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Abstract: Rice (Oryza sativa L.) is a vital food source all over the world, contributing 15% of the
protein and 21% of the energy intake per person in Asia, where most rice is produced and consumed.
However, bacterial, fungal, and other microbial diseases that have a negative effect on the health of
plants and crop yield are a major problem for rice farmers. It is challenging to diagnose these diseases
manually, especially in areas with a shortage of crop protection experts. Automating disease identifi-
cation and providing readily available decision-support tools are essential for enabling effective rice
leaf protection measures and minimising rice crop losses. Although there are numerous classification
systems for the diagnosis of rice leaf disease, no reliable, secure method has been identified that
meets these needs. This paper proposes a lightweight federated deep learning architecture while
maintaining data privacy constraints for rice leaf disease classification. The distributed client–server
design of this framework protects the data privacy of all clients, and by using independent and
identically distributed (IID) and non-IID data, the validity of the federated deep learning models
was examined. To validate the framework’s efficacy, the researchers conducted experiments in a
variety of settings, including conventional learning, federated learning via a single client, as well
as federated learning via multiple clients. The study began by extracting features from various
pre-trained models, ultimately selecting EfficientNetB3 with an impressive 99% accuracy as the
baseline model. Subsequently, experimental results were conducted using the federated learning (FL)
approach with both IID and non-IID datasets. The FL approach, along with a dense neural network
trained and evaluated on an IID dataset, achieved outstanding training and evaluated accuracies
of 99% with minimal losses of 0.006 and 0.03, respectively. Similarly, on a non-IID dataset, the FL
approach maintained a high training accuracy of 99% with a loss of 0.04 and an evaluation accuracy
of 95% with a loss of 0.08. These results indicate that the FL approach performs nearly as well as the
base model, EfficientNetB3, highlighting its effectiveness in handling both IID and non-IID data. It
was found that federated deep learning models with multiple clients outperformed conventional
pre-trained models. The unique characteristics of the proposed framework, such as its data privacy
for edge devices with limited resources, set it apart from the existing classification schemes for rice
leaf diseases. The framework is the best alternative solution for the early classification of rice leaf
disease because of these additional features.
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1. Introduction

Agriculture is essential for human survival because it supports and regulates the food
chain. Previously, farmers relied on frequent field visits to check on crop growth, which
frequently resulted in food shortages because of calamities caused by nature and human
error [1]. Traditional farming practices are often less profitable because they require a lot
of human labour. Along with meeting consumer demand, the food production industry
has a duty to combat poverty, prevent malnutrition, and protect freshwater resources.
Grains, such as wheat (Triticum aestivum L.), rice (Oryza sativa L.), and maize (Zea mays
L.) are frequently used as a primary food source and give people the energy they need
for daily activities [2]. The production of these three grains, which is the biggest in the
world, is incredibly plentiful [3]. Wheat has the most area harvested each year with
214 million ha, followed by rice with 154 million ha and maize with 140 million ha. Human
consumption accounts for 85% of total production for rice, compared with 72% for wheat
and 19% for maize [4]. Rice is a vital food consumed globally and is produced almost
entirely domestically. In Asia, rice is a well-liked and reasonably priced nutrient source.
According to FAOSTAT, rice is grown in five continents: Asia, Africa, America, Europe,
and Oceania [5].

Rice crop fields are vulnerable to damage from diseases and pests every year, and
inexperienced young farmers may struggle to identify the exact disease affecting their crops.
The majority of the time, rice diseases are found using carefully supervised techniques,
such as a visual inspection of the crops or lab tests [6]. A skilled person is needed for visual
inspection, which can take a lot of time. Laboratory experimentation, on the other hand,
involves a lengthy process and the use of chemical reagents. In most nations, the demand
for rice is anticipated to increase more quickly than the supply. Damage to the rice crop
is unacceptable for this reason, regardless of the cause. It is necessary to automate the
detection of rice leaf diseases to reduce crop losses [7]. By continually scanning crops for
potential infections, this automated method of disease identification will also lower labour
costs. For automatically identifying rice leaf diseases, numerous researchers have put
forward fascinating ideas [8]. There are many machine learning (ML)/deep learning (DL)
and internet of things (IoT) approaches available for early rice leaf diseases identification
and they have proven successful in a number of different fields. However, for the past
ten years, applying ML to decentralised data has been a difficult task [9]. To enable a
decentralised approach, a framework that integrates multiple methods of deep learning in
real-time to support the data privacy, lessen communication costs, and provide a distributed
framework for training and testing is required. Lightweight federated learning is in demand
right now to address important issues such as data privacy, security, access rights, and
heterogeneous data access [10].

