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This article aims to introduce and analyze a diabetes mellitus model of fractional order, utilizing the ABC 
derivative. Diabetes mellitus is a prevalent and significant disease worldwide, ranking among the top causes 
of mortality. It is characterized by chronic metabolic dysfunction, leading to elevated blood glucose levels 
and subsequent damage to vital organs including the nerves, kidneys, eyes, blood vessels, and heart. The 
fractional ABC derivative is used in this study to describe and analyze diabetes mellitus mathematically while 
removing hereditary influences. The investigation begins by exploring the initial points of the diabetes mellitus 
model. Under the fractional ABC operator, Picard’s theorem is used to prove the existence and uniqueness of 
solutions. For the numerical approximation of solutions in the fractional-order diabetes mellitus model, this 
study used a specialized technique that combines the principles of fractional calculus and a two-step Lagrange 
polynomial interpolation. Finally, the obtained results are visually presented through graphical representations, 
serving as empirical evidence to support our theoretical findings. The numerical experiments showed that the 
proportion of patients with diabetes mellitus increased as the fractional dimension (𝜃) reduced. The combination 
of mathematical modelling, analysis, and numerical simulations provides insights into the dynamics of diabetes 
mellitus, offering valuable contributions to the understanding and management of this prevalent disease. 
Additionally, the proposed scheme can be enhanced by incorporating the ABC operator, allowing for the 
simulation of real-world dynamics and behavior in the coexistence of diabetes mellitus and tuberculosis.
1. Introduction

Diabetes mellitus, a chronic metabolic disorder, continues to be 
a significant global health concern. It is a chronic metabolic condi-
tion characterized by persistent hyperglycemia caused by deficiencies 
in insulin synthesis, action, or both. These abnormalities disrupt the 
metabolism of carbohydrates, lipids, and proteins, which highlights the 
crucial role of insulin as an anabolic hormone. Diabetes patients are 
four times more likely to have a stroke than people without the disease, 

* Corresponding author at: Department of Mathematics, Central University of Haryana, Mohindergarh 123031, India.
** Corresponding author at: Department of Mathematics and Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia.

and they have a greater chance of developing coronary artery disease. 
Among the risky effects of untreated diabetes are visual abnormalities 
that can lead to blindness, loss of consciousness, and susceptibility to 
infections. Conversely, others, particularly children with a complete 
deficiency of insulin, may experience noticeable symptoms such as 
excessive urination (polyuria), excessive thirst (polydipsia), increased 
appetite (polyphagia), unintended weight loss, and blurred vision. In 
2015, about 415 million people aged 20 to 79 had diabetes mellitus, 
and the International Diabetes Federation (IDF) predicts that figure 
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would increase by another 200 million by 2040 [2]. The etiology of di-
abetes mellitus encompasses a diverse array of genetic susceptibilities, 
including variations in genes involved in insulin production, secretion, 
and regulation. The pathophysiology of diabetes mellitus involves com-
plex disturbances in glucose metabolism, lipid metabolism, and protein 
homeostasis. As our understanding of diabetes mellitus continues to 
evolve, extensive research efforts have been dedicated to unraveling 
its etiology, exploring the underlying pathophysiological mechanisms, 
and developing effective therapeutic strategies [6].

In recent years, infectious disease modelling has gained significant 
attention as it strives to provide solutions to epidemics and plagues 
that have plagued humanity. Numerous studies have explored integer-
order infection models in the literature. In research on an integer-order 
COVID-19 and Dengue co-infection model, Omame et al. [5] empha-
sized the significance of preventative actions for either illness in Brazil. 
The authors in [3–5] focused on an integer-order co-infection model 
of Zika virus and dengue fever, Cholera and Buruli ulcer, syphilis, and 
HPV with optimal control. However, there are limitations in the above 
mentioned models as they fail to incorporate memory, a crucial aspect 
in accurately representing real-life scenarios [1].

