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Hybrid similarity relation based 
mutual information for feature 
selection in intuitionistic fuzzy 
rough framework and its 
applications
Anoop Kumar Tiwari 1, Rajat Saini 2*, Abhigyan Nath 3, Phool Singh 4 & Mohd Asif Shah 5,6,7*

Fuzzy rough entropy established in the notion of fuzzy rough set theory, which has been effectively 
and efficiently applied for feature selection to handle the uncertainty in real-valued datasets. Further, 
Fuzzy rough mutual information has been presented by integrating information entropy with 
fuzzy rough set to measure the importance of features. However, none of the methods till date can 
handle noise, uncertainty and vagueness simultaneously due to both judgement and identification, 
which lead to degrade the overall performances of the learning algorithms with the increment in 
the number of mixed valued conditional features. In the current study, these issues are tackled by 
presenting a novel intuitionistic fuzzy (IF) assisted mutual information concept along with IF granular 
structure. Initially, a hybrid IF similarity relation is introduced. Based on this relation, an IF granular 
structure is introduced. Then, IF rough conditional and joint entropies are established. Further, 
mutual information based on these concepts are discussed. Next, mathematical theorems are proved 
to demonstrate the validity of the given notions. Thereafter, significance of the features subset is 
computed by using this mutual information, and corresponding feature selection is suggested to 
delete the irrelevant and redundant features. The current approach effectively handles noise and 
subsequent uncertainty in both nominal and mixed data (including both nominal and category 
variables). Moreover, comprehensive experimental performances are evaluated on real-valued 
benchmark datasets to demonstrate the practical validation and effectiveness of the addressed 
technique. Finally, an application of the proposed method is exhibited to improve the prediction of 
phospholipidosis positive molecules. RF(h2o) produces the most effective results till date based on our 
proposed methodology with sensitivity, accuracy, specificity, MCC, and AUC of 86.7%, 90.1%, 93.0% , 
0.808, and 0.922 respectively.

Keywords Rough set, Granular structure, Intuitionisitic fuzzy relation, Intuitionistic Fuzzy Set, Mutual 
information

The current trend of accumulation of huge amount of data in different databases pertaining to different domains 
has given rise to the unique opportunity of knowledge discovery/extraction using a plethora of data mining 
 techniques1. These  techniques2 can be explored in three ways namely knowledge types, architecture types, and 
analysis types along with their powerful applications in distinct research and practical domains to solve the 
interesting real-world problems. Data Mining plays a vital role in establishing smart agriculture application 
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tools to accomplish real-time data analysis with large volume of data. Data mining  tasks3 offer essential hidden 
patterns, correlation, and knowledge from the various applications of bioinformatics datasets, viscous dissipa-
tion, and activation  energy4,5. Machine learning methods provide a set of techniques that can be used to create 
prediction/discriminatory models and subsequent knowledge extraction, which may facilitate in decision making 
or for better understanding of the concerned  domain6,7. The “curse of dimensionality” plagues the effective-
ness of various machine learning algorithms, but the development of dimensionality reduction  methods8 have 
considerably impacted in reducing the effects of redundancy present in high dimensional datasets. In the fields 
of data mining, signal processing, biomedical imaging, agriculture, industrial engineering, and bioinformatics, 
researchers frequently face obstacles due to “curse of dimensionality” as it leads to enlarge the cost of data stor-
age and extensive  computing9. Moreover, this issue directly affects both the efficiency and accuracy to cope with 
different  problems10. Dimensionality reduction process can easily eliminate redundancy and/or irrelevancy, 
noise, minimize the complexity of machine learning methods, and enhance the overall accuracy of classification 
process, and can be identified as an essential and key phase in pattern recognition  scheme11.

Redundant features affects negatively to the various machine learning algorithms mostly resulting in high 
computation time and less accurate predictive  models12. It also complicates the model interpretation. Feature 
reduction methods can be used to mitigate the negative effects of high dimensional data by facilitating the selec-
tion of low dimensional non-redundant subset of features. Feature reduction methods have been found to be 
very effective in a wide variety of research areas, including biological  domain13,14.

Most popular methods of feature reduction algorithms fall under filter and wrapper methods. While wrap-
per methods are classifier dependent for the evaluation of  features15,16, filter methods use classifier independent 
feature selection criterion and are generally less computationally  intensive17.

Previously rough set  theory18,19 have been applied very promisingly in feature  selection20. Although classi-
cal rough set theory based feature selection  methods21,22 can only be used on discrete features, which makes it 
mandatory for discretization of continuous  features23,24. There is a fair chance of information loss during the 
process of  discretization25.

The combination of  fuzzy26 and rough  sets27 effectively deals with uncertainty, vague and incomplete data. 
Rough set theory has been competently employed to produce the most informative features from a dataset con-
sisted of discretized conditional attribute values. This informative feature subset is produced from the original 
features set with minimum information loss, and termed as reduct. Rough set deals with vagueness, whilst fuzzy 
set handles uncertainty. Fuzzy set theory ensures that real-valued datasets can be handled without any further 
discretization. By combining fuzzy set with rough set, information loss due to discretization can be effectively 
avoided as fuzzy rough set (FRS) can handle real-valued information system (dataset) directly. FRS can be 
effectively used for mitigating the effects of information loss as a consequence of discretization of features by 
using fuzzy similarity measures to tackle the continuous feature  values28. Broadly, FRS aided dimensionality 
 reduction29 methods can be categorized into two  types30,31 which are based on discernibility matrix and depend-
ency  function32. Discernibility matrix assisted approaches provide numerous reduct  sets33, whilst dependency 
function leads to a single feature  subset34.

In FRS aided dimensionality reduction theory, a similarity relation is incorporated between the data points to 
construct lower and upper approximations. By taking union of the computed lower approximations, we obtain the 
positive region of decision. Here, the wider is the obtained membership to positive region; greater is the plausibil-
ity of instance belonging to an individual  category35. Based on dependency function, we compute significance of 
a subset of features. Moreover, the conditional entropy measure is employed in to calculate reduct set for both 
homogeneous and heterogeneous information system  respectively36–38. However, it may lead to misclassification 
of samples when there is a large degree of imbricate between diverse categories of data. Also, it can cope with 
only with membership of data point to a set, where uncertainty cannot be handled due to both identification and 
justification. Hence, there is an essential and utmost requirement of distinct kind of mathematical model that 
can both fit data, and at the same moment it can tackle uncertainty emerging due to  identification39.