Federated learning (FL) is extremely valuable for maintaining privacy while per-
forming deep learning tasks, particularly in the domain of classifying diseases that affect
rice leaves. Its potential is based on its ability to effect fundamental changes in fields
of distributed ML/DL, particularly in terms of privacy and security. Since 2018, more
researchers have become interested in running FL experiments across many important
industries, including healthcare and finance [11–14]. It accomplishes this without requiring
data transfer from the participants’ individual client nodes. Researchers at Google came
up with this method, which entails training distributed datasets in a centralised parameter
server [15]. Lightweight FL refers to the development of algorithms and methods that
reduce the amount of computational and communication resources needed for model train-
ing on edge devices or distributed systems. In environments with limited resources, such
as those involving mobile devices, IoT devices, or networks with constrained bandwidth, it
is intended to make federated learning effective and scalable. It could be put to use in a
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variety of applications that call for quick analytics on widely dispersed data. To classify the
diseases of rice leaves, there is still a dearth of research in the area of FL. For the successful
application of FL in real-world scenarios, these issues must be resolved. Figure 1 illustrates
the three steps that make up the FL process.
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i. Every client trains the model locally at their respective local site using their own data
set (images of rice leaf disease), then uploads the locally trained model to the main
server;

ii. The central server integrates local models, updates, trains a global model, then pro-
vides access to the updated model for all clients;

iii. Every client uses the parameters received by the globally trained model from the
central server to both inform their own decisions and take part in the next cycle of
model updates.

Federated learning, which protects clients’ privacy during the training process, is better
suited for data-sensitive applications than the current ML/DL approaches. Since a node
participating in federated learning has access to a local model, intermittent connectivity
problems have little effect on its performance [16]. The communication overhead is also
addressed which is a significant drawback of conventional ML/DL approaches.

Agriculture plays an important role in supporting the growing population and serving
as an essential energy source. Plant diseases present a serious risk to crop quality and yield,
which has an effect on agricultural development. Expert manual observation, which takes
time and requires a lot of work, has traditionally been the standard method for identifying
rice leaf disease. A model for automatic disease detection in rice leaves has been created to
address these issues [17]. Deep learning (DL), a powerful image processing technique, has
demonstrated remarkable success in various tasks such as scene analysis, disease detection,
and object detection [18]. Specifically, in the context of rice diseases, DL can be effectively
utilized for leaf diagnosis, allowing farmers to make informed decisions on whether to
apply crop treatments based on the detected diseases affecting the leaves.

In this study, an FL-based model was proposed for the classification of rice leaf
diseases due to the several advantages that make it suitable for the requirements of rice
leaf disease classification. Firstly, it addresses data privacy concerns by allowing the
training process to be performed directly on users’ devices, without the need to transfer
sensitive agricultural data to a central server. When working with sensitive data, this is
especially crucial. Second, distributed datasets from various sources can be handled by
federated learning [19]. Since different regions or nations may have a variety of diseases or
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environmental factors influencing the growth of rice plants, this is helpful in the context of
classifying rice leaf diseases. The classification models can be more reliable and accurate by
utilising data from different sources [20]. Federated learning plays a crucial role in reducing
communication costs, which is particularly important for agricultural applications where
internet connectivity can be unreliable or limited in certain areas. By enabling localized
model training, federated learning enhances productivity and minimizes the necessity for
extensive communication. Due to these benefits, federated learning is a desirable method
for categorizing rice leaf diseases while addressing data privacy issues, allowing for a
variety of datasets and improving communication in resource-constrained settings. The
proposed work focuses on rice leaf disease classification as it can significantly help farmers
and agricultural researchers to identify crop diseases. The paper’s main contributions are:

i. Implementing a lightweight federated learning approach for rice leaf disease classifi-
cation;

ii. Implementing an improved distributed training model using federated learning with
IID and non-IID datasets;

iii. The proposed procedure has demonstrated effectiveness compared to present tech-
niques with data privacy for rice leaf diseases classification.

