResNet152V2. To expedite
the training convergence process, we leveraged pretrained weights from these models,
which were originally trained on a vast dataset of over a million images sourced from the
ImageNet database. Although the fully connected layers in the model’s final section were
excluded, the convolution layers retained their default architecture without modification.
Table 3 summarizes the architecture of a Convolutional Neural Network (CNN) model,
showcasing the sequence of layers and their configurations used in our implementations.
It starts with the input layer, processing 75 × 75 × 3-dimensional images, followed by a
series of Conv2D layers employing 256, 128, and 64 filters, each with a 3 × 3 kernel size,
ReLU activation, ‘same’ padding, and He Uniform kernel initializer. MaxPooling2D layers
reduce spatial dimensions by 2 × 2 pooling, while Dropout layers introduce regularization
with a rate of 0.1. After the convolutional layers, a Flatten layer reshapes the data into a
1D vector. Finally, a Dense layer with a SoftMax activation serves as the output layer with
the number of neurons corresponding to the class count. This concise representation offers
insight into the CNN’s structure and critical parameters for image classification tasks.

Table 3. Convolutional neural network layer description.

Layer Type Parameters

1 Input (75 × 75 × 3) -

2 Convolutional (2D) Filters: 256, Kernel size: (3, 3)
Activation function (ReLU)

3 Maxpooling (2D) Pool size: (2, 2)

4 Dropout Dropout rate (0.1)

5 Convolutional (2D) Filters: 128, Kernel size: (3, 3)
Activation function (ReLU)

6 Maxpooling (2D) Pool size: (2, 2)

7 Dropout Dropout rate (0.1)

8 Convolutional (2D) Filters: 64, Kernelsize: (3, 3)
Activation function (ReLU)

9 Maxpooling (2D) Pool size: (2, 2)

10 Dropout Dropout rate (0.1)

11 Flatten -

12 Dense layer Activation: SoftMax
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4. Proposed Federated Transfer Learning (F-TL) Framework for Rice-Leaf
Disease Identification

Early detection of rice-leaf diseases is of utmost importance as they can significantly
impact crop yield and quality. Rice plants are susceptible to a range of diseases, including
those that affect the leaves. Identifying these diseases at an early stage is crucial for effective
disease management and minimizing the negative consequences on rice production [34].
The use of DL in rice-leaf disease identification has the potential to revolutionize agricul-
tural practices, enabling timely and accurate detection of diseases, precise management
strategies, and improved crop health monitoring. It can empower farmers with valuable
tools to mitigate the impact of diseases, optimize resource utilization, and enhance overall
crop productivity [35]. Deep learning, being a centralized approach, introduces concerns
regarding data privacy and communication costs. This is precisely why the federated
learning approach is employed. Federated learning mitigates these issues by enabling
decentralized training on distributed devices or servers [36]. In this section, the emphasis
is placed on the execution and evaluation of FL techniques for the classification of rice-leaf
diseases. The proposed work aims to analyze the performance of FL in accurately catego-
rizing different types of rice-leaf diseases. Figure 5 illustrates the suggested framework for
rice-leaf disease classification.
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Figure 5. Proposed transfer learning framework for classification of rice-leaf diseases. (a) The rice-leaf
disease dataset. (b) Image processing approach. (c) Model training with c1.CNN, c2–c9: pretrained
models. (d) Identified the best models (EfficientNetB3 and MobileNetV2) as they produced the best
results for classifying rice-leaf diseases. (e) Classification using Dense Neural Network. (f) Rice-leaf
disease classification.

First, the images from the provided dataset are processed using image processing
techniques such as resizing, sharpening, and converting to grayscale. Models are trained
using CNN and various transfer learning approaches. Various trained models were assessed
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by comparing their training and validation accuracies to identify the most proficient model.
According to our implementation results the analysis indicated that EfficientNetB3 and
MobileNetV2 models performed well. When setting up an FL system, a key obstacle
is guaranteeing the efficient execution of the learning model on edge devices, acting as
monitors in each zone. This necessitates the learning model to be of minimal weight,
enabling its practical functioning on these devices. The lightweight attribute of the model
assumes significant importance in the blueprint of any FL-driven system [37]. That is why,
for model training in decentralized systems, we used mobilenetV2 which is a lighter model
than EfficientNetB3 along with Dense Neural Network.