Intuitionistic fuzzy (IF)  set40,41 is step ahead that offers two degree of freedom by taking into consideration 
both membership and non-membership, which can cope with uncertainty that emerges both in judgement 
and  identification42. It has been successfully exercised in decision  making43, image segmentation, rule genera-
tion, and machine  learning44,45. In the recent few years, the assemblage of  IF46 and rough  sets47 are employed to 
establish numerous IF rough set  models48,49 to effectively handle later uncertainty and vagueness in the  data50,51. 
Huang et al.52 proposed a ranking based model for selecting the neighbourhood of  objects53,54 and presented 
a Dominant IF Decision Table (DIFDT)55 by using discernibility matrix and assisted discernibility  function23. 
They developed IFRS based reduction technique for knowledge extraction from given information system. 
Huang et al.56 presented the IF multigranulation rough set (IFMGRS) model and studied different reduction 
techniques to eliminate redundant granules by introducing reducts for three different types of IFMGRSs in 
2014. Tan et al.57 used the concept of granular structure to introduce an IF rough set  model58 and employed it 
for feature selection. Tiwari et al.59 discussed an IF tolerance relation, which was applied to establish IF rough 
set aided feature selection. Shreevastava et al.60 addressed different similarity relation assisted technique to deal 
with both supervised and semi-supervised data. Tiwari et al.61–63 and Shreevastava et al.64,65 elaborated different 
issues related to feature selection technique and presented several lower and upper approximations by using 
various mathematical ideas. A feature selection to track multiple samples was presented by Li et al.66 by using IF 
clustering notion. IF quantifier was introduced by Singh et al.67 to construct IF rough set model and its applica-
tion to feature reduction. Jain et al.39 tried to minimize noise in the data by using the concept of IF granules and 
incorporated different types of IF relations to introduce feature selection both robust and non-robust. From the 
recent published articles, it is conspicuous that the use of IF set theory assisted notion for feature selection is 
still in its incipient stage. Uncertainty is measured in terms of entropy and has its origin in the telecommunica-
tions  domain68,69. Mutual information (MI)70 aims to measure the relationship between feature and the target. 
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Further, it can be stated that mutual information (MI)71 is an interesting quantity that evaluates the dependence 
between conditional features and has been repeatedly employed to solve an extensive diverse problems. Feature 
selection techniques can be converted into effective one by incorporating information entropy estimation notion 
for attribute extraction based on  MI72 and the conventional feature selection approaches on the basis of class 
seperability. Broadly MI measures the amount of information that can be deduced from a random variable/vector 
about another random variable/vector73,74.

Max-relevance-minimum-redundancy  method75,76 is based on the concept of MI and has been relevant in 
a number of previous studies. It deduces the target MI with minimum  redundancy10,77 among the selected fea-
tures. A number of MI based feature selection algorithms have been in practice in various  domains72,74. Fuzzy 
rough entropy was effectively used to avoid the limitation of rough entropy to handle the real-valued feature 
 data78,79, but fuzzy rough entropy leads to lessening monotonically with the rise of the dimensions of data, 
which can promptly reflect the roughness of information systems. This issue was resolved up to certain extent 
by presenting the extension of fuzzy rough based information entropy with conditional entropy, joint entropy, 
and mutual information. However, none of the works has handled the noise, vagueness, and uncertainty due 
to both identification and judgement simultaneously, which is frequently appearing in the current era of high-
dimensional datasets due to advancement of internet based technologies. In the current study, a new IFRS based 
joint entropy, conditional entropy, and mutual information based on a new IF hybrid relation and IF granular 
structure to handle the different issues such as later uncertainty, vagueness, and imprecision available in the 
large volume of high dimensional datasets that may degrade the performances of learning algorithms. Firstly, a 
novel hybrid IF similarity relation is presented. Secondly, joint and conditional entropies are established in IF 
rough framework. Thirdly, IF rough mutual information is introduced. Then, lower and upper approximations 
are computed by using presented hybrid IF similarity relation. Thereafter, dependency function is computed 
by using the defined lower approximation. Next, significance of feature subset is computed by using IF rough 
mutual information. Further, a heuristic feature selection algorithm is discussed by using both significance 
and dependency function. IF rough mutual information are employed to measure the later uncertainty and the 
correlation between features and class. Next, this algorithm is applied on benchmark datasets, and the reduct is 
computed. The effectiveness of the proposed algorithm is further explained by measuring the performances of 
seven widely used learning techniques on reduced data produced by our method and four existing approaches. 
Finally, the proposed method is applied to enhance the overall prediction to discriminate the  phsopholipidosis80 
positive (PL+) and phsopholipidosis negative (PL-) molecules. Phospholipidosis is a condition when there is an 
abnormal buildup of phospholipids in various tissues due to the usage of cationic amphiphilic pharmaceuticals. 
Phsopholipidosis (PPL) is a reversible condition, and phospholipidosis levels revert to normal once the cationic 
amphiphilic medications are  stopped81. Computational prediction of possible inducing characteristics utilizing 
structure-activity relationship (SAR) can enhance the traditional high throughput screening and drug develop-
ment pipelines because to its rapidity and cost-effectiveness82.The main contributions of the entire study can be 
highlighted as follows:

Major contributions of the study

• This study establishes a new hybrid IF similarity relation that can deal with both nominal and numerical 
features.

• An IF granular structure is presented to handle the noise in mixed data.
• IF rough entropy, joint entropy, and conditional entropy is given to handle the later uncertainty with infor-

mation entropy.
• Further, the idea of an If rough mutual information is discussed.
• Moreover, this If rough mutual information is employed to evaluate both uncertainty and the correlation 

between conditional feature and decision class.
• Then, a feature selection approach is introduced by using this IF rough mutual information concept.
• Finally, a framework is designed based on our proposed methods to enhance the prediction of phospholipi-

dosis positive molecules.