2. Related Study

In several studies, different ML/DL techniques were used to identify and categorise
rice leaf diseases. Jiang et al. [21] devised an approach using a deep learning Convolu-
tional Neural Network (DCNN) model and a Support Vector Machine (SVM) classifier,
with an impressive testing accuracy of 96.8% on a dataset of 8911 images. In a similar
vein, Krishnamoorthy et al. [22] proposed two different CNN architectures, Simple CNN
and InceptionResNetV2, and used transfer learning techniques to achieve an astound-
ing accuracy of 95% for disease recognition. Furthermore, Rallipali et al. [23] used CNN
models, particularly AlexNet and M-Net, to identify various rice leaf diseases with an
accuracy of 71.98% using a dataset of 120 images. On the other hand, Prajapati et al. [24]
used the K-means clustering algorithm and morphological operations to segment diseases,
which resulted in a classification accuracy of 73.33% using an SVM classifier on a dataset
containing 40 images for each disease. Kumar et al. [25] suggested pre-trained models,
such as MobileNet and InceptionNetV2, with validation accuracies of 70.31% and 76.56%,
respectively, for the identification of rice leaf disease. In addition, Azim et al. [26] pro-
posed a model for classifying brown spot, leaf smut, and bacterial leaf blight diseases that
combined saturation and hue threshold segmentation techniques with a gradient boost-
ing decision tree algorithm, achieving accuracies of 86.58% with XGBoost and 81% with
SVM. In contrast to earlier techniques, Pallathadka et al. [27] developed a comprehensive
machine learning framework that made use of histograms for image processing, principal
component analysis for extracting features and SVM, Naive Bayes, and CNN models for
classification. Finally, Bhartiya et al. [28] used a quadratic SVM classifier for extracting
shape features and classified rice leaf disease with an accuracy of 81.8%. In Table 1 different
algorithms that have been utilized for identifying various rice leaf diseases are discussed.
However, the compromise between accuracy and data privacy is a significant concern.
While algorithms can achieve high accuracy in disease detection, there may be potential
implications for data privacy.
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Table 1. Comparative study of various techniques.

Reference Area of Study Algorithm ML/DL FL Data Privacy Evaluation
Parameters

[21] Rice leaf
diseases DCNN, SVM

√
X Not

implemented Accuracy = 96.8%

[22] Rice leaf
diseases

CNN
InceptionNetV2

√
X Not

implemented Accuracy = 95%

[23] Rice leaf
diseases

CNN, AlexNet
M-Net

√
X Not

implemented Accuracy = 71.9%

[25] Rice leaf
diseases

MobileNet
InceptionNetV2

√
X Not

implemented

Validation
Accuracies
70.31%, 76.56%

[26] Rice leaf
diseases XGBoost, SVM

√
X Not

implemented
Accuracies
86.5%, 81%

[27] Rice leaf
diseases

CNN, SVM,
Naïve Bayes, PCA

√
X Not

implemented better

[24] Rice leaf
diseases KMeans, SVM

√
X Not

implemented Accuracy = 73.33%

[28] Rice leaf
diseases Quadratic SVM

√
X Not

implemented Accuracy = 81.8%

[10] Driver
Behaviour

Bi-LSTM, CNN-Bi-
LSTM, LSTM,
CNN-LSTM

√ √
Implemented Validation

Accuracy = 89%

[29] Disaster
prediction

VGG16, DenseNet,
ResNet,
InceptionRes-NetV2

√ √
Implemented Validation

Accuracy = 74%

[16] Fake News
Bi-LSTM, CNN-Bi-
LSTM, LSTM,
CNN-LSTM

√ √
Implemented Validation

Accuracy = 90–92%

[9] Analyse Milk
Quality

CNN, LSQR,
PLSR, NNPLS

√ √
Implemented

Mean Accuracy
LSQR = 82%
PLSR = 84%
CNN = 87%
NNPLS = 89%

Researchers have acknowledged the use of enhanced ML/DL for the classification
of diseases affecting rice leaves. However, they frequently shared the raw or processed
data across distributed system environments to improve the accuracy of these algorithms.
These methods increased the accuracy but also brought up issues with data privacy and
communication costs. Given the situation, a perfect solution is required that guarantees
data security, lowers communication costs, and offers a decentralised environment for
developing and testing AI models. Federated learning can meet these needs by making it
possible to train models collaboratively while protecting data privacy and cutting down on
communication costs [19,30,31]. Researchers can accurately identify rice leaf diseases while
maintaining significant data security and lowering communication costs in a decentralised
training and testing environment by using a federated learning approach. The federated
learning approach proposed by [10,16,29] offers a framework for dealing with the detection
of fake news, driver behaviour analysis, and disaster prediction. This method gives
different stakeholders the ability to create accurate and secure models in these domains
while maintaining data privacy, enhancing decision-making and reducing the potential
risks.

