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Abstract: Shannon’s entropy is a fundamental concept in information theory that quantifies the
uncertainty or information in a random variable or data set. This article addresses the estimation
of Shannon’s entropy for the Maxwell lifetime model based on progressively first-failure-censored
data from both classical and Bayesian points of view. In the classical perspective, the entropy is
estimated using maximum likelihood estimation and bootstrap methods. For Bayesian estimation,
two approximation techniques, including the Tierney-Kadane (T-K) approximation and the Markov
Chain Monte Carlo (MCMC) method, are used to compute the Bayes estimate of Shannon’s entropy
under the linear exponential (LINEX) loss function. We also obtained the highest posterior density
(HPD) credible interval of Shannon’s entropy using the MCMC technique. A Monte Carlo simulation
study is performed to investigate the performance of the estimation procedures and methodologies
studied in this manuscript. A numerical example is used to illustrate the methodologies. This paper
aims to provide practical values in applied statistics, especially in the areas of reliability and lifetime
data analysis.

Keywords: Maxwell distribution; Shannon’s entropy; bootstrap confidence intervals; bayesian
estimation; T-K approximation

1. Introduction

Information theory offers a feasible way for quantifying uncertainty and reciprocal
information of random variables in which entropy plays a significant role. Shannon Shan-
non [1] established the concept of statistical entropy, namely Shannon’s entropy, which
measures the average level of missing information in a random source, as a fundamental
idea in information theory. The relationship between Shannon’s entropy and the informa-
tion available in classical and quantum systems is well established. In addition, statistical
mechanics interpretations can be made through Shannon’s entropy. Shannon’s entropy is
typically used in statistical mechanics to represent the entropy for classical systems with
configurations taken from canonical ensembles. Moreover, Shannon’s entropy is useful in
many disciplines, such as computer science, molecular biology, hydrology, and meteorol-
ogy, to solve different scientific problems involving uncertainties in random quantities. For
example, molecular biologists use the principle of Shannon’s entropy to study trends in
gene sequences. Recently, Saraiva [2] exemplified Shannon’s entropy in biological diversity
and student migration studies and provided an intuitive introduction to Shannon’s entropy.
For more details, one may refer to the excellent monograph by Cover [3] on the theory
and implications of entropy with applications in various disciplines. Shannon’s entropy is
one of the most widely used entropies in statistics and information theory.
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Suppose a random variable X has probability density function (pdf) f (·), the Shan-
non’s entropy of the random variable X, is given by

H( f ) = E[− ln f (X)] = −
∞∫
−∞

f (x) ln( f (x))dx. (1)

Please note that the entropy in Equation (1) is a continuous entropy, and the measurement
is relative to the coordinate system ([1] Section 20). In other words, the continuous entropy
is not invariant under a variable change in general. However, the entropy based on the
variable change can be expressed as the original entropy less the expected logarithm of
the Jacobian of the variable change. Recently, researchers studied parametric statistical
inference for measuring the entropy under different lifetime models based on complete
or censored data. For example, entropy for several shifted exponential populations was
studied by Kayal and Kumar [4]. Another author Cho et al. [5] studied the entropy
estimation for Rayleigh distribution under doubly generalized Type-II hybrid censored
data. Another paper Du et al. [6] developed statistical inference for the information
entropy of the log-logistic distribution based on progressively Type-I interval-censored
data, and Liu and Gui [7] investigated the entropy estimation for Lomax distribution based
on generalized progressively hybrid censoring. Another paper Yu et al. [8] developed
statistical inference on Shannon’s entropy for inverse Weibull distribution based on
progressively first-failure censored data.

The Maxwell–Boltzmann distribution, popularly known as the Maxwell distribution
(MWD), was initially developed by James Clerk Maxwell and Ludwig Boltzmann in the
late 1800s as a distribution of velocities in a gas at a specific temperature. In this paper,
we consider the MWD due to its simplicity and nice physical interpretation. For further
information about the reliability characteristics of the MWD, see Bekker and Roux [9]. The
MWD is frequently employed in physics and chemistry for several reasons, including
the fact that the MWD can be used to describe several important gas properties, such as
pressure and diffusion. The MWD has become a well-known lifespan model in recent
years. Many researchers studied this statistical distribution in depth for modeling lifespan
data. As Bekker and Roux [9] pointed out, the MWD is useful in life-testing and reliability
studies because of its desirable properties, especially for situations where the assumption
of a constant failure rate is not realistic. Recently, in the reliability report for Gallium
Nitride (GaN) power devices by Pozo et al. [10], they found that the Maxwell–Boltzmann
distribution fits the hot carrier distribution in the high energy regime tails well.

The classical estimation of the model parameters of MWD has been studied by [11,12]
for complete and censored samples, respectively. Following this, Krishna and Malik [13]
studied the MWD under progressive censoring, Krishna et al. [14] discussed the MWD
under randomly censored data, Tomer and Panwar [15] developed an estimation procedure
for the MWD based on Type-I progressive hybrid censored data, Panwar and Tomer [16]
discussed robust Bayesian analysis for the MWD, and Kumari et al. [17] discussed classical
and Bayesian estimation for the MWD based on adaptive progressive Type-II censored
data.

The pdf and cumulative distribution function (cdf), respectively, for a random variable
X that follows the Maxwell distribution (MWD) with parameter λ (denoted as MWD(λ))
are given by

f (x; λ) =
4√
π

1
λ3/2 x2e−

x2
λ ; 0 < x < ∞, λ > 0, (2)

F(x; λ) = Γ
(

x2

λ
,

3
2

)
; 0 < x < ∞, λ > 0. (3)
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where Γ(x, b) = 1
Γ(b)

x∫
0

e−ttb−1dt is the incomplete gamma ratio. The MWD has an increas-

ing failure rate function [13]. The MWD is a special case of many generalized distribu-
tions, such as the generalized gamma distribution [18], generalized Rayleigh distribution
([19] p.452), and generalized Weibull distribution [20].

Assume that the lifetime of the items of interest follow the MWD with pdf in Equation (2),
from Equation (1), the Shannon’s entropy is given by

H( f ) =
1
2

ln λ + γ +
1
2

ln π − 1
2

de f .
= H(λ) say, (4)

where γ = 0.5772156649 . . . is the Euler–Mascheconi constant.
Censoring often occurs in reliability engineering or life testing procedures when the

actual lifetimes of the items of interest are not observed; for instance, when subjects or
experimental units are taken out of the experiments intentionally or accidentally. Pre-
planned censoring saves time and costs for experiments, and it has been applied in various
fields, including but not limited to engineering, survival analysis, clinical trials, medical
research, etc. Several censoring schemes, such as Type-I and Type-II censoring schemes
(also known as time and item censoring schemes, respectively), are often utilized in life-
testing experiments. When products or items have a long lifespan, a life-testing experiment
may require a long time to complete, even with Type-I or Type-II censoring. For these
situations, Balasooriya [21] established the first-failure censoring plan that provides a time
and cost-saving strategy for life-testing experiments. In this censoring scheme, an exper-
imenter examines k× n units by grouping them into n groups, each having k items, and
then conducts all the tests jointly until the first failure is seen in each group. Although the
first-failure censoring plan saves time and costs, it does not allow for the periodic removal
of surviving units or subjects during the life-testing experiment. Therefore, the progressive
censoring scheme proposed by Cohen [22] that allows for removing units throughout the
life-testing experiment can be considered. For this reason, first-failure and progressive
censoring were combined to create a more flexible life-testing strategy known as the progres-
sive first-failure censoring (PFFC) scheme [23]. Due to its compatible features with other
censoring plans, the PFFC scheme has gained much attention in the literature. For instance,
the Lindley distribution based on PFFC data was studied by Dube et al. [24], the exponen-
tiated exponential distribution based on PFFC data was studied by Mohammed et al. [25],
the estimation of stress-strength reliability for generalized inverted exponential distribution
based on PFFC data was studied by Krishna et al. [26]. One author Kayal et al. [27] studied
the PFFC scheme and developed statistical inference on the Chen distribution. Following
on this, Saini et al. [28] studied the estimation of stress-strength reliability for generalized
Maxwell distribution based on PFFC data, and Kumar et al. [29] discussed the reliability
estimation in inverse Pareto distribution based on PFFC data, etc.