Theoretical background
In this segment, few essential basic notions about IF set, IF relation, IF information system, and mutual informa-
tion is reviewed. These concepts can be explained/described as follows:

Definition 2.1 IF set An IF set X in U is well defined collection of samples/objects having the form

where, U portrays the set of data points/samples/objects. Moreover, µX : U → [0, 1] along with 
νX : U → [0, 1] , which holds the essential condition 0 ≤ µX(x)+ νX(x) ≤ 1,∀x ∈ U . Here, µX(x) and νX(x) 
are depicted as the imperative membership and non-membership grades for a given element x ∈ U . Further, 
πX(x) = 1− µX(x)− νX(x) portrays the hesitancy grade of x ∈ U . Additionally, we have 0 ≤ πX(x) ≤ 1 , ∀x ∈ 
U . Thus, the obtained ordered pair < µX , νX > is depicted as a requisite IF value.

Definition 2.2 IF information system An IF information system (IFIS) can be exemplified by a quadruple ( U
,C,VIF , IF) , where, we have VIF , which is comprised of all IF values. Further, we have a mapping, which can be 
portrayed by IF :  U ×C → VIF , in such a way that IF(x, a) =< µX(x), νX(x) >,∀x ∈ U , ∀a ∈ C.

(1)X =
{

< x,µX(x), νX(x) >

∣

∣

∣

∣

∀x ∈ U

}
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Definition 2.3 IF relation Let R(xi , xj) = (µX(xi , xj), νX(xi , xj)) be an IF binary relation induced on the system. 
R(xi , xj) is IF similarity relation if it satisfies : 

(1) Reflexivity: For any given i and j, 

(2) Symmetry: For any given i and j, 

∀xi , xj ∈ U

Definition 2.4 Mutual information Mutual information (MI) can be expresserd based on broadely depicted 
entropy and well-known conditional entropy by using the following given equation

where, P ⊆ C , H(D) and H(D|P) depict information entropy and conditional entropy respectively. Decrease of 
uncertainty about D gernerated by P is evaluated by mutual information and its inverse is computed in the same 
way. Mutual information is employed to calculate either volume of information of P enclosed in D or D included 
in P. H(P) is amount of information contained in P about itself which means I(P;P)=H(P)

Definition 2.5 Significance of conditional feature For a given IFIS and B ⊆ C , if we have an arbitrary condi-
tional dimension/feature b ∈ (C − B) , then its significance can be illustrated by the following equation

and B = φ , SGF(b,B,D) = H(D)−H(D|b) = I(b;D) , which is a MI between conditional dimension/feature b 
and decision feature D. If the calculated value of SGF(b, B, D) is greater, then it insinuates that under the known 
condition of feature subset B, dimension b is found to be more potential for the available decision feature D.

Proposed work
In the underway segment, we demonstrate a hybrid IF similarity relation, granular structure, and MI. Based on 
these concepts, a feature selection procedure is introduced to discard irrelevancy and redundancy available in 
the high-dimensional information systems.

IF Relation: For all a ∈ C , and xi , xj ∈ U , the hybrid similarity Rh
a

(

xi , xj
)

 between xi and xj with respect to 
any given a can be defined by:

where, ζa = 1− Rh
a(xi , xj) is depicted as an adaptive IF radius. The IF relation and IF relation matrix enticed by 

a ∈ U are Rh
a and MRha

=
(

rij
)

n×n
 , where rij = Rh

a

(

xi , xj
)

.
If we have C1 = {a1, a2, . . . , a|C1} ⊆ C , then,

Proof 

(1) Reflexive: If we take a case when xi = xj , then, proposed relation follows only two cases, which are first and 
third. Moreover, other two cases are rejected by default.

  Case 1. if a(xi) = a(xj) where a is a nominal , then we obtain Rh
a(xi , xj)=Rh

a(xi , xi)=1
  Case 2.  If  a  is  numerical  and |µa(xi)− µa(xj)| ≤ ζa  and |νa(xi)− νa(xj)| > ζa , then 

Rh
a

(

xi , xj
)

= 1− 1
n2

n
∑

j=1

n
∑

i=1

(|µa(xj)− µa(xi)||νa(xj)− νa(xi)|)

  Now,if we put xi = xj , we get the folllowing results:

(2)µR(xi , xj) = 1 and νR(xi , xj) = 0

(3)µR(xi , xj) = µR(xj , xi) and νR(xi , xj) = νR(xj , xi)

(4)I(P;D) = H(D)−H(D|P)

(5)SGF(b,B,D) = I(B ∪ b;D)− I(B;D) = H(D|B)−H(D|B ∪ b)

(6)Rh
a(xi , xj) =















































1, a(xi) = a(xj) and a is nominal;
0, a(xi) �= a(xj) and a is nominal;

1− 1
n2

n
�

i=1

n
�

j=1

(|µa(xi)− µa(xj)|

×|νa(xi)− νa(xj)|), a is numerical and |µa(xi)− µa(xj)| ≤ ζa
|νa(xi)− νa(xj)| > ζa;

0, a is numerical and |µa(xi)− µa(xj)| > ζa
|νa(xi)− νa(xj)| ≤ ζa;

(7)Rh
C1

(

xi , xj
)

=
|C1|
∧

l=1

Rh
a

(

xi , xj
)
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  Rh
a(xi , xi) = 1− 1

n2

n
∑

i=1

(|µa(xi)− µa(xi)||νa(xi)− νa(xi)|)

  Rh
a(xi , xi) = 1 , therefore, we get Rh

a

(

xi , xj
)

 as refelxive
(2) Symmetry:

Now, it can be identified that

So , Rh
a

(

xi , xj
)

 is symmetric
Since, Rh

a

(

xi , xj
)

 is both reflexive and symmetric. Hence, we can obviously conclude that Rh
a

(

xi , xj
)

 is an IF 
similarity relation.   �

Granular structure
The IF granule ∀xi ∈ U is elicited by C1 as follows:

,
further,

∀a ∈ P is subset of C and ǫ ∈ [0, 1]
By using IF granulation structure, rough entropy can be discussed into IF rough framework, and IF rough 

entropy of a feature can be described by:

Definition 3.1 The IF rough entropy of C1 can be given as:

It is obvious to identify that 0 ≤ ET(C1) ≤ log2 n iff ∀xi , xj ∈ U,Rh
C1
(xi , xj) = 1,

∣

∣

∣
[xi]RhC1

∣

∣

∣
= n, so ET(C1) = log2 n . 