In the field of scientific research, it has been widely recognized over 
the past few decades that fractional models provide a more accurate 
representation of natural phenomena compared to traditional differen-
tial equations of integer order. This advantage has led to the increasing 
importance and popularity of fractional calculus, particularly in mod-
elling real-world scenarios with memory effects. Numerous studies have 
been conducted on theoretical and numerical approaches for fractional-
order systems as a result of the helpfulness of fractional calculus in a 
variety of fields, including engineering, biology, and the social sciences 
[7,14–16,32–34]. Different kinds of fractional operators are extremely 
important in the field of fractional calculus for improving our compre-
hension of model behavior. These operators include Atangana-Baleanu, 
Caputo-Fabrizio, Caputo, Riemann-Liouville, and many others, each 
offering distinct advantages and disadvantages [17,18,23–26,28–31]. 
Riemann-Liouville operators, for example, are employed to solve cer-
tain models; however, they pose challenges due to the requirement of 
fractional order conditions. In contrast, the Caputo fractional operator 
overcomes this limitation by allowing the use of initial conditions with 
integer-order derivatives. This characteristic grants these initial condi-
tions a clear and discernible interpretation [19,20].

In this study, we begin by establishing a mathematical model us-
ing integer order derivatives. Subsequently, we employ the Atangana-
Baleanu fractional operator to further enhance our analysis. The ratio-
nale behind selecting the Atangana-Baleanu operator lies in its unique 
characteristics, including a nonlocal and nonsingular kernel represented 
by the Mittag-Leffler function. This operator is well-suited for captur-
ing the complex dynamics inherent in the model under investigation. 
Notably, previous research has explored the Atangana-Baleanu opera-
tor and its applications in diverse systems within the realms of applied 
sciences and engineering, as documented in references [8–12]. These 
studies provide valuable insights into the efficacy and versatility of the 
Atangana-Baleanu operator in various contexts. Inspired by the success-
ful utilization of fractional operators in various real-life scenarios, this 
study aims to apply the concept of the fractional operator of order (𝜃) 
to model the differential equations of diabetes mellitus using the ABC 
operator. Our objective is to investigate the impact of the fractional or-
der on the dynamics of each subclass within the population, providing 
valuable insights into the behavior of diabetes mellitus. However, there 
are no direct limitations, but the ABC fractional derivatives work in a 
restricted space. There are fractional differential equations that the ABC 
derivative cannot solve.

The structure of this article is: Section 2 focuses on the mathemati-
cal modelling of diabetes mellitus, presenting the formulation and key 
considerations in our model. Moving forward, section 3 provides an in-
depth analysis of the existence and uniqueness of solutions. In section 4, 
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we conduct numerical simulations and engage in a comprehensive dis-
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cussion of the results obtained. Lastly, in the concluding section of this 
paper, we provide a comprehensive summary of the primary findings 
and discuss the implications that arise from our study.

1.1. Preliminaries

This subsection introduces the fundamental theory of the ABC 
derivative, laying the groundwork for its application in the subsequent 
sections.

Definition 1.1. On the interval 𝜃 ∈ [0, 1], by taking the function 𝑓 ∈
𝐻1(𝑎, 𝑏), 𝑏 > 𝑎, so the ABC operator is given by

𝐴𝐵𝐶
𝑎

𝐷𝜃
𝜆
𝑓 (𝜆) = 𝑀(𝜃)

1 − 𝜃

𝜆

∫
𝑎

𝑓 ′(𝑦)𝐸𝜃

[
−𝜃 (𝜆− 𝜃)𝜃

1 − 𝜃

]
d𝑦,

with 𝑀(0) =𝑀(1) = 1 [13], here 𝑀(𝜃) is a normalization function.

Definition 1.2. [23] On the interval 𝜃 ∈ [0, 1], by taking the function 
𝑓 ∈𝐻1(𝑎, 𝑏), 𝑏 > 𝑎, which is not differentiable, therefore the Atangana-
Baleanu fractional operator in Riemann-Liouville sense is defined as

𝐴𝐵𝑅
𝑎

𝐷𝜃
𝜆
𝑓 (𝜆) = 𝑀(𝜃)

1 − 𝜃

d
d𝜆

𝜆

∫
𝑎

𝑓 (𝑦)𝐸𝜃

[
−𝜃 (𝜆− 𝜃)𝜃

1 − 𝜃

]
d𝑦,

Definition 1.3. [23] The ABC fractional operator for the fractional in-
tegral of order 𝜃 is given by

𝐴𝐵
𝑎
𝐼𝜃
𝜆
𝑓 (𝜆) = 1 − 𝜃

(𝜃)
𝑓 (𝑡) + 𝜃

(𝜃)Γ(𝜃)

𝜆

∫
𝑎

𝑓 (𝑦)(𝜆− 𝑦)𝜃−1 d𝑦.