Figure 6 depicts the process of employing federated learning for the identification
of rice-leaf diseases, utilizing the EfficientNetB3 and MobileNetV2 models. The dataset
containing rice-leaf images is distributed to the models for training. This training occurs at
individual farmers’ sites, involving both IID and non-IID datasets. Upon the completion
of a training cycle, each farmer’s site shares its locally trained model with an aggregation
server. This aggregation server plays a pivotal role. It combines the models received from
various farmers’ sites and updates the model weights. The updated global model is then
communicated back to all the individual farmers’ sites. The federated learning approach
involves the participation of farmers as federated clients, each equipped with either the
EfficientNetB3 or MobileNetV2 transfer learning models. These models were selected due
to their proven success in past classification tasks. The process ensures that the models learn
from decentralized data sources while still benefiting from a shared, improved global model.
The proposed approach uses four clients and 5932 images to classify rice-leaf diseases in a
federated learning environment. Increasing the dataset or the number of clients does not
significantly impact our approach because the models are trained individually. Increasing
the dataset enhances model performance, but if we increase the number of clients, it will
mainly involve adding a bit more work to incorporate additional sites.
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5. Results Analysis

This section presents the final results of the implementation and evaluates the efficacy
of various models in detecting rice-leaf diseases. For each attempted model, training, and
validation accuracy, as well as loss, are provided to assess their classification performance.
Training accuracy, also known as categorical accuracy, measures how well the models
classify the training dataset. The loss function of the model is a crucial component of deep
neural networks [38]. It indicates the extent to which the models deviate from the actual
results, allowing us to determine how well the CNN models predict rice-leaf diseases
from the dataset. Following training and evaluation, the best-performing transfer learning
model(s) were selected according to their outcome values. The main objectives were to
achieve higher test accuracy and lower loss function of the model [39]. These metrics are
essential in gauging the effectiveness of the models in accurately identifying and classifying
rice-leaf diseases.

5.1. Classification Results of CNN and Transfer Learning Models

The provided Table 4 displays the training and validation accuracy as well as the
loss values for various CNN and eight transfer learning models, including DenseNet201,
EfficientNetB3, InceptionNetResNetV2, MobileNetV2, VGG16, VGG19, Xception, and
ResNet152V2. All models performed exceptionally well, achieving excellent results. Upon
reviewing the accuracy, it was found that DenseNet201, EfficientNetB3, MobileNetV2,
VGG16, and ResNet152V2 demonstrated the highest accuracy, reaching an impressive
100% and 99% training accuracy along with the lowest validation loss values. Conversely,
other models such as DenseNet201, VGG19, and Xception achieved strong results with
validation accuracy ranging from 98% to 99%, alongside training accuracy, and exhibited
validation loss values of 0.08 and 0.12. The CNN model achieved a validation accuracy of
90% and a training accuracy of 91%, with corresponding validation and training loss values
of 0.38 and 0.24. However, InceptionResNetV2, despite achieving high training accuracy at
99%, exhibited notably lower validation accuracy at 26%.

Table 4. Classification results of CNN and other transfer learning models.