The PFFC scheme can be described as follows: suppose there are n independent groups,
each with k items, these are placed on a life test, and we have a prespecified number of
observed failures m (≤ n) and a prefixed progressive censoring plan

˜
G = (G1, G2, . . . , Gm),

where Gi (i = 1, 2, . . . , m) are the prefixed number of groups without item failure to be
removed at i-th failure such that n = m + G1 + G2 + · · ·+ Gm. In other words, the test
will be terminated when the m-th failure is observed. When the first failure occurs at time
X1:m:n:k, G1 groups without item failure and the group where the first failure is observed are
removed from the experiment. When the second failure occurs at time X2:m:n:k, G2 groups
without item failure and the group containing the second failure are removed from the
experiment, and so on. Finally, when the m-th failure occurs at time Xm:m:n:k, the remaining
Gm groups without item failure and the group containing m-th failure are removed from the

experiment. Consequently, the observed failure times, X(
˜
G)

1:m:n:k < X(
˜
G)

2:m:n:k < . . . < X(
˜
G)

m:m:n:k,
are called progressively first-failure censored order statistics with the progressive censoring
plan

˜
G = (G1, G2, . . . , Gm). Figure 1 represents the schematic diagram of the PFFC scheme.

Note that the PFFC scheme bears the following special cases: (i) it reduces to a complete
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sample case when k = 1, n = m and Gi = 0; i = 1, 2, . . . m; (ii) it reduces to a conventional
Type-II censoring plan, if k = 1 and Gi = 0; i = 1, 2, . . . m − 1, and Gm = n − m; (iii) it
becomes a progressive Type-II censoring plan when k = 1, and (iv) it reduces to a first-
failure censoring plan, when m = n and Gi = 0; i = 1, 2, . . . m. Moreover, the applicability
or practicality of PFFC may be a particular setup of a parallel-series system in which n
homogeneous system like a batch of electric bulbs are connected parallel, each batch has k
bulbs or electronics components connected in series. For the testing procedures or collecting
lifetimes, the same mechanism presented in Figure 1 can be used.

Figure 1. Schematic diagram of PFFC scheme.

Let
˜
x = (x( ˜

G)
1:m:n:k, x( ˜

G)
2:m:n:k, . . . , x( ˜

G)
m:m:n:k) be a PFFC sample drawn from a continuous

population with cdf F(x) and pdf f (x). For notation convenience, we suppress the notations

˜
G and (m : n : k) in the observed data and denote the observed data as

˜
x = (x1, x2, . . . , xm).

The likelihood function can be expressed as [23]

L(
˜
x) = Akm

m

∏
i=1

f (xi)[1− F(xi)]
k(Gi+1)−1, 0 < x1 < x2 < · · · < xm < ∞, (5)

where A = n(n− G1 − 1)(n− G1 − G2 − 2) . . . (n− G1 − G2 − · · · − Gm−1 −m + 1).
To establish any information based on the available data, we can consider a statistical

probability model involving some parameter(s), and first, we need to estimate the model
parameter(s). The two popular estimation methods in the literature are classical and
Bayesian. The Bayesian estimation can be used when the prior information is available.
In this study, we consider both estimation methods for feasibility purposes. The main
objective of this study is to estimate the associate parameter and Shannon’s entropy for
the MWD based on progressively first-failure censored data. Through the study in this
manuscript, we aim to provide practical values in applied statistics, especially in the areas
of reliability and lifetime data analysis.

The rest of this paper is organized as follows. Section 2 develops the frequentist
estimation techniques, including the maximum likelihood estimation and asymptotic and
bootstrap confidence intervals. Section 3 is devoted to Bayesian estimation techniques
using the Tierney-Kadane (T-K) approximation and Markov Chain Monte Carlo (MCMC)
methods. In Section 4, a Monte Carlo simulation study is used to evaluate the performance
of the estimation procedures developed in this manuscript. A numerical example is
provided in Section 5 to illustrate the methodologies developed in this manuscript. Finally,
in Section 6, some concluding remarks are presented.

2. Frequentist Estimation Approach

In this section, we develop the expectation-maximization (EM) algorithm to obtain the
maximum likelihood estimates (MLEs) of the related parameters λ and Shannon’s entropy
H(λ). The EM algorithm is one of the popularly used iterative methods for the censored
data; for more details, one may refer to Dempster et al. [30], McLachlan and Krishnan [31],
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and Casella and Berger [32]. Additionally, we consider the asymptotic and bootstrap
confidence intervals for λ and H(λ).

2.1. Maximum Likelihood Estimation

Based on the observed sample under the PFFC scheme with censoring plan

˜
G,

˜
x = (x1, x2, . . . , xm), and assuming that the lifetimes of the items follow the MWD(λ),

the likelihood function in Equation (5) can be obtained as

L(
˜
x; λ) = Akm

(
4√
π

)m
λ−

3m
2 exp

{
− 1

λ

m

∑
j=1

x2
j

}
m

∏
j=1

x2
j

[
1− Γ

(
x2

j

λ
,

3
2

)]k(Gj+1)−1

. (6)

The MLE of the parameter λ can be obtained by maximizing the likelihood function in
Equation (6). Instead of directly maximizing the likelihood function, we take advantage of
the closed-form MLE of λ based on a complete sample by considering the EM algorithm to
obtain the MLE of λ.

Suppose the observed and censored data are
˜
X =

˜
x = (x1, x2, . . . , xm), and

˜
Z =

(
Z11, . . . , Z1[k(G1+1)−1], . . . , Zm1, . . . , Zm[k(Gm+1)−1]

)
, respectively, the combined forms

of complete data set is given by
˜
Y = (

˜
X,

˜
Z). If a complete sample

˜
Y = (y1, y2, . . . , ynk) from

MWD is available, the MLE of λ, denoted as λ̂C can be expressed in a closed form as

λ̂C =
2

3nk

nk

∑
i=1

y2
i .

Based on the complete sample
˜
Y = (

˜
X,

˜
Z), the log-likelihood function can be expressed as

ln Lc( ˜
Y; λ) = constant− 3nk

2
ln λ− 1

λ

m

∑
i=1

x2
i −

1
λ

m

∑
i=1

k(Gi+1)−1

∑
j=1

Z2
ij. (7)

The EM algorithm treats the censored data as missing observations and replaces those
missing values with their corresponding expected values. In the expectation step (E-step)
of the EM algorithm, we replace the functions of the unobserved (censored) data

˜
Z with

the corresponding expected values given the observed data
˜
x. Hence, the pseudo-complete

log-likelihood function can be obtained as

ln Lc( ˜
Y; λ) = constant− 3nk

2
ln λ− 1

λ

m

∑
i=1

x2
i −

1
λ

m

∑
i=1

k(Gi+1)−1

∑
j=1

E
[

Z2
ij|Zij > xi

]
. (8)

For given Xi = xi, the conditional distribution of Zij, follows a truncated MWD with left
truncation at xi,

f (zij|xi, λ) =
f (zij, λ)

1− F(xi, λ)
; zij > xi, i = 1, 2, . . . , m; j = 1, 2, . . . , [k(Gi + 1)− 1]. (9)

Then, the conditional expectations involved in Equation (9) can be computed as

A(c, λ) = E
[

Z2
ij|Zij > c

]
=

3λ

2[1− F(xi, λ)]

[
1− Γ

(
c2

λ
,

3
2

)]
. (10)

In the maximization step (M-step) of the EM algorithm, suppose the estimate of λ in the

r-th stage of the EM algorithm is λ̂
(r)

, then the updated estimate in the (r + 1)-th stage can
be obtained as

λ̂
(r+1)

=
2

3nk

[
m

∑
i=1

x2
j +

m

∑
i=1

k(Gi+1)−1

∑
j=1

A(xi, λ(r))

]
. (11)
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With an initial estimate λ(0) of parameter λ, the E-step and M-step iterate until convergence
occurs. Here, we consider convergence as |λ(r+1) − λ(r)| < ε, where ε is a small value.
Once the MLE λ̂ of parameter λ is computed, using the invariance property of MLE, the
MLE of Shannon’s entropy H(λ) is obtained as

Ĥ(λ̂) =
1
2

ln λ̂ + γ +
1
2

ln π − 1
2

.