In this suit all the sample pairs are found to be identical. Therefore, the obtained granulation space is found to 
be the largest at this time, on the contrary ∀xi �= xj R

h
C1
(xi , xj) = 0, which indicates 

∣

∣

∣
[xi]RhC1

∣

∣

∣
= 1 . Therefore, 

ET(C1) = log2 n = 0 . Now,the granulation space is instituated as the smallest one.

Definition 3.2 The IF joint rough entropy of C1 and C2 can be expressed by :

(8)Rh
a

�

xi , xj
�

=















































1, a(xi) = a(xj) and a is nominal;
0, a(xi) �= a(xj) and a is nominal;

1− 1
n2

n
�

i=1

n
�

j=1

(|µa(xi)− µa(xj)|

×|νa(xi)− νa(xj)|), a is numerical and |µa(xi)− µa(xj)| ≤ ζa
|νa(xi)− νa(xj)| > ζa;

0, a is numerical and |µa(xi)− µa(xj)| > ζa
|νa(xi)− νa(xj)| ≤ ζa;

(9)Rh
a

�

xi , xj
�

=















































1, a(xj) = a(xi) and a is nominal;
0, a(xj) �= a(xi) and a is nominal;

1− 1
n2

n
�

j=1

n
�

i=1

(|µa(xj)− µa(xi)|

×|νa(xj)− νa(xi)|), a is numerical and |µa(xj)− µa(xi)| ≤ ζa
|νa(xj)− νa(xi)| > ζa;

0, a is numerical and |µa(xj)− µa(xi)| > ζa
|νa(xj)− νa(xi)| ≤ ζa;

Rh
a

(

xi , xj
)

= Rh
a

(

xj , xi
)

(10)µ[Xi]εp (xj) =







0, µRp
h(xi , xj) < ǫ

xj ∈ U

µRp
h(xi , xj), µRp

h(xi , xj) ≥ ǫ

(11)ν[Xi]ǫp (xj) =







0, νRph(xi , xj) < ǫ

xj ∈ U

νRph(xi , xj), νRph(xi , xj) ≥ ǫ

(12)ET(C1) = ET
(

Rh
C1

)

= −
1

n

n
∑

i=1

log2
1

∣

∣

∣
[xi]RhC1

∣

∣

∣
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Definition 3.3 The IF rough conditional entropy of C2 relative to C1 can be addressed by the following equation :

Definition 3.4 The IF rough mutual information of C2 and C1 can be computed as follows;

Definition 3.5 The IF rough mutual information between D and C1 can be illustrated by the equation:

By using this equation, IF rough mutual information I(d;C1) considers as the correlation between C1 and deci-
sion feature D . If the obtained value of IF rough mutual information between D and C2 is higher, then, we get 
more correlated value between C1 and D.

Proposition 3.6 If C1 ⊆ C2 ⊆ C , then Rh
C1

⊇ Rh
C2

Proof As discussed by the aforesaid definition 3.1, Rh
c1
(xi , xj) =

|C1|
∧

l=1

Rh
C1
(xi , xj) , Rh

c2
(xi , xj) =

|C2|
∧

l=1

Rh
C2
(xi , xj) and 

|C1| ≤ |C2| ⇒ Rh
c2
(xi , xj) ⊆ Rh

C1
(xi , xj) ⇒ Rh

C1
⊇ Rh

C2

Now, Rh
C1

⊇ Rh
C2

⇐⇒ ∀xi , xj ∈ U;
Rh
C1
(xi , xj) ≥ Rh

C2
(xi , xj)   �

Proposition 3.7 If Rh
C1

⊆ Rh
C2

 , then ET
(

Rh
C1

)

≤ ET
(

Rh
C2

)

.

Proof For a given Rh
C1

⊆ Rh
C2

 , we have ∀xi , xj ∈ U . Now, we can simply write Rh
C1
(xi , xj) ≤ Rh

c2
(xi , xj) 

⇒
∣

∣

∣
[xi]RhC1

∣

∣

∣
≤

∣

∣

∣
[xi]RhC2

∣

∣

∣

Therefore, we detect the result by using the definition 3.1 as ET
(

Rh
C1

)

≤ ET
(

Rh
C2

)

 .   �

Proposition 3.8 IF C1 ⊆ C2 ⊆ C then ET(C1) ≥ ET(C2)

Proof For any given C1 ⊆ C2 , we have the following expression based on the Proposition 3.6,
Rh
C1

⊇ Rh
c2

 . Moreover, by using Proposition 3.7, we can conclude the following result:
ET(C1) ≥ ET(C2)

Proposition 3.8 depcits that IF rough entropy reduces when feature subset accquire larger size, whilst,it grows 
in case of features subset procures smaller size . It can be easily observed that IF rough entropy definition can 
evaluate the uncertainty of IF approximation space.   �

Proposition 3.9 Suppose C1,C2 ⊆ C , then ET(C1,C2) ≤ min[ET(C1),ET(C2)]

Proof Since ∀xi ∈ U [xi]RhC1
∩ [xi]RhC2

⊆ [xi]RhC1
 and [xi]RhC1

∩ [xi]RhC2
⊆ [xi]RhC2

 ⇒
∣

∣

∣
[xi]RhC1

∩ [xi]RhC2

∣

∣

∣
≤

∣

∣

∣
[xi]RhC1

∣

∣

∣
 

and 
∣

∣

∣
[xi]RhC1

∩ [xi]RhC2

∣

∣

∣
≤

∣

∣

∣
[xi]RhC2

∣

∣

∣
. By Proposition 3.2, we have ET(C1,C2) ≤ ET(C1) and ET(C1,C2) ≤ ET(C2). 