CNN DN201 ENB3 IRV2 MNV2 RN152V2 VGG16 VGG19 Xception

Accuracy 91.82 98.47 99.39 99.05 99.60 99.37 99.22 99.03 99.73

Validation
Accuracy 90.56 99.10 100.00 26.64 100.00 100.00 100.00 99.33 98.65

Loss 0.24 0.10 0.11 0.13 0.09 0.11 0.12 0.13 0.06

Validation
Loss 0.38 0.08 0.06 - 0.08 0.09 0.09 0.12 0.12

5.2. Training, Validation Accuracy, and Model Loss of CNN and Transfer Learning Models

Figures 7 and 8 illustrate a comparison of training and validation accuracy as well as
training and validation loss for various models, including CNN and eight different transfer
learning architectures. Notably, the lines representing the models show a consistent upward
trend in every epoch, indicating that these models learned rapidly from the training data.
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Among the transfer learning architectures, DenseNet201, EfficientNetB3, and Mo-
bileNetV2, represented by the orange, green, and purple lines, respectively, achieved the
highest accuracy, reaching a remarkable 100% training accuracy. On the other hand, the
InceptionResNetV2 model, denoted by the red line, had the lowest validation accuracy,
only reaching 26%. This discrepancy in performance suggests that transfer learning mod-
els, particularly DenseNet201, EfficientNetB3, and MobileNetV2, demonstrated superior
learning capabilities compared to the traditional CNN architecture in this scenario. We
trained our model for 30 epochs because it yielded the best results during this period. The
applied callback ended the mobilenet model at 30 epochs. Our validation accuracy and
loss became stable after 30 epochs in mobilenet, indicating that further training might have
introduced overfitting or not provided significant improvements.

The analysis of the Training and Validation loss functions is presented in Figure 8. It
is evident that as the models underwent more training, their loss functions consistently
decreased. This indicates that the models effectively learned from the rice-leaf disease
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images during the training process. As the models underwent more training time, they
achieved reduced values for the loss functions [40]. The figures provide compelling evi-
dence that our models were accurately trained on the rice-leaf disease images. They were
able to strike a balance between capturing the intricacies of the data without being overly
simplistic (underfitting) or memorizing the training data without generalizing well (over-
fitting). Moreover, when these well-trained models were tested on the rice-leaf disease
dataset, they performed exceptionally well. They successfully detected rice-leaf diseases in
the test dataset with high precision and recall, showcasing their ability to generalize their
knowledge and make accurate predictions on previously unseen data.

5.3. Performance Evaluation of FL

After the previous comparison, it was noted that the transfer learning models DenseNet201,
EfficientNetB3, MobileNetV2, ResNet152V2, and VGG16 performed very well. From these
models, we chose EfficienetNetB3 and MobileNetV2 for implementing a federated learning
approach. The dataset was made available to numerous local machines for training, and at the
server end, the trained models from each machine were combined and shared. In federated
architecture, there was a single server and four clients, each of which had its own set of datasets.
Data are kept on the local machines themselves in federated learning. Each local machine used
the number of epochs to train its model using EfficientNetB3 and mobileNetV2 as well as the
Dense Neural Network, and it shared its trained models with the aggregation server. The
federated average (FedAvg) function was employed on the server side to train the accumulated
models obtained from diverse clients. The resultant global model was distributed among the
linked clients. Upon receiving the global model, individual clients retrained their local models
using the global model as the standard model. The distributed dataset consisted of two types:
IID (Identical and Independent) and non-IID.

Table 5 and Figures 9 and 10 showcase the outcomes of employing the FL approach
with IID and non-IID datasets using EfficientNetB3 and MobileNetV2 models. For the
IID dataset, EfficientNetB3 achieves a remarkable training and validation accuracy of 99%,
while MobileNetV2 records a training accuracy of 98% and a validation accuracy of 90%.
Conversely, the non-IID dataset yields even more promising results: EfficientNetB3 attains
100% training accuracy and 99% validation accuracy, while MobileNetV2 demonstrates a
training accuracy of 99% and a validation accuracy of 97%.

Table 5. FL results with IID and non-IID dataset(s).