2.2. Asymptotic Confidence Interval

In this subsection, we construct confidence intervals for the parameter λ and Shan-
non’s entropy H(λ) based on the asymptotic theory of the MLE. The standard errors of
the MLE can be obtained by direct computation or numerical differentiation by evaluating
the negative of the second derivative of the observed log-likelihood function Tanner [33]
[Section 4.4]. However, the observed information can be difficult to compute because of
the incomplete data. Therefore, the missing information principle computes the observed
Fisher information by using the difference between the information in the pseudo-complete
sample, and the information in the missing observations can be used to obtain the asymp-
totic variance of the MLE λ. The missing information principle presented by Louis [34] (see
also, [33]) can be described as follows:

Observe Information = Complete Information−Missing Information (12)

Let IX(λ) be the Fisher information based on the observed data, IY(λ) be the Fisher
information based on a complete sample, and IY|X(λ) be the missing information, then
Equation (12) can be expressed as

IX(λ) = IY(λ)− IY|X(λ). (13)

For MWD, the Fisher information based on complete data is given by

IY(λ) = −E
[

∂2Lc(Y;λ)
∂λ2

]
= 3nk

2λ2 − 1
λ2 ∑m

i=1 x2
i . (14)

At the time of the i-th failure at time xi, the Fisher information in a censored observation
can be obtained as

I(i)Y|X(λ) = −EZij |xi

[
∂2 ln f (Zij|xi, λ)

∂λ2

]
=

3
2

1
λ2 + ψ′(λ)

where ψ(λ) = − 3

2λ

[
1−Γ

(
x2

i
λ , 3

2

)]{ 3
2 Γ
(

x2
i

λ , 5
2

)
− Γ

(
x2

i
λ , 3

2

)}
,

ψ′(λ) =
∂ψ(λ)

∂λ
= − 3

2λ2

{[{
1− Γ

(
x2

i /λ, 3/2
)}

Q1 + Q2
]

{1− Γ(xi/λ, 3/2)}

}
,

Q1 =
5
2

[
Γ
(

x2
i /λ, 7/2

)
− 2Γ

(
x2

i /λ, 5/2
)
+ Γ

(
x2

i /λ, 3/2
)]

,

Q2 =
3
2

[
Γ
(

x2
i /λ, 5/2

)
− Γ

(
x2

i /λ, 3/2
)]

.

Consequently, the missing information can be obtained as

IY|X(λ) =
m

∑
i=1

[k(Gi + 1)− 1]I(i)Y|X(λ). (15)

From Equation (12), the Fisher information of the observed data IX(λ) can be obtained by us-
ing Equations (14) and (15). Then, under suitable regularity conditions (e.g., the true param-
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eter value of λ must be interior to the parameter space, the derivatives of the log-likelihood
function with respect to λ exist up to third order and bounded), the asymptotic variance

of the MLE of λ can be obtained as V̂ar(λ̂) = I−1
X (λ)|λ=λ̂ =

[
IY(λ)− IY|X(λ)

]−1
|λ=λ̂.

Therefore, an asymptotic 100(1− α)% confidence interval of λ is λ̂± zα/2

√
V̂ar(λ̂), where

zα/2 is the upper (α/2)-th quantile of the standard normal distribution N(0, 1).
To construct an asymptotic confidence interval of Shannon’s entropy H(λ), we first use

the delta method to approximate the variance of the MLE of H(λ) [32]. Specifically, suppose
λ̂ is the MLE of λ, the asymptotic variance of Ĥ(λ) using the delta method (see, for example,
Krishnamoorthy and Lin [35]) is given by

Var(H) = [b′C I−1
X (λ)bC],

where bC = ∂H(λ)
∂λ = 1

2λ . Hence, the approximate variance of Ĥ(λ)

V̂ar(Ĥ) ' [b′C I−1
X (λ)bC]λ=λ̂.

Based on the asymptotic theory of MLE, Ĥ−H√
V̂ar(Ĥ)

∼ N(0, 1) asymptotically. Therefore,

an asymptotic 100(1− α)% confidence interval of H is given by Ĥ ± zα/2

√
V̂ar(Ĥ).

2.3. Bootstrap Confidence Intervals

The bootstrap method is a well-known resampling technique used in statistics to
estimate the sampling distribution of a statistic by repeatedly resampling with replacement
from the observed data. The main objective of this method is to provide an empirical
approximation of the sampling distribution of a statistic, which can be useful for making
inferences and constructing confidence intervals. In the literature, the concept of the
bootstrap technique was first introduced by Efron [36], and since then, several applications
have been discussed. For more details, one may refer to Efron and Tibshirani [37]. Here,
we construct confidence intervals for the parameter λ and Shammon’s entropy using two
parametric bootstrap methods—the percentile bootstrap (boot-p) method [38] and the
bootstrap-t (boot-t) method [39]. Following Efron and Tibshirani [37], the procedures to
obtain the two parametric bootstrap confidence intervals are described as follows.

2.3.1. Percentile Bootstrap (Boot-P) Confidence Intervals

Step A1: Based on the observed PFFC sample
˜
X = (x1, x2, . . . , xm) with effective sample

size m from n groups each having k items and progressive censoring plan
˜
G,

compute the MLEs λ̂ and Ĥ of parameter λ and entropy H(λ), respectively.
Step A2: Generate an independent bootstrap PFFC sample

˜
X(b) =

(
x(b)1 , x(b)2 , . . . , x(b)m

)
from MWD(λ̂) with effective sample size m from n groups each having k items
and progressive censoring plan

˜
G.

Step A3: Based on the bootstrap sample
˜
X(b), compute the MLEs λ̂(b) and Ĥ(b) of parameter

λ and entropy H(λ), respectively.
Step A4: Repeat Step A2 and Step A3 B times to obtain a set of bootstrap estimates as

(λ̂(b), Ĥ(b)); b = 1, 2, . . . , B.
Step A5: Order the bootstrap estimates (λ̂(1), λ̂(2), . . . , λ̂(B)) and (Ĥ(1), Ĥ(2), . . . , Ĥ(B)) in

ascending order as (λ̂[1] < λ̂[2] < . . . < λ̂[B]) and (Ĥ[1] < Ĥ[2] < . . . < Ĥ[B]),
respectively. The 100(1− α)% percentile bootstrap confidence intervals for λ and
H, respectively, are given by(

λ̂[(α/2)B], λ̂[(1−α/2)B]
)

and
(

Ĥ[(α/2)B], Ĥ[(1−α/2)B]
)

,

where [a] is the integral part of a.
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2.3.2. Boostrap-t (Boot-t) Confidence Intervals

Step B1: Based on the observed PFFC sample
˜
X = (x1, x2, . . . , xm) with effective sample

size m from n groups each having k items and progressive censoring plan
˜
G,

compute the MLEs λ̂ and Ĥ of parameter λ and entropy H(λ), respectively.
Step B2: Generate an independent bootstrap PFFC sample

˜
X(b) =

(
x(b)1 , x(b)2 , . . . , x(b)m

)
from MWD(λ̂) with effective sample size m from n groups each having k items
and progressive censoring plan

˜
G.

Step B3: Compute the bootstrap-t statistics for λ as

τ
(b)
λ =

λ̂
(b) − λ̂√

V̂ar(λ̂(b)
)

,

and the bootstrap-t statistic for H as

τ
(b)
H =

Ĥ(b) − Ĥ√
V̂ar(Ĥ(b))

.

Step B4: Repeat Step B2 and Step B3 B times to obtain a set of bootstrap statistics as (τ(b)
λ ,

τ
(b)
H ); b = 1, 2, . . . , B.

Step B5: Order the bootstrap statistics (τ
(1)
λ , τ

(2)
λ , . . . , τ

(B)
λ ) and (τ

(1)
H , τ

(2)
H , . . . , τ

(B)
H ) in as-

cending order as (τ
[1]
λ < τ

[2]
λ < . . . < τ

[B]
λ ) and (τ

[1]
H < τ

[2]
H < . . . < τ

[B]
H ),

respectively.
Step B6: The 100(1− α)% bootstrap-t confidence intervals for λ and H, respectively, are

given by (
λ̂− τ

[(1−α/2)B]
λ

√
V̂ar(λ̂), λ̂ + τ

[(1−α/2)B]
λ

√
V̂ar(λ̂)

)
and (

Ĥ − τ
[(1−α/2)B]
H

√
V̂ar(Ĥ), Ĥ + τ

[(1−α/2)B]
H

√
V̂ar(Ĥ)

)
.