⇒ ET(C1,C2) ≤ min(ET(C1),ET(C2)).   �

Proposition 3.10 IF C1 ⊆ C2 ⊆ C , then ET(C1,C2) = ET(C2)

Proof Since C1 ⊆ C2 , hence, by using the Proposition 3.6, we get
Rh
C1

⊇ Rh
C2

⇒ [x]RhC1
⊇ [x]RhC2

⇒ [x]RhC1
∩ [x]RhC2

= [x]RhC2
 So, ET(C1,C2) = ET(C2)   �

(13)ET(C1,C2) = ET
(

Rh
C1∪C2

)

= −
1

n

n
∑

i=1

log2
1

∣

∣

∣
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According to the Proposition 3.10, when there are two IF granules produced by two potential feature subsets 
respectively, then IF joint rough entropy of the calculated two potential feature subsets is equal to the IF rough 
entropy of the feature subsets corresponding to relatively smaller IF granulation.

Proposition 3.11 ET(C2|C1) = ET(C2,C1)− ET(C1).
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Proposition 3.12 If C1 ⊆ C2 ⊆ C , then ET(C2|C1) = 0
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IF rough mutual information can’t only be used to measure the uncertainty of IF approximation space but 
also can be applied to evaluate the correlation between conditional feature and decision class.

Proposition 3.13 I(C1;C2) = ET(C2)− ET(C2|C1) = ET(C1)− ET(C1|C2)
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Definition 3.15 For a given IFIS, let P be subset of conditional dimensions/features(C).Thereafter,∀Y ∈ (C − P) 
is found to be the significance as �(Y , P,D) , which can be further given by:

Y = φ,�(T , P,D) , and can be outlined as, �(Y ,D) = ET(D)− ET(D|Y) = I(Y;D) , which depicts the MI 
of IF conditional feature T and the decision feature D. If the value of �(T , P,D) increases, then IF conditional 
dimension/feature T is obtained to be more relevant for a given decision feature D.

(17)�(Y , P,D) = I(P ∪ Y;D)− I(Y;D)
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Algorithm 1.  Feature selection alogrithm based on IF mutual information (FSIFMI)

Experimentation
In the current experimental section, the performance of the proposed method is evaluated and compared with 
the existing fuzzy and IF sets assisted techniques. All the pre-processing concepts are implemented in Matlab 
 202383 and learning algorithms are implemented in  WEKA84. Firstly, fuzzification and intuitionistic fuzzification 
of the real valued data is performed by using the methods proposed by Jensen et al.6 and Tan et al.57 respectively. 
Secondly, the reduced datasets are obtained by the previously presented approaches. Thirdly, different threshold 
parameters values are adjusted for our established method to produce the reduct. Then, reduced datasets are 
generated by discarding the noise to the maximum level. The reduct is computed by changing the value of ξ from 
0.1 to 0.8 in small interval, and the value of ξ providing the maximum performance measures in the experiment 
is selected as the final one. To perform the entire experimental study, the following setup is exercised to conduct 
the comprehensive experiments:

Dataset
Ten benchmark datasets are taken from widely discussed University of California from Irvine based Machine 
Learning  Repository85 to conduct the entire experiments. The required details of these datasets are outlined in 
Table 1. The dimension and size of these datasets depict that these are small to large datasets as number of data 
points range from 62 to 4521 and features range from 9 to 10000.

Table 1.  Dataset characteristics and reduct size.

Dataset Instances Features

 Reduct size

FSFrMI GIFRFS TIFRFS FRFS IFRFSMI

Bank marketing 4521 16 10 12 15 15 14

Breast cancer 699 9 8 9 9 8 8

Dbworld-bodies 64 4702 97 128 187 88 8

Arcene 200 10000 453 287 303 268 169

Colon 62 32 24 27 21 18 8

Gsar-biodegradation 1055 41 31 36 29 33 25

Fertility diagnosis 100 9 8 6 8 7 7

Thyroid- hypothyroid 3163 25 11 17 19 15 12

Heart disease 294 13 11 10 10 12 9

Wdbc 569 21 17 14 18 10 8
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Classifiers
Seven different learning  methods86 are applied to demonstrate the performance measures on the reduced datasets 
obtained from different feature selection techniques. RealAdaBoost with random forest as base classifier (RARF) 
and IBK are employed for the objective of evaluating overall classification accuracies with standard deviation by 
using diverse validation techniques for ten benchmark reduced datasets. Moreover, we applied naive bayes, SMO, 
IBK, RARF, PART, JRip,J48, and random forest (RF) to evaluate the performances based on various evaluation 
metrics for the reduced Nath et al.87 dataset for evaluating the effectiveness of the proposed technique when 
compared to existing method for discriminating PL+ and PL- molecules.

Dataset split: Feature selection process is carried out over complete information system. After production of 
reduced datasets, individual learning algorithm is evaluated based on percentage split of 66:34 and kd-fold cross 
validation. In percentage split technique, dataset is randomly divided into two parts, where training is done on 
66% of the entire dataset, while 34% of the dataset is employed to perform testing. In kd-fold cross validation, 
whole dataset is randomly separated into kd subsets, where kd-1 parts form training set, whilst one is employed 
to form testing set. After kd such repetitions, average value of different evaluation metrics is considered as final 
performance. In the current study, the value of kd is taken as 10.

Performance evaluation metrics
The prediction performance measures of the seven learning algorithms from different categories are evaluated 
using both broadly elaborated threshold-dependent and threshold- independent assessment parameters. These 
assessment parameters are ascertained based on the calculated values of true positive (TRP), true negative 
(TRN), false positive (FLP), and false negative (FLN). TRP is computed number of correctly predicted positive 
data points; TRN is calculated number of correctly predicted negative data points. FLN is representation for the 
number of incorrectly predicted positive samples, while FLP is depiction for the number of incorrectly predicted 
negative samples. We employ different parameters namely: Sensitivity (Sn), Specificity (Sp), Accuracy (Ac), AUC, 
and MCC to measure the overall performances of the individual learning algorithms. Now, these evaluation 
parameters can be mathematically discussed as follows:

Sn: This calculates the overall percentage of correctly classified PPL+, which is specified by:

Sp: This includes the efficacious percentage of correctly classified PPL−, which is produced by:

Ac: The percentage of required overall correctly classified PPL+ and PPL− , which can be stated as:

AUC: It is applied to observe the important and required area under the receiver operating characteristic curve 
(ROC), the more tends its count towards 1, the better will be the obtained predictor.