Federated learning is important to detect rice leaf diseases because it makes possible
to combine distributed datasets from various farmers and regions, giving researchers a
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thorough understanding of how diseases behave in various environments. Federated
learning has become known as a promising solution to the privacy and distributed data
challenges in ML/DL systems. It introduces a new concept for secure learning that allows
multiple devices or edge devices to collectively train a shared model without sharing raw
data. Google has been at the forefront of developing and implementing federated learning
techniques. They recognized the limitations of centralized architectures that rely on data
sharing and devised FL as a solution. FL ensures that these devices can contribute to the
learning process without compromising their privacy. Additionally, FL minimizes data loss
by enabling local training on edge devices, thereby reducing the need for extensive data
transmission [32].

The traditional ML-based approach obtains raw data for predicting rice leaf diseases.
Because of the exponential growth of data, machine learning has grown in popularity
within agriculture. Many ML systems, however, suffer from a lack of training data [15].
This is primarily due to growing data privacy concerns, such as restrictions on sharing
information with other systems. Data analytical frameworks need to be combined with
incorporated services in order to provide such services [9]. FL is highly suitable for resolving
data privacy concerns in such environments by facilitating the sharing of trained models
instead of raw data between resources. Truong et al. [12] proposed a novel FATRAF (FL-
based auto encoder transformer Fourier anomaly detection architecture) was introduced,
demonstrating its remarkable ability to achieve superior anomaly detection performance for
time series data in industrial control systems (ICSs). This lightweight model is particularly
beneficial for ICS security, as it allows for frequent updates in changes detected in the
normal behaviours of smart devices used in a smart factory environment. Khullar and
Singh [16] introduced a federated-Fake News Classification (f-FNC) framework, which
leverages a distributed client–server architecture to ensure data privacy for all connected
edge devices or clients. The framework utilizes LSTM, BiLSTM, CNN-LSTM, and CNN-Bi-
LSTM deep learning algorithms with both independent and non-independent identically
distributed (IID and non-IID) datasets. By adopting a multi-client federated learning
approach, the framework achieved an impressive maximum accuracy range of 90–92% for
fake news classification.

3. Materials and Methods

The methods and algorithms used in the suggested work are illustrated in this sec-
tion. This paper presents a federated deep learning architecture to address data privacy
constraints in the classification of rice leaf diseases. The framework employs a distributed
client–server design, ensuring the privacy of all client data through the utilization of both
identically and non-identically distributed (IID and non-IID) data.

3.1. Federated Learning

Federated learning is a disseminated optimisation ML technology developed in 2017
by Google researchers to train remote datasets on a centralised parameter server. The
training of a shared predictive model is carried out without the need to transfer data
from client nodes such as mobile phones and gateway devices, thus preventing data
drift [17]. As a result, this technique offers a greater potential for use in a broader range of
applications where rapid analytics based on widely distributed data is required. Since many
client devices are involved in federated learning, it can be thought of as a comprehensive
distributed systems [30].

In a federated learning (FL) system, there are three main components: the server, the
communication background, and the clients. The prescribed definition of FL involves M
clients (M1, M2. . . MN) that have their own datasets (D1, D2. . . DN), and the complete
dataset is represented as DN = D1 ∪ D2 ∪ . . . ∪ DN. Further description mentioned in
Algorithm 1.
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Algorithm 1 (FedAvg: Federated Learning)

M- Clients from 1 to n
F- fractions of clients used per round
B- Mini batch size (local)
E- Epoch number (local)

Server() //At Global Server
Initialize global weights:
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3.2. Data Collection and Pre-Processing

The entire dataset contains 5932 images of rice diseases such as bacterial leaf blight,
blast, brown spot, and tungro. Some of the images were collected from the rice field of
western Odisha and some are collected from an agricultural pest and insect pests picture
database [33]. Figure 2 depicts four types of rice diseases. The images are all properly
labelled and are kept in JPG format. As shown in Table 2, there are 5932 images, 1584 of
which are of bacterial leaf blight, 1440 of blast, 1600 of brown spot, and 1308 of tungro.
Each image depicts a different rice disease. In order to simulate a federated environment
for a dataset (i.e., the total rows in dataset divided by the total clients), the data collected
were randomly divided into equal parts based on the number of clients participating in
the simulation. Each client was then assigned a random partition of the dataset. This
distribution was meant to mimic a scenario where each client had their own unique and
diverse dataset.

Table 2. Particulars of images available in data set.