3. Bayesian Estimation Approach

In this section, we derive Bayes estimators under the linear exponential (LINEX) loss
function and construct the highest posterior density (HPD) credible intervals for the param-
eters λ and Shannon’s entropy H(λ). For details of Bayesian statistical inference and data
analysis methods, one may refer to the books by Box and Tiao [40] and Gelman et al. [41].
The Bayesian approach to reliability analysis involves previous knowledge of lifespan
parameters, technical knowledge of failure mechanisms, as well as experimental data to be
incorporated into the inferential procedure. As pointed out by Tian et al. [42], employing the
Bayesian approach in reliability analysis has the advantages of making statistical inferences
using information from prior experience with the failure mechanism or physics-of-failure
and avoiding making inferences based on plausibly inaccurate large-sample theory in
frequentist approach. For more details about Bayesian inference methods and specifying
prior distribution in reliability applications, one may refer to Tian et al. [42]. As a result,
Bayesian techniques are frequently applied to small sample data, which is highly advanta-
geous in the case of pricey life testing tests. For Bayesian estimation, the inverted gamma
distribution is commonly used as the natural conjugate prior density for the parameter λ
of MWD (see, for example, Bekker and Roux [9], Chaudhary et al. [43]). Following Bekker
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and Roux [9] and Chaudhary et al. [43], we consider the prior distribution of the unknown
parameter λ is the inverted gamma distribution with pdf

g(λ) ∝
1

λa+1 exp(−b/λ); λ > 0, a > 0, b > 0, (16)

where a and b are hyper-parameters. Thus, by incorporating the prior information in
Equation (16) to the likelihood function in Equation (6), the posterior distribution of λ can
be expressed as

π(λ|
˜
x) =

L(
˜
x|λ)g(λ)

∞∫
0

L(
˜
x,λ)g(λ)dλ

,

= K

λ
3m
2 +a+1

exp
[
− 1

λ

(
∑m

i=1 x2
i + b

)]
∏m

i=1

[
1− Γ

(
x2

i
λ , 3

2

)]k(Gi+1)−1
,

(17)

where K−1 is the normalizing constant given by

K−1 =
∫ ∞

0

1

λ
3m
2 +a+1

exp

[
− 1

λ

(
m

∑
i=1

x2
i + b

)]
m

∏
i=1

[
1− Γ

(
x2

i
λ

,
3
2

)]k(Gi+1)−1

dλ.

Here, we consider the LINEX loss function proposed by [44], which is one of the most
commonly used asymmetric loss functions. The LINEX loss is defined as

L(∆) = exp(c∆)− c∆− 1; c 6= 0, ∆ = λ̃− λ, (18)

where the loss function’s scaling parameter is c and λ̃ is an estimate of λ. The LINEX
loss function provides greater weight to overestimation or underestimation, depending
on whether the value of c is positive or negative, and for small values of c ' 0, it is
virtually identical to the squared error loss function. This loss function is appropriate
when overestimation is more expensive than underestimating. Thus, under the LINEX loss
function, the Bayes estimator of any function of the parameter λ, say φ(λ), is given by

E[φ(λ)] = −1
c

ln


∞∫
0

e−cφ(λ)π(λ|
˜
x)dλ

∞∫
0

π(λ|
˜
x)dλ

. (19)

From Equation (19), the Bayes estimators take the ratio of two integrals for which has no
closed-form solution. To obtain the ratio of the two integrals in Equation (19), we suggest
using two approximation techniques—the T-K approximation and the MCMC methods.
The T-K approximation method is one of the oldest deterministic approximation techniques,
whereas the MCMC method is one of the newest popularized techniques based on the
posterior sample algorithm. The MCMC could be expensive to compute, especially for
large sample sizes n. Moreover, many MCMC algorithms require a rough estimate of key
posterior quantities, such as the posterior variance. Compared to MCMC methods, the T-K
approximation cannot be reduced by running the algorithm longer. However, deterministic
approximation is typically very fast to compute and sufficiently reliable in several applied
contexts. These issues motivate us to develop both techniques in this study. The details of
these two approximation techniques are presented in the following subsections.
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3.1. Tierney-Kadane (T-K) Approximation Technique

According to T-K approximation’s technique proposed by Tierney and Kadane [45], the
approximation of the posterior mean of the function of the parameter, say φ(λ) is given by

E[φ(λ)|
˜
x] =

∫ ∞
0 enδ∗φ(λ)dλ∫ ∞
0 enδ(λ)dλ

'
(
|Σ∗φ|
|Σ|

) 1
2

en[δ∗φ(λ̂
∗
φ)−δ(λ̂φ)], (20)

where δ(λ) = 1
n [l(λ) + ρ(λ)], δ∗(λ) = δ(λ) + 1

n ln φ(λ), l(λ) is the log-likelihood function,
ρ(λ) = ln g(λ), and |Σ∗φ| and |Σ| are the determinants of inverse of the negative Hessian
of δ∗(λ) and δ(λ) at λ̂δ∗ and λ̂δ, respectively. Here, λ̂δ and λ̂δ∗ maximize δ(λ) and δ∗(λ),
respectively. We observe that

δ(λ) =
1
n

[
−
(

3m
2

+ a + 1
)

ln λ− 1
λ

(
m

∑
i=1

x2
i + b

)
+ 2

m

∑
i=1

ln xi+

m

∑
i=1

[k(Gi + 1)− 1] ln

(
1− Γ

(
x2

i
λ

,
3
2

))]
.

To determine the value of λ̂δ, we solve the following non-linear equation:

∂δ(λ)

∂λ
=

1
n

[
−
(

3m
2

+ a + 1
)

1
λ
+

1
λ2

(
m

∑
i=1

x2
i + b

)
+

m

∑
i=1

[k(Gi + 1)− 1]ψ(λ)

]
= 0,

where

ψ(λ) =

∂ ln
[

1− Γ
(

x2
i

λ , 3
2

)]
∂λ

= − 3

2λ

[
1− Γ

(
x2

i
λ , 3

2

)]{3
2

Γ

(
x2

i
λ

,
5
2

)
− Γ

(
x2

i
λ

,
3
2

)}
.

Now, |Σ| can be obtained from

Σ−1 =
1
n

(
−∂2δ(λ)

∂λ2

)
= − 1

n

[(
3m
2

+ a + 1
)

1
λ2 −

2
λ3

(
m

∑
i=1

x2
i + b

)
+

m

∑
i=1

[k(Gi + 1)− 1]ψ′(λ)

]
,

where

ψ′(λ) =
∂ψ(λ)

∂λ
= − 3

2λ2

{[{
1− Γ

(
x2

i /λ, 3/2
)}

Q1 + Q2
]

{1− Γ(xi/λ, 3/2)}

}
,

Q1 =
5
2

[
Γ
(

x2
i /λ, 7/2

)
− 2Γ

(
x2

i /λ, 5/2
)
+ Γ

(
x2

i /λ, 3/2
)]

,

Q2 =
3
2

[
Γ
(

x2
i /λ, 5/2

)
− Γ

(
x2

i /λ, 3/2
)]

.

To calculate the Bayes estimator of λ under the LINEX loss function, we take φ(λ) = e−cλ,
consequently the function δ∗(λ) becomes

δ∗(λ) = δ(λ)− cλ

n
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and then λ̂∗δ∗ , is computed as solutions of the following non-linear equation

∂δ∗(λ)

∂λ
= ∂δ(λ)

∂λ −
c
n = 0, and obtain |Σ∗| from Σ∗−1

λ = − 1
n

(
∂2δ∗(λ)

∂λ2

)
.

Thus, the approximate Bayes estimator of λ under the LINEX loss function is given by

λ̂TK = −1
c

ln

( |Σ∗λ|
|Σ|

) 1
2

exp
{

n
[
δ∗λ(λ̂

∗
δ)− δ(λ̂δ)

]}.

Similarly, the Bayes estimator of Shannon’s entropy H(λ) under the LINEX loss function is
given by

ĤTK = −1
c

ln

( |Σ∗H |
|Σ|

) 1
2

exp
{

n
[
δ∗H(Ĥ∗δ )− δ(Ĥδ)

]}.

3.2. Markov Chain Monte Carlo (MCMC) Techniques

In this subsection, we use the MCMC techniques to obtain the Bayes estimates of the
parameter λ and Shannon’s entropy H(λ) under the LINEX loss function. The Metropolis-
Hastings (M-H) algorithm was initially established by Metropolis et al. [46] and subse-
quently extended by Hastings [47] and popularized as one of the most commonly used
MCMC techniques. The candidate points are created from a normal distribution to a sample
from the posterior distribution of λ using the observed data

˜
X in (17). The following steps

are used to obtain MCMC sequences:

Step C1. For parameter λ, set λ(0) as the initial guess value

Step C2. From proposal density η(λ(j)|λ(j−1)), generate a candidate point λ
(j)
c .

Step C3. Generate u from uniform distribution in (0, 1).

Step C4. Compute α(λ
(j)
c |λ(j−1)) = min

{
π
(

λ
(j)
c | ˜

w
)

η
(

λ(j−1) |λ(j)
c

)
π(λ(j−1) |

˜
w)η

(
λ
(j)
c |λ(j−1)

) , 1

}
.