MCC: Mathew’s correlation coefficient is a very much potential and the most awaited parameters, which is 
computed with the help of following equation:

This parameter is applied not only to clarify the effectiveness of the binary classifications but also to justify its 
efficiency. An MCC value tends towards 1 to specify that the predictor is the promising one.

Results and discussion
The details of the ten benchmark datasets along with the reduct as produced by four existing as well as presented 
methods is depicted in Table 1. Real-valued datasets are converted into fuzzy and IF values by using widely dis-
cussed Jensen et al.6 and Tan et al.57 concepts. Entire reduction process is accomplished over complete data by 
using both fuzzy and IF aided techniques.  FSFrMI72,  GIFRFS57,  TIFRFS59, and  FRFS6 are the earlier efficacious 
and effective techniques, which are incorporated to perform the comparative results (Table 2). Our proposed 
method produced reduct set range from 7 to 169, where reduct size is smaller when compared to reduct size by 
earlier approaches, except bank marketing and thyroid-hypothyroid datasets. For bank marketing dataset, FSFrM 
and GIFRFS resulted in relatively less size data, whilst smaller size is produced by FSFrMI and FRFS for thyroid-
hypothyroid and fertility diagnosis datasets respectively in contrast with IFRFSMI. Moreover, for breast cancer, 
FSFrM and FRFS provide the similar size, whilst, for fertility diagnosis dataset FRFS produce similar size of the 
data when compared to the results presented by proposed method. From the recorded reduct in Table 1, it can 
be observed that our proposed technique is generating more reduced dimensions for most of the cases related 
to all the ten datasets rather than recently established powerful methods. We have presented the visualization of 
reduction process based on different methods in Fig. 1, which clearly indicates that our proposed method pro-
duces high percentage of overall feature elimination with the increment of total conditional features. Then, IBK 
and RARF are chosen to show the learning performances in terms of standard deviation with overall accuracies 
for the reduced datasets generated by four existing and our proposed techniques, where 10-fold cross validation 

(18)Sn =
TRP

(TRP + FLN)
× 100

(19)Sp =
TRN

(TRN + FLP)
× 100

(20)Ac =
TRP + TRN

(TRP + FLN + TRN + FLP)
× 100

(21)MCC =
TRP × TRN − FLN × FLP

√
((TRP + FLP)(TRP + FLN)(TRN + FLN)(TRN + FLP)

× 100
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is employed to avoid the overfitting. These results are reported in Table 2, where the ranks are outlined in the 
superscript of all the individual results. From the results available in Table 2, it is obvious that our proposed 
method is dispensing the better results in contrast with the results of other previous approaches regardless of 
reduced data produced by previous approaches, except the outcome for breast cancer and heart disease data-
sets. For breast cancer dataset, TIFRFS presents better outcome when compared to IFRFSMI by using both IBK 
and RARF, while, for heart disease dataset TIFRFS gave the best result with RARF. For colon and heart disease 
datasets, GIFRFS and TIFRFS leads to identical results as compared to IFRFSMI based results by IBK. Similar 
results are presented by RARF for fertility diagnosis and wdbc datasets based on the reduced datasets produced 
by FSFrMI and GIFRFS respectively in contrast with proposed method based reduced datasets. Entire results 
can be visualized by Figs. 2 and 3. These figures depict that proposed concept are very much effective for both 
low and high-dimensional datasets as the reduced datasets produced by this method always leads to increment 
of overall accuracies of the different learning algorithms regardless of their dimensionality size.

Our assumptions to verify the significance of our proposed method are as follows:
Null Hypothesis: All the employed methods are equivalent.
Alternate Hypothesis: There is significant difference among the employed methods.
Two widely accepted testing approaches namely Freidman  test88 and Bonferoni Dunn  test89 are applied to 

validate the significance of the presented method. Freidman test is used to perform comparative study of multiple 
models. Further, Bonferoni Dunn is employed to obtain which method is significantly different from proposed 
technique. The null hypothesis can be rejected at α% level of significance if the values between their average ranks 
is higher rather than critical distance value. In the current study, average ranks by both IBK and RARF based 
on our proposed method are recorded as the minimum value (Table II). These values are clearly depicting the 
superiority of our established models. Moreover, F-statistics computed values based on IFRFSMI are obtained 
larger for both IBK and RARF when compared to F-tabular value. F-statistics computed values for IBK and 
RARF are 23.09 and 32.38 (Table II), whilst F-tabular value is 2.634 (F(4,36) = 2.634 at 5% level of significance). 
Therefore, based on Dunn Test our proposed method is found as significantly different.

Case study: an application to discriminate PL+ and PL‑ molecules
One of the prime applications of machine learning based methods in cheminformatics is the reduction of enor-
mous chemical space with respect to some property of interest. The reduced chemical space can then be validated 
using wet lab based experiments, thus making the fidelity of machine learning methods of outmost importance.

Figure 1.  Comparison of overall reduction for different daasets by previous and proposed methods.
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One of the hallmarks of phospholipidosis is the accumulation of phospholipids in the various types of tissues 
for eg. kidneys, eyes etc. mostly caused by cationic amphiphilic molecules. Highly accurate machine learning 
prediction models can facilitate in screening of phospholipidosis inducing compounds in early stages of drug 
discovery workflows, thereby reducing the cost and time associated with wet lab based experiments (Fig. 4).

The present methodology can open new possibilities for further research in early screening of phospholipi-
dosis inducing molecules.

Now, our proposed approach is applied to Nath et al.87 dataset to produce the effective reduced form by 
minimizing noise, uncertainty, imprecision available in the data along with removal of redundant, and irrelevant 
attributes. Thereafter, seven classifiers from different categories are investigated to evaluate their performances 
over this reduced dataset based on sensitivity, AUC, Specificity, MCC, and accuracy, which have reported in 
Tables 3, 4, 5 and 6. Moreover, for original and reduced data, a commodious approach to represent theoverall 
performance measures of all the seven classifiers at the best decision threshold can be given by Receiver Operating 
Characteristic (ROC) curve, which furnishes a visual explanation of the classifiers performance. Figures 5 and 
6 depict ROC curves for original and reduced dataset based on 10-fold cross validation. These figures indicate 
that RARF algorithm achieved the best AUC in comparison to all the other algorithms(> 0.89).