Leaf Disease Name Original Images Training Data (80%) Testing Data (20%)

Bacterial leafblight 1584 1267 317

Blast 1440 1140 300

Brown spot 1600 1290 310

Tungro 1308 1048 260

Total 5932 4745 1187

The dataset has been pre-processed by resizing the images to meet the deep learning
model’s requirements, such as 75 × 75 size, and applying grayscale. The pre-processed
data was then partitioned at random for distribution to N clients, each of which had their
own pre-processed data to use as training and evaluation for federated learning at their
end. The data distribution was done to simulate a situation in which each client had a
portion of a dataset.
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3.3. Feature Extraction

The process of changing raw data into a set of significant characteristics that can be
used for evaluation or machine learning tasks is referred to as feature extraction. Feature
extraction is a technique used in many fields, including artificial intelligence, natural
language processing, and signal processing, to identify significant patterns, characteristics,
or representations in input data. This process helps to simplify and enhance the subsequent
analysis or modelling tasks. The feature extraction process plays a crucial role in deep
learning networks, which consist of pooling and convolutional layers. These layers are
designed to extract image features that are useful for tasks such as target identification
and positioning [34]. Deep features were obtained by extracting information from the fully
connected layer, and these features were then utilized as input for the training process of
the classifier.

Different configurations can be experimented with to enhance the performance of
models in rice leaf disease detection, such as incorporating layers, modifying the learning
rate, or altering the amount of neurons per layer, also accelerate this process by using
pre-trained models [35]. These models offer significant time and computational resource
savings.

In this research, 13 pre-trained models were utilized to extract features. These models,
such as VGG, ResNet, and Inception, have been trained on large datasets such as ImageNet
and have learned to extract useful features from images. These extracted features serve as
inputs for subsequent processes such as object recognition, segmentation, and classification,
enabling the accurate identification of rice leaf diseases. By modifying each segment for the
feature extraction process, the accuracy of these features can be enhanced even with limited
data. This method significantly accelerates training and improves accuracy by utilising
specific model architectures with various layers, such as reshape, flatten, dense, dropout,
and activation functions [23]. Table 3 provides details of the feature extractors, including
their size, parameters, depth, input shape, and feature layer.
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Table 3. Feature extractor with weights.

Pre-Trained Model Input Shape Size
(MB) Parameters Depth Feature Layer

DenseNet201 (224-224-3) 80 20.2M 402 2D Global average
pooling

EfficientNetB3 (300-300-3) 48 12.3M 210 Dropout

EfficientNetB4 (380-380-3) 75 19.5M 258 Dropout

EfficientNetB5 (456-456-3) 118 30.6M 312 Dropout

EfficientNetB6 (528-528-3) 166 43.3M 360 Dropout

InceptionResnetV3 (229-229-3) 215 55.9M 449 2D Global average
pooling

ResNet101 (224-224-3) 171 44.7M 209 2D Global average
pooling

ResNet101V2 (224-224-3) 171 44.7M 205 2D Global average
pooling

ResNet152 (224-224-3) 232 60.4M 311 2D Global average
pooling

ResNet152V2 (224-224-3) 232 60.4M 307 2D Global average
pooling

VGG16 (224-224-3) 528 138.4M 16 Dense

VGG19 (224-224-3) 549 143.7M 19 Dense

Xception (229-229-3) 88 22.9M 81 2D Global average
pooling

3.4. IID and Non-IID Data

In FL, IID and non-IID data refer to different distribution patterns of data across the
participating devices or clients.

In IID data each client or device in the federated learning setup possesses a similar
distribution of data. The data across clients is independent and follows the same statistical
distribution. For example, if the task is image classification, IID data would mean that each
client has a similar proportion of images from different classes [15]. On the other hand,
non-IID means the distribution of data across clients is not identical or independent. The
data may have different statistical properties, such as varying class distributions, different
feature representations, or imbalanced data [36]. For example, in image classification, each
client may have a different set of classes or an imbalanced distribution of classes.