Step C5. If u ≤ α, set λ(j) = λ
(j)
c with acceptance probability α; otherwise, set λ(j) = λ(j−1).

Step C6. Compute H(j) = H(λ(j)) from Equation (1).
Step C7. Repeat Steps C2–C6 M times to obtain the sequence of the parameter λ as (λ1, λ2, . . . , λM)

and Shannon’s entropy H as (H1, H2, . . . , HM).

To acquire an independent sample from the stationary distribution of the Markov chain,
we consider a burn-in period of size M0 by discarding the first M0 values in the MCMC
sequences. Thus, the Bayes estimators of λ and H(λ) under the LINEX loss function,
respectively, are given by

λ̂MH = −1
c

ln

[
1

M−M0

M

∑
j=M0+1

e−cλj

]
,

and ĤMH = −1
c

ln

[
1

M−M0

M

∑
j=M0+1

e−cH(λj)

]
.

Based on the MCMC samples, we can obtain the HPD credible interval for the parameter λ
and Shannon’s entropy H(λ). Suppose (λ[1] < λ[2] < · · · < λ[M∗]) and H[1] < H[2] < · · · <
H[M∗] denotes the ordered values of (λ1, λ2, . . . , λM∗) and (H1, H2, . . . , HM∗), respectively,
after the burn-in period, where M∗ = M−M0. Then, following Chen and Shao [48], the
100(1− α)% HPD credible interval for λ can be obtained as

(
λ(j), λ(j+[(1−α)M∗ ])

)
, where j

is chosen such that

λj+[(1−α)M∗ ] − λ(j) = min
1≤i≤αM∗

(
λ(i+[(1−α)M∗ ]) − λ(i)

)
; j = 1, 2, . . . , M∗.
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Similarly, the 100(1− α)% HPD credible interval for H(λ) is given by
(

H(j), H(j+[(1−α)M∗ ])

)
,

where j is chosen such that

Hj+[(1−α)M∗ ] − H(j) = min
1≤i≤αM∗

(
H(i+[(1−α)M∗ ]) − H(i)

)
; j = 1, 2, . . . , M∗.

4. Monte Carlo Simulation Study

In this section, a Monte Carlo simulation study is conducted to evaluate the per-
formance of the proposed estimation procedures. The frequentist and Bayesian point
estimation procedures for the parameter λ and Shannon’s entropy H(λ) are compared
by means of the average estimates (AE) and mean squared errors (MSE). For interval
estimation procedures, we compare the asymptotic confidence intervals (Asym), the per-
centile bootstrap confidence intervals (boot-p), the bootstrap-t confidence intervals (boot-t),
and the HPD credible intervals in terms of their simulated average lengths (AL) and the
simulated coverage probabilities (CP). For the bootstrap confidence intervals, the intervals
are obtained based on B = 1000 bootstrap samples.

In the simulation study, we consider that the PFFC samples are generated from the MWD
with parameter λ = 0.75 and 1.5 (the corresponding entropy H(λ) are H(0.75) = 0.5057
and H(1.5) = 0.8523, respectively) with various combinations of a number of groups n,
effective sample size m, group size k, and censoring scheme

˜
G). We consider group sizes

k = 3 and 5, the number of groups n = 20 and 50, and effective sample sizes m = 0.4 n and
0.8 n. Three different censoring schemes

˜
G for each combination of n and m are considered:

(I) [(k, n, m), (G1 = n − m, Gj = 0, ∀ j = 2, 3, . . . m)]: (n − m) groups are removed
from the experiment at the first failure only;

(II) [(k, n, m), (Gj = 0, ∀j = 1, 2, . . . , m− 1, Gm = n−m)]: (n−m) groups are removed
at mth failure;

(III) [(k, n = m), Gj = 0, ∀j = 1, 2, . . . , m]: first-failure censored sample.

The censoring schemes ([CS]) used in the Monte Carlo simulation study are summarized
in Table 1. Note that simplified notations are used to denote the censoring schemes, for
example, (07) denotes (0, 0, 0, 0, 0, 0, 0) and (43) stands for (4, 4, 4).

Table 1. Censoring plans used in the simulation study.

n m [CS] Schemes n m [CS] Schemes

20 8 [1] (121, 07) 50 20 [7] (301, 019)
[2] (43, 05) [8] (56, 014)
[3] (07, 121) [9] (019, 301)

20 16 [4] (41, 015) 50 40 [10] (101, 039)
[5] (22, 014) [11] (52, 038)
[6] (015, 41) [12] (039, 101)

For the Bayesian estimation approach, the Bayes estimates of Shannon’s entropy are
computed with informative inverted gamma prior under the LINEX loss function. The
hyper-parameters (a, b) are selected for Bayesian computations of the parameter λ and
Shannon’s entropy in such a manner that the prior mean is precisely identical to the true
values of the parameter, i.e., λ = a/b. Specifically, we consider (a, b) = (3, 4) and (3, 2) for
λ = 0.75 and 1.5, respectively. When computing Bayes estimators under the LINEX loss
function, we consider the loss function parameter c = −0.5 and 0.5. We use M = 10,000
with a burn-in period M0 = 2000 for the M-H algorithm. The simulation results are based
on 1000 repetitions in this study. All the computations are performed using the statistical
software R (https://www.r-project.org/) [49].

The simulated results for point estimation are presented in Tables 2 and 3, and the
simulation results for interval estimation are presented in Tables 4 and 5. For point esti-
mation, from Tables 2 and 3, we observe that the MLEs and Bayes estimates of Shannon’s
entropy are performing well with small MSEs. The simulated MSEs decrease as n or m

https://www.r-project.org/
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increases. The Bayes estimates perform better than the MLEs in terms of MSEs when the
prior information matches the true value of λ. Among the two approaches to obtain the
Bayes estimates, the Bayes estimates obtained by the M-H algorithm techniques outperform
the Bayes estimates obtained by the T-K approximation in terms of the MSEs.

For interval estimation, from Tables 4 and 5, it can be seen that the simulated average
lengths of the 95% asymptotic, percentile bootstrap, bootstrap-t confidence intervals, and
the Bayesian HPD credible intervals are decreasing as the number of failures (m) increases.
All the interval estimation procedures provide reasonable simulated coverage probability
(CP) that are close to the nominal level 95%. The HPD credible intervals have smaller
simulated average lengths than those frequentist confidence intervals.

Table 2. Simulated average MLEs and Bayes estimates and the MSEs of Shannon’s entropy H(λ)

when λ = 1.5 and H(1.5) = 0.8523.

MLE
TK Approximation MCMC

c = −0.50 c = 0.50 c = −0.50 c = 0.50

(k, n, m) [CS] AE MSE AE MSE AE MSE AE MSE AE MSE

(3,20,8) [1] 0.8372 0.0189 0.8066 0.0174 0.7991 0.0181 0.8329 0.0024 0.8298 0.0025
[2] 0.8371 0.0185 0.8074 0.0171 0.8000 0.0178 0.8333 0.0024 0.8302 0.0025
[3] 0.8371 0.0172 0.8101 0.0160 0.8031 0.0166 0.8342 0.0023 0.8314 0.0024

(3,20,16) [4] 0.8475 0.0091 0.8305 0.0087 0.8263 0.0089 0.8413 0.0016 0.8394 0.0017
[5] 0.8475 0.0091 0.8305 0.0087 0.8263 0.0089 0.8413 0.0016 0.8394 0.0017
[6] 0.8475 0.0088 0.8312 0.0084 0.8272 0.0086 0.8416 0.0016 0.8398 0.0016

(3,50,20) [7] 0.8485 0.0074 0.8348 0.0071 0.8314 0.0073 0.8433 0.0014 0.8418 0.0014
[8] 0.8485 0.0072 0.8353 0.0070 0.8320 0.0071 0.8435 0.0014 0.8420 0.0014
[9] 0.8483 0.0066 0.8366 0.0064 0.8336 0.0065 0.8442 0.0013 0.8428 0.0013

(3,50,40) [10] 0.8496 0.0039 0.8425 0.0039 0.8407 0.0039 0.8472 0.0009 0.8463 0.0009
[11] 0.8496 0.0039 0.8425 0.0039 0.8407 0.0039 0.8472 0.0009 0.8463 0.0009
[12] 0.8495 0.0038 0.8428 0.0037 0.8411 0.0038 0.8474 0.0008 0.8465 0.0008