If 𝜃= 0 and 𝜃= 1 the initial function and ordinary integral are obtained 
respectively.

In the subsequent sections, we will examine the Laplace transform 
operators and explore the fundamental theorems associated with these 
derivatives. We will also explore the connection between these opera-
tors and the Laplace transform, specifically focusing on its representa-
tion in the following form.

{
𝐴𝐵𝑅
0 𝐷𝜃

𝜆
[𝑓 (𝜆)]

}
(𝑙) = 𝐿(𝜃)

1 − 𝜃

𝑙𝜃{𝑓 (𝜆)}(𝑙)
𝑙𝜃 + 𝜃

1−𝜃

and

{
𝐴𝐵𝐶
0 𝐷𝜃

𝜆
[𝑓 (𝜆)]

}
(𝑙) = 𝑀(𝜃)

1 − 𝜃

𝑙𝜃{𝑓 (𝜆)}(𝑙) − 𝑙𝜃−1𝑓 (0)
𝑙𝜃 + 𝜃

1−𝜃

.

Theorem 1.4. [23] Take into account a closed interval [a, b] and use g to 
represent a continuous function defined on it. We can prove the following 
inequality, which is true for any point inside of [a, b]:

‖‖‖𝐴𝐵𝑅0 𝐷𝜃
𝜆
[𝑓 (𝜆)]‖‖‖ < 𝑀(𝜃)

1 − 𝜃
‖𝑓 (𝜉)‖,

where ‖𝑓 (𝜉)‖ =max𝑎⩽𝜆⩽𝑏 |𝑓 (𝜉)|.
Theorem 1.5. [13] The Riemann-Liouville and Caputo types of the 
Atangana-Baleanu derivative exhibit the Lipschitz condition, which is best 
defined as follows:

‖‖‖𝐴𝐵𝑅0 𝐷𝜃
𝜆
[𝑓 (𝜆)] − 𝐴𝐵𝑅

0 𝐷𝜃
𝜆
[𝑔(𝜆)]‖‖‖ ⩽𝐻‖𝑓 (𝜆) − 𝑔(𝜆)‖,

and
‖‖‖𝐴𝐵𝐶0 𝐷𝜃
𝜆
[𝑓 (𝜆)] − 𝐴𝐵𝐶

0 𝐷𝜃
𝜆
[𝑔(𝜆)]‖‖‖ ⩽𝐻‖𝑓 (𝜆) − 𝑔(𝜆)‖.
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Fig. 1. Flowchart of the diabetes mellitus model.
Theorem 1.6. [27] Let (𝑋, || ⋅ ||) be a Banach space and 𝑇 ∶ 𝑋 → 𝑋 be 
a contraction on 𝑋, meaning there exists a constant 𝑎 ∈ (0,1) such that |𝑇 (𝑥) − 𝑇 (𝑦)| ⩽ 𝑎|𝑥 − 𝑦| for all 𝑥, 𝑦 ∈𝑋. Then:

i. 𝑇 has a fixed point 𝑥∗ ∈𝑋, i.e., 𝑇 (𝑥∗) = 𝑥∗.

ii. For a sequence {𝑥𝑛}∞𝑛=0 defined by 𝑥𝑛+1 = 𝑇 (𝑥𝑛), for 𝑛 = 0, 1, 2, 3, …, it 
converges to 𝑥∗.

2. Mathematical model

This section aims to provide a mathematical formulation for the di-
abetes mellitus model, which has attracted significant attention in the 
scientific literature [21,22]. The development of accurate mathemat-
ical models holds the utmost importance in predicting the dynamics 
and components of diabetes. The motivation for this study arises from 
the profound and far-reaching impact of diabetes on human life, partic-
ularly through its associated complications. Hence, it becomes impera-
tive to undertake a comprehensive examination and analysis of diabetes 
models in order to enhance our comprehension of the underlying mech-
anisms of the disease and enable accurate predictions concerning its 
behavior. Consequently, this study specifically focuses on investigating 
the diabetes mellitus model that considers treatment and excludes ge-
netic factors. Through the exploration and evaluation of this model, our 
aim is to gain valuable insights into the dynamics and management of 
diabetes mellitus.