To compare with the performance evaluation metrics for the phospholipidosis dataset, we used the same 
package in R (https://https://cran.r-project.org/web/packages/h2o/index.html)as used in the original work (Nath 
et al.87). We used a grid search strategy to obtain the best hyperparameters for the random forest algorithm 
Hyperpaprametersntrees = c(20,50,100,500),max depth = c(20,40,60,80),sample rate = c(0.2,1,0.01). Further, we 
used the same of features (JOELib+Structural alerts), which are calculated using the ChemMine tools webserver 
(https://chemminetools.ucr.edu/). The dataset consisted of 102 phospholipidosis inducing compounds (positive 
samples) and 83 phospholipidosis non-inducing compounds (negative samples), thus constituting a total of 185 
molecules. Schematic representation for entire process is given by Fig. 7. In the current methodology, we start 
the process with a dataset consisted of phospholipidosis positive molecules and phospholipidosis negative mol-
ecules. Then, descriptor generator converts the initial data into target data. Further, SMOTE is applied to obtain 
the balanced dataset. Next, this dataset is converted into intuitionistic fuzzy information system by using Tan 
et al.57 approach. Thereafter, our proposed feature subset selection method is applied to remove noise, vagueness, 

Table 2.  Comparison of overall accuracies with standard deviation for the datasets produced by FSFrMI 
GIFRFS, TIFRFS, FRFS, and IFRFSMI by using 10-fold cross validation.

Dataset Classifier FSFrMI GIFRFS TIFRFS FRFS IFRFSMI

Bank IBK 84.75±2.882 83.79±3.223 83.01±2.194 81.21±2.225 86.28±1.291

Marketing RARF 87.23±3.113 86.18±2.334 87.59±1.212 83.18±1.995 89.37±0.861

Breast IBK 81.11±0.765 86.24±3.833 96.11±2.111 84.29±2.894 95.67±2.432

Cancer RARF 89.34±4.124 93.34±3.023 97.12±1.951 88.66±3.225 96.04±2.362

Dbworld IBK 89.16±7.274 90.86±9.253 91.89±7.232 88.89±8.235 94.74±8.281

Bodies RARF 90.25±6.885 92.19±7.233 93.55±7.892 90.55±7.694 97.21±6.001

Arcene
IBK 71.47±10.253 70.72±9.014 72.09±10.122 71.09±10.444 74.00±9.531

RARF 75.69±7.553 74.69±8.654 77.55±9.282 72.35±9.685 83.45±9.091

Colon
IBK 75.88±6.184 78.12±5.842.5 79.06±5.191 73.06±7.885 78.12±5.842.5

RARF 79.21±3.294 80.41±2.993 81.17±3.332 77.17±3.335 82.81±12.551

Qsarbio-degradation
IBK 78.27±4.334 77.69±3.873 79.51±5.112 75.87±4.455 82.09±12.551

RARF 80.28±5.194 81.33±4.663 82.06±3.772 79.16±4.785 86.74±3.041

Fertility diagnosis IBK 83.21±9.882 81.41±10.184 83.17±9.993 80.17±9.875 84.30±9.981

Thyroid- hypothyroid

RARF 87.20±6.681.5 83.69±7.654 85.23±5.773 82.87±6.455 87.20±6.681.5

IBK 92.33±3.223 91.23±2.664 95.16±2.772 88.33±2.345 97.87±0.691

RARF 95.21±2.883 93.41±1.184 97.17±2.552 92.17±1.875 99.11±0.461

Heart disease
IBK 79.26±1.033 78.46±2.284 81.16±1.991.5 76.25±2.995 81.16±1.991.5

RARF 81.27±1.793 80.38±1.234 83.69±1.181 78.98±1.555 82.74±1.502

Wdbc
IBK 95.68±0.282 93.46±1.284 95.16±1.873 89.33±2.655 96.06±0.111

RARF 96.41±2.284 97.73±2.991.5 97.69±3.193 91.26±3.595 97.73±2.991.5

Average IBK 3.20 3.55 2.15 4.80 1.30

Rank RARF 3.45 3.35 2.00 4.90 1.30

F statistics IBK 23.09

RARF 32.38
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irrelevancy, redundancy, and uncertainty to obtain reduced dataset. Moreover, several classifiers are used to 
discriminate positive and negative classes. Finally, RARF is identified as the best performer.

The performance evaluation metrics for the current method and the previous ensemble based method are 
presented in Table 7. The dataset preprocessing introduced in the current work resulted in enhanced performance 
evaluation metrics for the RF algorithm in comparison to the previously published results. Notably a 2 percent 
rise on overall accuracy is observed. As the dataset is slightly imbalanced, a rise in MCC for the current method 
proves the usefulness of the dataset preprocessing step. The ROC plot for the RF(h2o) model is presented in Fig. 4. 
An AUC value of 0.922 indicates an acceptable prediction model for phospholipidosis inducing molecules. In 
the end of the entire study, the list of abrreviations, signs, and symbols are presented in Table 8.

Ethical approval
This article does not contain any studies with human participants or animals performed by any of the authors.

Conclusion
Dimensionality reduction broadly aims to obtain a feature subset from existing original feature set by using 
certain powerful evaluation criterion. Since dimensionality reduction can produce efficient feature subset, where 
feature selection has found as an interesting central technique for data pre-processing in various beneficial and 
interesting data mining tasks. Conventional fuzzy rough set frequently incorporates dependency function as an 
evaluation criterion of feature subset selection. However, this method only maintained the maximum member-
ship grade of a data point to one decision class and found to be unable in discarding later uncertainty and noise 
up to certain extent, which cannot characterize the classification error. To avoid these issues, we presented a novel 
intuitionistic fuzzy aided technique, where feature selection method is established by integrating information 
entropy with IF rough set concept.