Baseline Model(s) EfficientNetB3 MobileNetV2

Train/Valid Data Accuracy Loss Precision Recall Accuracy Loss Precision Recall

Training IID 99.75 0.1 99.75 100 98.65 0.47 96.29 99.82

Training Non-IID 100 0.1 100 100 99.93 0.17 99.93 100

Validation IID 99.47 0.13 99.83 99.18 90.96 0.63 93.77 88.2

Validation Non-IID 99.41 0.13 99.74 99.16 97.95 0.22 98.77 97.35
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5.4. Performance Evaluation with Resource Utilization

Effective utilization of resources within federated learning entails the careful distri-
bution of computational power, memory, and bandwidth among participating devices
or servers. This optimization process guarantees productive model training while up-
holding device limitations, curtailing energy use, overseeing data privacy, and managing
parallelism and scheduling intricacies.

The overarching goal of this optimization is to attain model convergence while con-
sidering each device’s distinct capacities and limitations, thus facilitating collaborative
training without the need to centralize sensitive data. In the proposed F-TL system, an anal-
ysis was conducted on the utilization of CPU, RAM, and GPU for the EfficientNetB3 and
MobilenetV2 models. The analysis of resource utilization is presented in Figures 11 and 12.
As depicted in Figure 11, the CPU utilization within the EfficientNetB3 model exhibited
fluctuations ranging from 10% to 20%, while RAM and GPU usage remained consistently
between 90% and 100%. Conversely, in the context of a non-IID dataset, CPU utilization
spanned from 40% to 60%, showcasing an improvement compared to the IID dataset, and
RAM usage spanned from 80% to 100%. GPU utilization approached 100%. Shifting to
the MobilenetV2 model, as illustrated in Figure 12, the IID dataset demonstrated CPU
utilization levels ranging from 20% to 40%, coupled with RAM utilization persistently
between 95% and 100%. For the non-IID dataset, CPU utilization extended from 20% to
60%, RAM usage reached up to 80%, and GPU utilization ranged from 95% to 100%. The
results indicate that MobileNetV2 displayed more efficient resource utilization compared
to EfficientNetB3.
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6. Ethical Implications

Several significant ethical issues are brought up by the growing use of AI in agriculture.
A sustainable and morally sound future for the agricultural industry depends on taking
data privacy, algorithmic bias, and the equitable distribution of benefits into account as
AI technologies become increasingly important in optimizing farming practices, resource
allocation, and decision-making. Fair and unbiased models have the potential to enhance
the precision of crop disease forecasts, yield projections, and sustainable agricultural
methods, leading to overall advancements in crop production and the well-being of farming
communities. Additionally, ensuring fair access to these technologies can help narrow the
digital gap, promoting innovation and cooperation among farmers and researchers [41,42].
Through the elimination of biases and the promotion of fairness in machine-learning
models applied in agriculture, we grant farming communities the ability to access advanced
technology and valuable information resources [43,44] Latin America and South Asia are
characterized by their abundant agricultural variety, with small-scale farmers serving as
pivotal contributors to food production in these regions. The consideration of bias and
fairness in machine-learning research related to tropical crops in Latin America presents
substantial social benefits [45]. Ethical issues related to our study are:

i. Data privacy: Federated learning is a privacy-preserving machine-learning tech-
nique in which models are trained on decentralized data sources without the ne-
cessity to centralize or share raw data. This approach is particularly pertinent in
sensitive sectors such as agriculture. Agricultural data can yield valuable insights
but may also encompass personally identifiable information or sensitive business
data. To safeguard data and privacy while harnessing the advantages of feder-
ated learning in agriculture, it is imperative to establish suitable security measures
and enhance awareness among stakeholders in the agricultural sector regarding
potential risks.

ii. Bias and fairness: In the framework of federated transfer learning (F-TL) for rice-
leaf disease classification in agriculture, addressing concerns related to bias and
fairness is of utmost importance to ensure that the model performs equitably and
accurately. To achieve fairness, strategies for data sampling and distribution are
thoughtfully designed to maintain representativeness among different clients. Data
preprocessing techniques are consistently applied and utilized to mitigate bias
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during the model training process. Furthermore, privacy-preserving techniques are
integrated to enhance fairness.