(5,20,8) [1] 0.8371 0.0180 0.8505 0.0124 0.8011 0.0174 0.8483 0.0023 0.8306 0.0025
[2] 0.8370 0.0177 0.8504 0.0122 0.8020 0.0171 0.8484 0.0023 0.8310 0.0024
[3] 0.8369 0.0166 0.8503 0.0117 0.8046 0.0161 0.8485 0.0022 0.8319 0.0023

(5,20,16) [4] 0.8474 0.0087 0.8536 0.0072 0.8276 0.0085 0.8511 0.0016 0.8400 0.0016
[5] 0.8474 0.0086 0.8536 0.0072 0.8276 0.0085 0.8511 0.0016 0.8400 0.0016
[6] 0.8474 0.0084 0.8536 0.0070 0.8283 0.0082 0.8511 0.0015 0.8403 0.0016

(5,50,20) [7] 0.8485 0.0070 0.8535 0.0061 0.8325 0.0069 0.8515 0.0013 0.8422 0.0014
[8] 0.8484 0.0069 0.8535 0.0060 0.8329 0.0068 0.8515 0.0013 0.8424 0.0014
[9] 0.8482 0.0064 0.8534 0.0056 0.8342 0.0063 0.8515 0.0012 0.8431 0.0013

(5,50,40) [10] 0.8495 0.0038 0.8521 0.0035 0.8413 0.0037 0.8517 0.0008 0.8466 0.0008
[11] 0.8495 0.0038 0.8521 0.0035 0.8413 0.0037 0.8517 0.0008 0.8466 0.0008
[12] 0.8495 0.0036 0.8520 0.0034 0.8416 0.0036 0.8517 0.0008 0.8468 0.0008

Table 3. Simulated average MLEs and Bayes estimates and the MSEs of Shannon’s entropy H(λ),
when λ = 0.75 and H = 0.5057.

MLE
TK Approximation MCMC

c = −0.50 c = 0.50 c = −0.50 c = 0.50

(k, n, m) [CS] AE MSE AE MSE AE MSE AE MSE AE MSE

(3,20,8) [1] 0.4906 0.0189 0.5823 0.0151 0.5746 0.0139 0.5371 0.0037 0.5338 0.0035
[2] 0.4905 0.0185 0.5811 0.0148 0.5735 0.0137 0.5365 0.0036 0.5333 0.0035
[3] 0.4905 0.0172 0.5768 0.0138 0.5696 0.0129 0.5347 0.0034 0.5317 0.0032

(3,20,16) [4] 0.5009 0.0091 0.5507 0.0083 0.5465 0.0079 0.5252 0.0021 0.5232 0.0021
[5] 0.5009 0.0091 0.5506 0.0083 0.5464 0.0079 0.5251 0.0021 0.5232 0.0020
[6] 0.5009 0.0088 0.5493 0.0080 0.5453 0.0077 0.5246 0.0020 0.5227 0.0020

(3,50,20) [7] 0.5020 0.0074 0.5424 0.0068 0.5390 0.0066 0.5219 0.0017 0.5203 0.0017
[8] 0.5019 0.0072 0.5417 0.0067 0.5384 0.0064 0.5215 0.0017 0.5200 0.0017
[9] 0.5018 0.0066 0.5391 0.0062 0.5360 0.0060 0.5204 0.0016 0.5190 0.0015

(3,50,40) [10] 0.5030 0.0039 0.5242 0.0037 0.5225 0.0037 0.5142 0.0009 0.5134 0.0009
[11] 0.5030 0.0039 0.5242 0.0037 0.5224 0.0037 0.5142 0.0009 0.5134 0.0009
[12] 0.5030 0.0038 0.5235 0.0036 0.5218 0.0035 0.5139 0.0009 0.5131 0.0009
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Table 3. Cont.

MLE
TK Approximation MCMC

c = −0.50 c = 0.50 c = −0.50 c = 0.50

(k, n, m) [CS] AE MSE AE MSE AE MSE AE MSE AE MSE

(5,20,8) [1] 0.4905 0.0180 0.5795 0.0144 0.5721 0.0134 0.5359 0.0036 0.5327 0.0034
[2] 0.4904 0.0177 0.5785 0.0142 0.5712 0.0132 0.5354 0.0035 0.5323 0.0033
[3] 0.4903 0.0166 0.5749 0.0134 0.5679 0.0125 0.5339 0.0033 0.5309 0.0031

(5,20,16) [4] 0.5008 0.0087 0.5488 0.0079 0.5448 0.0076 0.5243 0.0020 0.5225 0.0020
[5] 0.5008 0.0086 0.5488 0.0079 0.5447 0.0076 0.5243 0.0020 0.5225 0.0020
[6] 0.5008 0.0084 0.5476 0.0077 0.5437 0.0074 0.5238 0.0020 0.5220 0.0019

(5,50,20) [7] 0.5019 0.0070 0.5409 0.0065 0.5376 0.0063 0.5212 0.0017 0.5197 0.0016
[8] 0.5018 0.0069 0.5403 0.0064 0.5371 0.0062 0.5209 0.0016 0.5194 0.0016
[9] 0.5016 0.0064 0.5381 0.0060 0.5351 0.0058 0.5199 0.0015 0.5185 0.0015

(5,50,40) [10] 0.5029 0.0038 0.5233 0.0035 0.5216 0.0035 0.5138 0.0009 0.5130 0.0009
[11] 0.5029 0.0038 0.5233 0.0035 0.5216 0.0035 0.5138 0.0009 0.5130 0.0009
[12] 0.5029 0.0036 0.5227 0.0034 0.5211 0.0034 0.5135 0.0009 0.5128 0.0009

Table 4. Simulated average lengths and coverage probabilities of 95% asymptotic, percentile bootstrap,
and bootstrap-t confidence interval and Bayesian HPD credible intervals of Shannon’s entropy H(λ),
when λ = 1.5 and H = 0.8523.

Asym
Bootstrap

HPD
Boot-p Boot-t

(k, n, m) [CS] AL CP AL CP AL CP AL CP

(3,20,8) [1] 0.5257 0.948 0.5324 0.927 0.5335 0.952 0.3055 0.999
[2] 0.5198 0.947 0.5271 0.927 0.5279 0.952 0.3027 0.999
[3] 0.5007 0.951 0.5105 0.925 0.5103 0.951 0.2941 0.999

(3,20,16) [4] 0.3746 0.948 0.3721 0.945 0.3721 0.950 0.2387 0.998
[5] 0.3743 0.948 0.3719 0.945 0.3718 0.950 0.2385 0.998
[6] 0.3680 0.945 0.3657 0.946 0.3658 0.951 0.2350 0.998

(3,50,20) [7] 0.3343 0.945 0.3458 0.955 0.3459 0.954 0.2170 0.997
[8] 0.3304 0.944 0.3419 0.956 0.3416 0.954 0.2146 0.998
[9] 0.3165 0.944 0.3273 0.954 0.3273 0.953 0.2065 0.997

(3,50,40) [10] 0.2372 0.941 0.2472 0.950 0.2472 0.950 0.1602 0.987
[11] 0.2371 0.941 0.2471 0.950 0.2471 0.950 0.1601 0.987
[12] 0.2327 0.942 0.2427 0.950 0.2427 0.950 0.1573 0.986

(5,20,8) [1] 0.5129 0.948 0.5210 0.925 0.5219 0.952 0.3050 0.997
[2] 0.5081 0.947 0.5162 0.925 0.5175 0.953 0.3027 0.997
[3] 0.4917 0.950 0.5024 0.923 0.5023 0.951 0.2950 0.997

(5,20,16) [4] 0.3651 0.946 0.3628 0.945 0.3629 0.951 0.2345 0.997
[5] 0.3649 0.946 0.3626 0.945 0.3627 0.951 0.2344 0.997
[6] 0.3592 0.945 0.3576 0.946 0.3577 0.951 0.2312 0.997

(5,50,20) [7] 0.3260 0.946 0.3369 0.953 0.3370 0.953 0.2130 0.997
[8] 0.3228 0.946 0.3336 0.954 0.3336 0.953 0.2111 0.997
[9] 0.3109 0.944 0.3215 0.953 0.3214 0.954 0.2041 0.996

(5,50,40) [10] 0.2312 0.942 0.2409 0.950 0.2409 0.950 0.1565 0.988
[11] 0.2311 0.942 0.2408 0.950 0.2408 0.950 0.1564 0.988
[12] 0.2272 0.942 0.2368 0.949 0.2368 0.950 0.1539 0.988
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Table 5. Simulated average lengths and coverage probabilities of 95% asymptotic, bootstrap confi-
dence and HPD credible intervals of entropy H(λ), when λ = 0.75 and H = 0.5057.