Figure 3 represents how the IID and non-IID data sets are distributed among different
famers’ sites. The IID data set is equally distributed, and the non-IID data set is distributed
randomly among different farmers’ sites.
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3.5. Proposed Federated Learning Framework for Rice Leaf Disease Images Classification

The need for rice leaf disease images classification arises from the desire to safeguard
rice crops, enhance agricultural productivity, and ensure food security. By leveraging
technology to develop accurate and efficient detection methods, farmers can be empow-
ered with the necessary tools to effectively manage and mitigate the impact of rice leaf
diseases. Farmers and researchers collect sensitive information related to their crops, such
as images of infected rice leaves, geographic locations, and farming practices. This data
may contain proprietary information or personally identifiable information (PII) that needs
to be protected. In this section, the proposed work focuses on implementing and analysing
the performance of federated learning for rice leaf disease classification. The proposed
framework for classification of rice leaf disease is discussed in Figure 4.
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Figure 4. Methodology for baseline pre-trained model for rice leaf disease classification.

Firstly, the features from the given classes of rice leaf diseases were extracted using
various pre-trained models. A comparison was made between different trained models
based on their training and validation accuracies to determine which model performed the
best, and EfficientNetB3 was found to be the best-performing model. When implementing
a federated learning (FL) system, one of the challenges is ensuring that the learning model
can run efficiently on the edge devices, which act as the monitors of each zone. This requires
the learning model to be lightweight, allowing it to feasibly operate on these devices. The
lightweight nature of the model becomes crucial in the design of any FL-based system [37].
That is why we used a dense neural network for classification, which is a 3-layer model,
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instead of using another heavy and highly trained model. Each neuron in a layer of this
kind of network is linked to every neuron in the layer below it, enabling the transmission
of computation and data through multiple layers. EfficientNetB3 was chosen as a baseline
model because it performed the best overall and had been implemented in a federated
environment.

The proposed framework for federated learning in rice leaf disease classification pre-
sented in Figure 5 utilised a client–server architecture. Python programming libraries
such as Keras and TensorFlow supported the implementation of the framework. Every
network client had a dedicated processing and storage system to manage their unique
structured data and produce model training and weights. The federated global weights of
the trained models of the clients were processed by the remote server. Compared to tradi-
tional distributed machine learning and deep learning frameworks, the proposed federated
framework reduces communication overhead and data privacy issues by transmitting only
trained models between the client and server.
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The full implementation procedure was as follows:
Step 1: Every client within the M-clients system independently collected data on rice

leaf disease and stored it in its corresponding storage system.
Step 2: The collected datasets of rice leaf disease images underwent individual cleaning

and pre-processing by every client within the M-clients system.
Step 3: Next, the dataset was prepared at the edges of the M-clients system for the rice

leaf diseases classification using federated learning.
Step 4: In the classification process, features were extracted using 13 pre-trained

models on both IID and non-IID data to identify the best trained model, i.e., EfficientNetB3
as a baseline model.

Step 5: Each client trained the baseline model locally with Dense Neural Network
(DNN).

Step 6: The federated learning process was initiated by the server, starting with the
initial weights. The server shared the available initial weights with the M-clients in the
aggregation server.
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Step 7: Each client initialised their individual training and validation using their own
datasets after receiving the weights. Every client delivered their updated weights to the
server after the training process was complete in order to determine the federated average
weights.

Step 8: The weights collected from all connected clients were used by the server to
calculate the federated average (FedAvg) weights.

Step 9: The federated server then sent all connected clients the resultant federated
average (FedAvg) weights from Step 8 again for processing.

3.6. Model Validation

The suggested pre-trained models were trained by the labelled data, which were
classified into two different classes. The “bacterial leaf blight” had 1584 images, “Blast”
had 1440 images, “Brownspot” had 1308 images, and” Tungro” had 1308 images of rice
leaf diseases. The model was built using Keras and Tensorflow 2.0 and used RTX 2080Ti
as GPU for this experimental setup. The segmented images with a 3 × 3 filter helped the
models to learn key features of the rice leaf diseases. The actual shape of the images was
256 × 256, but it was resized into 75 × 75 to train our model. Further, the data was split
into training and testing data in the ratio 80:20. Twenty percent of data (1187) were kept in
the validation set for testing the models’ performance. While training the models, it was
needed to estimate how well our model was learning per each iteration.

4. Results

This section provides a discussion of the results obtained from comparing the per-
formance of conventional DL algorithms, namely VGG16, VGG19, Resnet152, DenseNet,
InceptionResnetV2, Xception, EfficientNetB3, etc., for rice leaf disease classification. The
best-trained model was determined through a comparative analysis based on training-
evaluated accuracies. The conclusion of the study indicates that the pre-trained model
EfficientNetB3 achieved the highest training and evaluated accuracy, reaching 99%. Table 4
and Figure 6 show the results of traditional machine learning with dense architecture.

Table 4. Baseline results with dense neural network.