iii. Deployment in Resource-Constrained Areas: Deploying federated learning models
in resource-constrained areas presents a multitude of challenges. Limited internet
connectivity, inadequate infrastructure, device diversity, data quality issues, and the
high cost of implementation can hinder accessibility and affordability. Furthermore,
ensuring data privacy and security in such contexts can be complex, and there
may be a lack of skills and training to set up and maintain federated learning
systems. The availability of training data and adherence to local regulations also
pose significant hurdles. Addressing these challenges requires a context-specific
approach, collaboration with local stakeholders, and a commitment to inclusivity
and equity to prevent disparities in access to technology and its benefits.

iv. Data source and ownership: The dataset of rice-leaf disease images used in this
study was sourced from open sources available on the Mendeley database [28]. The
dataset owner collected some images from the fields of Odisha, while others were
obtained from the Agricultural and Insect Pest Database.

7. Discussion

The efficiency of the proposed federated transfer learning (F-TL) for the rice-leaf dis-
ease classification system involved an examination of resource utilization and encompassed
both an Independent and Identically Distributed (IID) dataset, as well as a randomly dis-
tributed non-IID database, as illustrated in Figures 7–12. The results from Figures 7 and 8
demonstrate that the transfer learning models, namely EfficientNetB3 and MobilenetV2,
outperformed the other suggested models. Both EfficientNetB3 and MobileNetV2 attained
impressive training accuracy levels of 99%, with validation accuracy scores reaching a per-
fect 100%. EfficientNetB3 had a training loss of 0.1, while MobileNetV2’s training loss was
slightly lower at 0.09. As a result, these two models were chosen as the baseline models for
the federated learning paradigm. The training and evaluation accuracies in the federated
learning approach are depicted in Figures 9 and 10. When considering the IID dataset, the
training accuracy achieved using EfficientNetB3 was 99%, accompanied by a loss value of
0.1. For MobilenetV2, the training accuracy was 98%, with a loss value of 0.4. However,
in the case of the non-IID dataset, the training accuracy for EfficientNetB3 reached 100%,
while for MobilenetV2, it was 90%. The corresponding loss values were 0.1 for Efficient-
NetB3 and 0.6 for MobilenetV2.Turning to the evaluated accuracy, EfficientNetB3 achieved
a 99% accuracy with a loss value of 0.1 for IID and non-IID datasets. For MobilenetV2, the
evaluated accuracy was 90% with a loss value of 0.6 for the IID dataset, and for the non-IID
dataset, the accuracy was 97% with a loss value of 0.2.

These superior results underscore the efficacy of the proposed model while preserving
data integrity. However, the implementation of a federated learning system faces a notewor-
thy challenge: ensuring the operational efficiency of the learning model on edge devices,
which function as monitors for distinct zones. This necessitates a lightweight model design
to enable effective functioning on these devices. This lightweight characteristic is pivotal in
shaping FL-based architectures [37,46]. Thus, we chose a Dense Neural Network design,
employing a 3-layer model with density in its structure [47]. This choice was driven by the
intention to veer away from resource-intensive models, ensuring compatibility within edge
device limitations. Consequently, we advocate for the adoption of MobileNetV2 due to its
lightweight nature. MobileNetV2 is a streamlined CNN architecture curated for efficient
deployment on mobile and embedded devices. Its efficiency stems from strategies like
depth-wise separable convolutions, inverted residuals, and linear bottlenecks, collectively
reducing computations while maintaining information flow. The model’s adaptability via
width multiplier and resolution reducer parameters allows control over complexity and
resources. Ultimately, MobileNetV2 strikes a harmonious balance between size, speed, and
accuracy, rendering it an optimal choice for resource-constrained edge devices and applica-
tions. Furthermore, it was deduced from Figures 10 and 11 that MobileNetV2 exhibited
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notably efficient CPU utilization, RAM usage, and GPU consumption in comparison to
EfficientNetB3. The comparison between the proposed F-TL framework under Independent
and Identically Distributed (IID) and non-IID scenarios and conventional distributed deep
learning is displayed in Table 6.