Asym
Bootstrap

HPD
Boot-p Boot-t

(k, n, m) [CS] AL CP AL CP AL CP AL CP

(3,20,8) [1] 0.5219 0.948 0.5256 0.927 0.5312 0.952 0.3158 0.987
[2] 0.5163 0.947 0.5207 0.927 0.5258 0.952 0.3133 0.988
[3] 0.4981 0.951 0.5055 0.925 0.5089 0.951 0.3051 0.988

(3,20,16) [4] 0.3746 0.948 0.3721 0.945 0.3722 0.950 0.2413 0.988
[5] 0.3743 0.948 0.3719 0.945 0.3718 0.950 0.2411 0.988
[6] 0.3680 0.945 0.3657 0.946 0.3658 0.951 0.2377 0.987

(3,50,20) [7] 0.3343 0.945 0.3458 0.955 0.3459 0.954 0.2189 0.989
[8] 0.3304 0.945 0.3419 0.956 0.3416 0.954 0.2167 0.989
[9] 0.3165 0.944 0.3273 0.954 0.3273 0.953 0.2089 0.989

(3,50,40) [10] 0.2372 0.941 0.2472 0.950 0.2472 0.950 0.1607 0.983
[11] 0.2371 0.941 0.2471 0.950 0.2471 0.950 0.1606 0.983
[12] 0.2327 0.942 0.2427 0.950 0.2427 0.950 0.1579 0.985

(5,20,8) [1] 0.5098 0.948 0.5151 0.925 0.5201 0.952 0.3104 0.988
[2] 0.5052 0.947 0.5107 0.924 0.5158 0.953 0.3083 0.988
[3] 0.4895 0.950 0.4979 0.923 0.5011 0.951 0.3012 0.988

(5,20,16) [4] 0.3651 0.946 0.3628 0.945 0.3629 0.951 0.2362 0.989
[5] 0.3649 0.946 0.3625 0.945 0.3626 0.951 0.2361 0.989
[6] 0.3592 0.945 0.3576 0.946 0.3577 0.951 0.2331 0.99

(5,50,20) [7] 0.3260 0.946 0.3369 0.953 0.3370 0.953 0.2143 0.989
[8] 0.3228 0.946 0.3336 0.954 0.3336 0.953 0.2125 0.989
[9] 0.3109 0.944 0.3215 0.952 0.3214 0.954 0.2056 0.989

(5,50,40) [10] 0.2312 0.942 0.2409 0.950 0.2409 0.950 0.1569 0.985
[11] 0.2311 0.942 0.2408 0.950 0.2408 0.950 0.1568 0.985
[12] 0.2272 0.942 0.2368 0.949 0.2369 0.950 0.1544 0.985

5. Practical Data Analysis

To demonstrate the effectiveness of the MWD in modeling lifetime data and illustrate
the methodologies developed in the paper, a practical data analysis of a real data set is con-
ducted. We consider the tensile strength (in GPa) of 100 carbon fibers. This data set was orig-
inally reported by Nichols and Padgett [50] and further studied by Mohammed et al. [25]
and Xie and Gui [51]. The data set is presented in Table 6.

Table 6. Tensile strength of 100 carbon fibers originally reported by Nichols and Padgett [50].

3.70 3.11 4.42 3.28 3.75 2.96 3.39 3.31 3.15 2.81 1.41 2.76 3.19 1.59 2.17
3.51 1.84 1.61 1.57 1.89 2.74 3.27 2.41 3.09 2.43 2.53 2.81 3.31 2.35 2.77
2.68 4.91 1.57 2.00 1.17 2.17 0.39 2.79 1.08 2.88 2.73 2.87 3.19 1.87 2.95
2.67 4.20 2.85 2.55 2.17 2.97 3.68 0.81 1.22 5.08 1.69 3.68 4.70 2.03 2.82
2.50 1.47 3.22 3.15 2.97 2.93 3.33 2.56 2.59 2.83 1.36 1.84 5.56 1.12 2.48
1.25 2.48 2.03 1.61 2.05 3.60 3.11 1.69 4.90 3.39 3.22 2.55 3.56 2.38 1.92
0.98 1.59 1.73 1.71 1.18 4.38 0.85 1.80 2.12 3.65

First, we use the scaled total time on test (TTT) transform to understand the behavior
of the failure rate function of the data set. The scaled TTT transform is given by

ψ(r/n) =

[
r

∑
j=1

t(i) + (n− r)tr

]/(
r

∑
j=1

t(i)

)
, r = 1, 2, . . . , n,

where t(i), i = 1, 2, . . . , n represent the i-th order statistic of the sample. If the plot
(r/n, ψ(r/n)) is convex (concave), the failure rate function has a decreasing (increasing)
shape. For more details about scaled TTT transform, see, for example, Mudholkar et al. [52].
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The scaled TTT plot of the data set in Table 6 is displayed in Figure 2. Figure 2 shows that
the considered data set follows an increasing failure rate function. This empirical behavior
of the failure rate function indicates that the MWD model can be considered a suitable
model for this data set.

Figure 2. TTT plots under consideration of real data set.

Furthermore, we check whether the MWD is well-fit for the data set in Table 6 using
two goodness-of-fit tests. We consider the Kolmogrov–Smirnov (KS) and Anderson–Darling
(AD) test statistics and obtain the corresponding p-values. The KS and AD statistics
with their corresponding p-values (in paratheses) are 0.0884 (0.4145) and 0.7977 (0.4824),
respectively. According to these p-values of the goodness-of-fit tests, the MWD fits quite
well for the data set in Table 6. In addition to the goodness-of-fit test, we also assess the
feasibility of fitting the data set using MWD graphically using the empirical and fitted cdfs
plot and the probability-probability (P-P) plots in Figure 3. These plots are tools used in
statistics to assess the goodness-of-fit of a statistical model to observed data. A good fit is
indicated when the points in the P-P plot lie close to a straight line (usually a 45-degree
line), suggesting that the empirical and theoretical cumulative probabilities are a good
fit or similar. From Figure 3, one can observe that the observed data points show almost
similar patterns to the theoretical distribution, i.e., the MWD fits the data set in Table 6
reasonably well.

To illustrate the methodologies developed in this paper, we generate first-failure
censored data based on the data set in Table 6. After grouping the 100 carbon fiber into
n = 25 groups and k = 4 individuals within each group. The grouped data and the
corresponding first-failure censored samples are reported in Table 7. The items with “+”
within each group indicate the first failure. Then, we obtain six different PFFC samples
using different censoring schemes for m = 10 and 20 based on the first-failure censored
data in Table 7. The censoring schemes and the corresponding PFFC samples are presented
in Table 8. To avoid ambiguity with the censoring schemes in Table 1, we named these
censored schemes [CS1]–[CS6].

Based on each PFFC sample in Table 8, we compute the MLEs and Bayes estimates
of the parameter λ and Shannon’s entropy H(λ). As we do not have prior information on
the parameter λ, we use a non-informative prior for obtaining the Bayes estimates. The
Bayes estimates are computed using the T-K approximation and MCMC methods under
the LINEX loss function at two values of loss parameter c = −0.5 and 0.5. We construct
95% asymptotic, percentile bootstrap, bootstrap-t confidence intervals and the Bayesian
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HPD credible intervals for the parameter λ and Shannon’s entropy H(λ). The point and
interval estimation results are presented in Tables 9 and 10, respectively.

For the Bayesian estimation procedures, we validate the convergence of the generated
MCMC sequence of the parameter λ samples from the posterior distribution by using the
M-H algorithm for their stationary distributions using graphical diagnostic tools, such as
the trace plot, boxplot, and histogram with Gaussian density plots, as shown in Figure 4 for
c = −0.5. The trace plot shows a random scatter around the mean (shown by a thick red
line) and a fine mixture of parameter chains. The posterior distribution is almost symmetric,
as seen by the boxplots and histograms of produced samples, implying that the posterior
mean can be used as a reasonable Bayes estimate of the parameter λ. For illustration, we
also present the simulated posterior predictive densities in Figure 5.

Figure 3. Empirical and fitted Maxwell distribution plots for real data.

Table 7. Grouped real data set (Observation with “+′′ indicates the first failure (FF) in the group).