Training Accuracy

Epochs DN201 ENB3 ENB4 ENB5 ENB6 IRV2 RN101 RN101V2 RN152 RN152V2 VGG16 VGG19 Xception

25 0.89 0.98 0.85 0.88 0.86 0.94 0.86 0.82 0.86 0.75 0.87 0.85 0.95

50 0.95 0.99 0.9 0.94 0.93 0.96 0.92 0.88 0.92 0.83 0.93 0.91 0.97

75 0.96 0.99 0.93 0.96 0.95 0.97 0.93 0.91 0.94 0.86 0.95 0.94 0.98

99 0.97 0.99 0.95 0.97 0.96 0.98 0.93 0.93 0.96 0.88 0.96 0.95 0.98

Validation Accuracy

Epochs DN201 ENB3 ENB4 ENB5 ENB6 IRV2 RN101 RN101V2 RN152 RN152V2 VGG16 VGG19 Xception

25 0.91 0.98 0.87 0.91 0.84 0.92 0.87 0.81 0.85 0.79 0.88 0.86 0.92

50 0.94 0.98 0.91 0.94 0.95 0.95 0.91 0.88 0.91 0.83 0.94 0.91 0.96

75 0.96 0.99 0.87 0.91 0.96 0.96 0.94 0.91 0.93 0.84 0.96 0.91 0.97

99 0.97 0.99 0.93 0.97 0.96 0.96 0.91 0.93 0.95 0.87 0.96 0.96 0.97

Further, a federated learning approach was implemented using the trained model
EfficientNetB3 as a baseline model. The dataset was distributed to local machines for
training, and the trained models were shared at the aggregated server end. The process
was repeated for ten communication rounds with 10 epochs per round, and a validation
was conducted after each round. The federated architecture consisted of one server and
10 clients with different data chunks. In federated learning, the data set is distributed to
each local machine itself. Individual local machines use 10 epochs to complete one training
cycle and train the model and to share their trained model with an integrated system as
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well. The federated average (FedAvg) function at the server end was used to train the
collected models from different clients. The global model is then shared with the connected
clients. Individual clients retrained the machine using the global model as a baseline after
receiving the global model. The distributed data is both of type IID, i.e., identical and
independent, and non-IID. In Tables 5 and 6, the results of federated learning with IID data
and non-IID data are discussed.
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Table 5. EfficientNetB3 deep learning’s training-evaluated accuracy and loss comparison of FL (IID).

Federated Learning (IID)

Comm.Round Epoch Training
Accuracy

Change
(+/−)

Training
Loss Change (+/−) Validation

Accuracy
Validation
Loss

1 1 0.99 0.0 0.023 −0.009 0.96 0.2

10 0.99 0.014

2 1 0.98 0.01 0.031 −0.02 0.98 0.1

10 0.99 0.011

3 1 0.98 0.01 0.051 −0.035 0.95 0.2

10 0.99 0.016

4 1 0.99 0.0 0.041 −0.033 0.99 0.06

10 0.99 0.008

5 1 0.98 0.01 0.039 −0.034 0.99 0.08

10 0.99 0.005
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Table 5. Cont.

Federated Learning (IID)

Comm.Round Epoch Training
Accuracy

Change
(+/−)

Training
Loss Change (+/−) Validation

Accuracy
Validation
Loss

6 1 0.99 0.01 0.024 −0.02 1 0.009

10 1 0.004

7 1 0.98 0.0 0.113 −0.094 0.98 0.01

10 0.98 0.019

8 1 0.97 0.01 0.06 −0.04 0.97 0.33

10 0.98 0.02

9 1 1 −0.01 0.009 −0.001 0.97 0.19

10 0.99 0.005

10 1 0.98 0.01 0.05 −0.004 0.99 0.03

10 0.99 0.006

Table 6. EfficientNetB3 deep learning’s training-evaluated accuracy and loss comparison of FL
(non-IID).