Table 6. Performance analysis.

Performance
Parameters

Federated
Learning
EfficientNetB3
(IID)

Federated
Learning
EfficientNetB3
(Non-IID)

Federated
Learning
MobileNetV2
(IID)

Federated
Learning
MobileNetV2
(Non-IID)

Traditional
Transfer Learning

Validation
Accuracy 99% 99% 98% 90% 99–100%

Validation Loss 0.1 0.1 0.4 0.6 0.06–0.08

CPU Utilization 10–20% 40–60% 20–40% 20–60% -

RAM Utilization 90–100% 80–100% 95–100% 80% -

GPU Utilization 90–100% Upto 100% 95–100% 95–100% -

Data Privacy Yes Yes Yes Yes No

Data Processing Federated Weights Federated Weights Federated Weights Federated Weights Dataset

Table 6 presents the performance of both models, demonstrating their competence.
However, we opt for MobileNetV2 in the federated learning environment due to its
lightweight design, which aligns with the requirements of the federated learning ap-
proach. This choice is motivated by the need for models that can efficiently operate in a
decentralized setup, where computational resources may be limited, and data privacy is
a priority. MobileNetV2’s efficiency and suitability make it a preferred candidate for this
specific context, ensuring that federated learning can be conducted effectively and securely.

8. Conclusions and Future Work

Machine-learning methods have demonstrated their effectiveness in various applica-
tions, including predicting diseases using images of agricultural crops. This study aims
to assess how federated learning (FL) can address the issue of the data-privacy gap that
is present in centralized machine-learning approaches. Therefore, in this manuscript,
we implement the federated transfer learning (F-TL) framework to classify rice-leaf dis-
eases. First, we implement and analyzed the CNN and transfer learning models such as
DenseNet201, EfficientNetB3, InceptionResNetV2, MobileNetV2, VGG16, VGG19, Xception,
ResNet152V2 and select the two best models EfficientNetB3 and MobilenetV2 based on
validation and training accuracy and loss. EfficientNetB3 and MobileNetV2 both achieved
high training accuracy at 99%, and their validation accuracy reached 100%. The training
loss for EfficientNetB3 was 0.1, while for MobileNetV2, it was 0.09. In terms of validation
loss, both models exhibited low values, with EfficientNetB3 at 0.06 and MobileNetV2 at
0.08, respectively. Further FL was executed using EfficientNetB3 and MobilenetV2 with IID
and non-IID datasets for the classification of rice-leaf diseases. According to the evaluation
of the federated transfer learning system, both the EfficientNetB3 and MobileNetV2 models
demonstrated strong performance. However, given the requirement for a lightweight
model in federated learning technology, we opted for the MobileNetV2 transfer learning
model to classify rice-leaf diseases. This choice allows us to maintain data and computa-
tional resources efficiently.

The outcomes evident from the contrastive analysis displayed in Table 6 make it
evident that the newly introduced federated transfer learning (F-TL) framework yielded
significantly improved results in validation accuracy and validation losses, all without
necessitating any additional resources. The primary standout aspect of the proposed F-TL
framework revolved around data privacy, in conjunction with similar accuracy, reduced



Agronomy 2023, 13, 2483 23 of 25

losses, and minimal processing resource that was overlooked within the conventional DL
framework. To sum up, the suggested economical approach for rice-leaf disease classifica-
tion using federated learning proved notably superior and secure compared to conventional
frameworks. However, a constraint of this proposal appears to be the alignment of ex-
isting federated learning programming libraries, potentially requiring heightened efforts.
In subsequent endeavors, the suggested methodology could be expanded through the
incorporation of hyperparameter optimization and innovative averaging techniques to
enhance effectiveness. Furthermore, to tackle privacy apprehensions in the federated setup,
encryption methods could be applied during the exchange in trained models.
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