Groups→ 1 2 3 4 5 6 7 8 9 10 11 12 13
Items↓

I 3.27 2.05 3.33 1.87 2.03 3.68 2.87 2.67 + 1.84 1.73 2.82 2.77 2.73
II 2.97 1.61 4.38 2.97 2.12 2.68 1.59 + 2.96 0.39 + 3.19 2.41 + 2.17 2.88
III 3.11 3.11 1.69 1.57 + 0.85 + 4.90 1.89 3.09 2.17 1.57 + 3.60 3.51 3.75
IV 2.03 + 1.25 + 1.18 + 1.59 1.84 2.38 + 2.43 4.20 2.35 2.93 3.22 1.08 + 1.69 +

FF Obs. 2.03 1.25 1.18 1.57 0.85 2.38 1.59 2.67 0.39 1.57 2.41 1.08 1.69

Groups→ 14 15 16 17 18 19 20 21 22 23 24 25
Items↓

I 5.56 2.81 2.55 4.70 1.36 + 3.22 1.61 3.15 4.91 3.31 2.76 0.98 +
II 1.41 + 3.39 2.17 2.59 2.83 1.71 + 2.85 4.42 1.17 1.92 5.08 3.39
III 2.48 3.68 3.56 3.19 2.74 3.65 1.47 + 2.00 + 1.12 + 1.80 + 3.28 2.50
IV 2.95 0.81+ 1.22 + 2.56 + 2.53 3.15 2.79 2.81 3.70 2.55 2.48 + 3.31

FF Obs. 1.41 0.81 1.22 2.56 1.36 1.71 1.47 2.00 1.12 1.80 2.48 0.98
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Table 8. Censoring schemes and progressively first-failure censored samples corresponding to
considered real data set.

(k, n, m) [CS] Schemes Progressively First-Failure Censored Samples

(4,25,10) [CS1] (151, 09) 0.39, 1.80, 1.84, 2.03, 2.12, 2.17, 2.48, 2.50, 2.73, 2.77
[CS2] (53, 07) 0.39, 1.18, 1.57, 2.03, 2.12, 2.17, 2.48, 2.50, 2.73, 2.77
[CS3] (09, 151) 0.39, 0.81, 0.85, 0.98, 1.08, 1.12, 1.18, 1.22, 1.25, 1.36

(4,25,20) [CS4] (51, 019) 0.39, 1.18, 1.22, 1.25, 1.36, 1.41, 1.47, 1.57, 1.59, 1.61,
1.69, 1.80, 1.84, 2.03, 2.12, 2.17, 2.48, 2.50, 2.73, 2.77

[CS5] (21, 31, 018) 0.39, 0.98, 1.22, 1.25, 1.36, 1.41, 1.47, 1.57, 1.59, 1.61,
1.69, 1.80, 1.84, 2.03, 2.12, 2.17, 2.48, 2.50, 2.73, 2.77

[CS6] (019, 51) 0.39, 0.81, 0.85, 0.98, 1.08, 1.12, 1.18, 1.22, 1.25, 1.36,
1.41, 1.47, 1.57, 1.59, 1.61, 1.69, 1.80, 1.84, 2.03, 2.12

Table 9. MLEs and Bayes estimates of λ and H(λ) for the PFFC samples in Table 8 with k = 4, n = 25,
m = 10 and 20, and c = −0.5 and 0.5.

(k, n, m) [CS]

MLE

T-K Bayes M-H Bayes

c = −0.5 c = 0.5 c = −0.5 c = 0.5

λ̂ Ĥ λ̂ H λ̂ Ĥ λ̂ Ĥ λ̂ Ĥ

(4,25,10) [CS1] 9.2897 1.7640 13.4153 1.7800 8.7078 1.7714 9.6163 1.7467 8.5906 1.7436
[CS2] 10.6695 1.8333 11.5620 1.8493 9.9031 1.8411 11.1367 1.8167 9.8262 1.8137
[CS3] 5.6674 1.5169 6.5958 1.5330 5.5463 1.5304 5.7261 1.5016 5.3784 1.4988

(4,25,20) [CS4] 6.6806 1.5992 7.2764 1.6083 6.5572 1.6046 6.7445 1.5903 6.4575 1.5887
[CS5] 6.7637 1.6054 7.3707 1.6145 6.6362 1.6107 6.8301 1.5965 6.5371 1.5949
[CS6] 5.7635 1.5254 6.2046 1.5344 5.6944 1.5308 5.8011 1.5169 5.5937 1.5153

Table 10. Ninety-five percent asymptotic (Asym), percentile bootstrap (boot-p), bootstrap-t (boot-t)
confidence intervals, and the Bayesian HPD credible intervals for the parameter λ and Shannon’s
entropy H(λ) for the PFFC samples in Table 8 with k = 4, n = 25, m = 10 and 20, and c = −0.5 and
0.5.

Interval estimates for parameter λ

Bootstrap HPD

(k, n, m) [CS] Asym boot-p boot-t c = −0.5 c = 0.5

(4,25,10) [CS1] (4.973, 13.606) (6.636, 12.366) (6.213, 11.944) (6.357, 11.872) (6.357, 11.872)
[CS2] (5.804, 15.535) (7.816, 13.602) (7.736, 13.523) (7.365, 13.587) (7.365, 13.587)
[CS3] (3.157, 8.178) (3.880, 8.365) (2.970, 7.454) (3.967, 7.187) (3.967, 7.187)

(4,25,20) [CS4] (4.478, 8.883) (5.006, 8.771) (4.590, 8.355) (5.125, 8.058) (5.125, 8.058)
[CS5] (4.538, 8.989) (5.044, 8.824) (4.703, 8.483) (5.192, 8.156) (5.192, 8.156)
[CS6] (3.893, 7.634) (4.064, 7.962) (3.565, 7.463) (4.443, 6.937) (4.443, 6.938)

Interval estimates for Shannon’s entropy H(λ)

Bootstrap HPD

(k, n, m) [CS] Asym boot-p boot-t c = −0.5 c = 0.5

(4,25,10) [CS1] (1.532, 1.996) (1.596, 1.907) (1.621, 1.932) (1.591, 1.900) (1.591, 1.900)
[CS2] (1.605, 2.061) (1.678, 1.955) (1.712, 1.989) (1.664, 1.968) (1.664, 1.968)
[CS3] (1.295, 1.738) (1.327, 1.712) (1.322, 1.706) (1.353, 1.648) (1.353, 1.648)

(4,25,20) [CS4] (1.434, 1.764) (1.455, 1.735) (1.463, 1.743) (1.472, 1.698) (1.472, 1.698)
[CS5] (1.441, 1.770) (1.459, 1.738) (1.472, 1.752) (1.478, 1.704) (1.478, 1.704)
[CS6] (1.363, 1.688) (1.351, 1.687) (1.364, 1.700) (1.400, 1.623) (1.400, 1.623)
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(a) Censoring scheme [CS1].

(b) Censoring scheme [CS2].

(c) Censoring scheme [CS3].

(d) Censoring scheme [CS4].

(e) Censoring scheme [CS5].

(f) Censoring scheme [CS6].
Figure 4. MCMC diagnostic plots for different PFFC samples in Table 8.
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Figure 5. Simulated posterior predictive densities for the Bayesian estimates based on different PFFC
samples in Table 8.

6. Concluding Remarks

In this study, we developed statistical inference for the associated parameter and Shan-
non’s entropy of MWD based on PFFC data using frequentist and Bayesian approaches.
For frequentist estimation procedures, we applied the EM algorithm to compute the MLEs.
In addition, we obtained asymptotic, percentile bootstrap, and bootstrap-t confidence
intervals for the parameter and Shannon’s entropy of MWD. For Bayesian estimation pro-
cedures, we applied two approximation techniques—the T-K approximation and the M-H
algorithm—to obtain the Bayes estimates under the LINEX loss function. Moreover, we use
the M-H algorithm to obtain the HPD credible intervals for the parameter and Shannon’s
entropy of MWD. A Monte Carlo simulation study is used to evaluate the performance of
the estimation procedures and a real data analysis is used to illustrate the methodologies.
Based on the simulation results, we recommend using the Bayesian point and interval esti-
mation of the parameter and Shannon’s entropy based on the MCMC method for the MWD
when prior information about the model parameter is available. If the prior information
about the model parameter is unavailable, then the MLEs are recommended.

For future research, it will be interesting to study the optimal censoring plan (i.e., to
determine the values of n, k, and the censoring scheme

˜
G = (G1, G2, . . . , Gm)) for specific

effective sample size m and the total sample size available for the experiment (i.e., nk) to
maximize the information about the Shaanon’s entropy can be obtained. On the other
hand, we consider MWD due to its simplicity. Considering the trade-off between model
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performance/usability and complexity, if one is willing to use a more complex model with
higher flexibility, the current work can be extended to some generalized distributions.
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