Figure 2.  Comparison of average accuracies by IBK for different reduced datasets as produced by existing and 
proposed methods.
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• Initially, we established a hybrid IF similarity relation, which is further employed to present a novel IF rough 
joint and conditional entropies.

• Then, IF granular structure was introduced based on the proposed hybrid similarity relation.
• Thereafter, IF rough set model was described by using the aforesaid relation.
• Based on these entropies and granular structure, we suggested a mutual information idea to compute the 

significance of the feature subset for a decision class.
• Next, mathematical theorems are validated to justify the correctness of the proposed ideas.

Figure 3.  Comparison of average accuracies by RARF for different reduced datasets as produced by existing 
and proposed methods.

Table 3.  Performance evaluation metrics of eight classifiers for original dataset consisting of PL+ and PL- 
molecules based on 10-fold cross validation.

Classifiers Sensitivity Specificity Accuracy AUC MCC

Davie Bayes 75.5 81.4 78.4 0.828 0.570

SMO 81.4 85.3 83.3 0.833 0.667

IBK 82.4 80.4 81.4 0.806 0.628

RARF 81.4 85.3 83.3 0.908 0.667

PART 75.5 73.5 74.5 0.718 0.490

JRip 66.7 69.6 68.1 0.723 0.363

RandomForest 83.3 82.4 82.8 0.893 0.657

J48 74.5 74.5 74.5 0.769 0.510
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Table 4.  Performance evaluation metrics of eight classifiers for reduced dataset generated by proposed 
approach consisting of PL+ and PL- molecules based on 10-fold cross validation.

Classifiers Sensitivity Specificity Accuracy AUC MCC

Navie Bayes 85.3 70.6 77.9 0.846 0.565

SMO 81.4 68.6 75.0 0.750 0.504

IBK 87.3 87.3 87.3 0.811 0.745

RARF 88.2 84.3 86.3 0.925 0.726

PART 71.6 72.5 72.1 0.778 0.441

JRip 74.5 80.4 77.5 0.811 0.550

RandomForest 84.3 84.3 84.3 0.915 0.686

J48 74.5 75.5 75.0 0.752 0.500

Table 5.  Performance evaluation metrics of eight classifiers for original dataset consisting of PL+ and PL- 
molecules based on percentage split of 66:34.

Classifiers Sensitivity Specificity Accuracy AUC MCC

Navie Bayes 70.3 84.4 76.8 0.831 0.548

SMO 70.3 87.5 78.3 0.789 0.581

IBK 75.7 84.4 79.7 0.789 0.599

RARF 78.4 81.3 79.7 0.893 0.595

PART 56.8 81.3 68.1 0.700 0.388

JRip 78.4 65.6 72.5 0.733 0.445

RandomForest 75.7 81.3 78.3 0.868 0.568

J48 70.3 71.9 71.0 0.735 0.420

Table 6.  Performance evaluation metrics of eight classifiers for reduced dataset generated by proposed 
approach consisting of PL+ and PL- molecules based on percentage split of 66:34.

Classifiers Sensitivity Specificity Accuracy AUC MCC

Navie Bayes 86.5 71.9 79.7 0.851 0.593

SMO 73.0 81.3 76.8 0.771 0.541

IBK 81.1 84.4 82.6 0.834 0.653

RARF 91.9 87.5 89.9 0.903 0.796

PART 78.4 84.4 81.2 0.890 0.626

LRip 54.1 93.8 72.5 0.735 0.512

RandomForest 81.1 87.5 84.1 0.904 0.684

J48 83.8 87.5 85.5 0.842 0.711

Table 7.  Perfomance evaluation metrics for the RF algorithm with previous method.

Classifiers Sensitivity Specificity Accuracy AUC MCC

RF(h2o) 86.7 93.0 90.1 0.922 0.808

Nath et.  al87 86.2 90.1 88.2 0.896 0.725
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Figure 4.  ROC for the RF algorithm on phospholipidosis dataset.

Figure 5.  ROC curve for orginal dataset for various machine learing algorithms.
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• By using the significance notion a heuristic IF rough feature selection algorithm is represented. Then, we 
apply this heuristic algorithm on ten benchmark datasets to illustrate extensive experiments.

• Finally, proposed method is successfully employed to enhance the prediction performance for identifying 
PL+ and PL- molecules.

For dbworld-bodies dataset, our method has eliminated 99.83% features. Moreover, performance measures 
of learning algorithms were evaluated based on the reduced data produced by four existing and our proposed 
methods, where results clearly indicate superiority of the proposed technique. For thyroid- hypothyroid dataset, 
RARF has reported an accuracy of 99.11% and standard deviation of 0.46% for IFRFSMI based reduced dataset. 
For the discrimination of PL+ and PL- molecules, the best sensitivity is achieved based on 66:34 validation tech-
nique with 91.9%. The best overall result was obtained by RF(h2o) with sensitivity, specificity, accuracy, AUC, 
and MCC of 86.7%, 93.0%, 90.1%, 0.922, and 0.808 respectively.

The advantages of our proposed methodology can be outlined as bellow:

• This study presents a new hybrid similarity relation that can handle mixed data in intuitionistic fuzzy frame-
work.

• Adaptive radius is computed in the recursive way from relation itself, which ensures the information loss.
• IF granular structure is implemented to deal with noise in mixed data as it is based on our proposed hybrid 

relation.

Figure 6.  ROC curve for reduced dataset by various machine learing algorithms.
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• IF rough mutual information is implemented to cope with noise and later uncertainty based on the proposed 
IF granular structure.

• This study presents a new methodology to discriminate PL+ and PL- molecules in an efficient and efficacious 
way.

In future, the proposed hybrid similarity relation can be improved by providing a more effective definition of 
adaptive radius. Further, inner and outer significance can be computed by assembling mutual information in 
robust IF rough framework to establish efficient approach to calculate the correlation between feature subset 
and class.

Figure 7.  Schematic representation for generating classifier for phospholipidosis.
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Data availability
The data supporting this study’s findings are available from the corresponding author (Mohd Asif Shah) upon 
reasonable request.
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