Federated Learning (Non-IID)

Comm.Round Epoch Training
Accuracy

Change
(+/−)

Training
Loss Change (+/−) Validation

Accuracy
Validation
Loss

1 1 0.95 0.02 0.11 −0.03 0.94 0.13

10 0.97 0.08

2 1 0.96 −0.01 0.15 −0.04 1 0.02

10 0.95 0.11

3 1 0.93 0.07 0.19 −0.13 1 0.01

10 0.99 0.06

4 1 1 −0.04 0.02 0.03 0.96 0.1

10 0.96 0.05

5 1 0.95 0.02 0.12 −0.04 0.97 0.15

10 0.97 0.08

6 1 0.97 0.01 0.09 −0.04 0.96 0.18

10 0.98 0.05

7 1 0.97 0.01 0.08 −0.02 0.92 0.33

10 0.98 0.06

8 1 0.95 0.02 0.22 0.08 0.94 0.17

10 0.97 0.14

9 1 0.95 0.01 0.16 −0.05 0.95 0.12

10 0.96 0.11

10 1 0.97 0.02 0.07 −0.03 0.95 0.08

10 0.99 0.04
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Figure 7 shows the accuracy and loss results for ten communication rounds, i.e., C-0
to C-9. After ten communication rounds, the training accuracy was 0.99 and the training
loss was 0.006 when the data were distributed identically and independently. For non-IID
training, accuracy and loss were 0.99 and 0.04, respectively. The evaluated accuracy and
loss were 0.99 and 0.03 for IID data, and for non-IID data, the maximum evaluated accuracy
was 0.95 and the maximum evaluated loss was 0.08. The performance of federated deep
learning was found to be comparable to that of traditional single or baseline machine
learning approaches as both achieved similar levels of validation accuracy, i.e., 99.9%,
despite differences in their implementation.

Table 7 and Figure 8 depict the results based on various performance parameters such
as accuracy, loss, precision, and recall-rate for IID and non-IID data. This suggests that
federated deep learning can achieve comparable results to traditional approaches while
preserving the fundamental principles of deep learning.

Table 7. Average of training/evaluation IID/ non-IID results.

Data Accuracy Loss Precision Recall-Rate

Training IID 98.22 0.13 98.22 98.22

Training Non-IID 96.17 0.13 96.1 96.54

Evaluation IID 99.79 0.01 99.79 99.79

Evaluation Non-IID 97.48 0.09 97.74 97.2
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5. Discussion

The proposed model exhibits a superior performance compared to other related studies
using the same dataset. In this section, we compared our suggested model with previously
published techniques using the same rice leaf disease image dataset. We presented the
results of the federated learning (FL) technique on both IID and non-IID datasets, employing
various pre-trained models for rice leaf disease classification while maintaining data privacy
at the farmer’s site. Table 8 illustrates that several researchers have developed suitable
frameworks for the early detection of rice leaf disease with high accuracy parameters;
however, none of them focused on data preservation at the client’s site. Sethy et al. [33]
and Sharma et al. [38] achieved results similar to ours, but they did not prioritize data
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preservation. In contrast, our proposed model achieved an impressive 99% accuracy while
ensuring data preservation.

Table 8. Comparison of the proposed model using the same dataset as other studies in the field.

Researchers Technology Performance in
Accuracy Data Privacy

Sethy et al. [33] ML/DL 98% No

Sharma et al. [38] ML/DL 99% No

Haruna et al. [39] ML/DL 91% No

Sudhesh et al. [40] ML/DL 93% No

Proposed Model DL + FL 99% Yes

6. Conclusions and Future Work

In the modern era, it is essential to classify rice leaf disease while preserving data
privacy. This manuscript discusses the use of lightweight federated deep learning to
implement rice leaf disease classification. Firstly, pre-trained models such as EfficientNet,
VGG19, Resnet152, VGG16, and Xception were implemented and analysed. As compared to
the other mentioned algorithms, the evaluated accuracy of EfficientNetB3 is 99%. Once the
best-performing model is identified, i.e., EfficientNetB3, consider this the baseline model for
federated learning. Further, federated learning was implemented using EfficientNetB3 for
rice leaf disease classification. As per the analysis of the federated deep learning ecosystem,
EfficientNetB3 resulted in 99% training and evaluated accuracies with minimum losses of
0.006 and 0.03 for IIDs (when data is identically distributed to all clients) and for non-IIDs
(data is not identically distributed), respectively. The training accuracy was 99% with
a minimum loss of 0.04, and the evaluated accuracy was 95% with a loss of 0.08. The
results obtained in the federated deep learning ecosystems were found to be very similar
to those obtained in the baseline machine learning ecosystem. Based on the analysis, it
was concluded that the proposed system performs better in terms of resource utilisation
and data privacy in the federated deep learning ecosystem and also achieves classification
results that are very similar to those of the baseline machine learning system. In the future,
the results will be implemented using IoT technology to identify rice leaf diseases [41].
Additionally, to address privacy concerns in the federated ecosystem, encryption techniques
could be implemented when sharing trained models.
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