d(𝜆)
d𝜆

= 𝛾 − 𝜚− 𝜂 ,
d(𝜆)
d𝜆

= 𝜂 − (𝜚+ 1) ,
d(𝜆)
d𝜆

= 𝜀𝜐 − (𝜚+ 𝜒) ,
d(𝜆)
d𝜆

= (1 − 𝜀𝜐) − (𝜚+ 𝜇),
(𝜆) =(𝜆) +(𝜆) +(𝜆) +(𝜆),

(2.1)

with initial conditions
(0) = 0, (0) = 0, (0) = 0, (0) = 0, (0) = 0,
where, the class (𝜆) denotes the group of susceptible individuals who 
are at risk of contracting the disease, (𝜆) is susceptible population, 
(𝜆) is exposed population, (𝜆) is infected population, (𝜆) is recov-
ered population by treatment (Fig. 1).
We can write the last equation of the given system in terms of others as:

d(𝜆)
d𝜆

= d(𝜆)
d𝜆

+ d(𝜆)
d𝜆

+ d(𝜆)
d𝜆

+ d(𝜆)
d𝜆

,

this above equation yields,

d(𝜆)
d𝜆

= 𝛾 − 𝜚 − 𝜒 − 𝜇.
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This resulting in simpler form of diabetes mellitus model as:
d(𝜆)
d𝜆

= 𝛾 − 𝜚 − 𝜒 − 𝜇,
d(𝜆)
d𝜆

= 𝜂( − − −) − (𝜚+ 1) ,
d(𝜆)
d𝜆

= 𝜀𝜐 − (𝜚+ 𝜒) ,
d(𝜆)
d𝜆

= (1 − 𝜀𝜐) − (𝜚+ 𝜇),

(2.2)

where (Table 1)

Table 1

Description of parameters.

Parameter Description

𝛾 births in a given time range,
𝜚 deaths in a given time range,
𝜒 disease-specific fatality rate,
𝜇 disease-related mortality rate with treatment,
𝜀𝜐 rate of transition from latent to infected individuals without treatment,
𝜂 rate of transmission from exposed to susceptible individuals.

Let us define the fractional order model of (2.2)

𝐴𝐵𝐶
0 𝐷𝜃

𝜆
(𝜆) = 𝛾 − 𝜚 − 𝜒 − 𝜇,

𝐴𝐵𝐶
0 𝐷𝜃

𝜆
(𝜆) = 𝜂( − − −) − (𝜚+ 1) ,

𝐴𝐵𝐶
0 𝐷𝜃

𝜆
(𝜆) = 𝜀𝜐 − (𝜚+ 𝜒) ,

𝐴𝐵𝐶
0 𝐷𝜃

𝜆
(𝜆) = (1 − 𝜀𝜐) − (𝜚+ 𝜇).

(2.3)

3. Existence and uniqueness analysis

Solving nonlinear equations is known to be a challenging topic in 
differential calculus. The fractional model addressed in this study is 
both nonlocal and nonlinear, making it infeasible to obtain exact so-
lutions for these systems. Hence, our focus lies on investigating the 
existence and uniqueness of solutions for the fractional model (2.3). 
In order to accomplish this, we employ the fixed-point theorem.

On the interval 𝑞, suppose that 𝑃 = 𝐾(𝑞) ×𝐾(𝑞), where the Banach 
space 𝐾(𝑞) of continuous real values functions is defined with the norm

‖ , , ,‖ = ‖‖+ ‖‖+ ‖‖+ ‖‖,
where,

‖‖ =sup{|(𝜆)| ∶ 𝜆 ∈ 𝑞},

‖‖ =sup{|(𝜆)| ∶ 𝜆 ∈ 𝑞},

‖‖ =sup{|(𝜆)| ∶ 𝜆 ∈ 𝑞},
‖‖ =sup{|(𝜆)| ∶ 𝜆 ∈ 𝑞}.
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The system (2.2) is transformed into the following equation by taking 
Atangana-Baleanu fractional integral into account:

(𝜆) −(0) = 1 − 𝜃

(𝜃)
{𝛾 − 𝜚 − 𝜒 − 𝜇}

+ 𝜃

(𝜃)Γ(𝜃)

𝜆

∫
0

(𝜆− 𝑦)𝜃−1{𝛾 − 𝜚 − 𝜒 − 𝜇}d𝑦,

(𝜆) −(0) = 1 − 𝜃

(𝜃)
{𝜂( − − −) − (𝜚+ 1)}

+ 𝜃

(𝜃)Γ(𝜃)

𝜆

∫
0

(𝜆− 𝑦)𝜃−1{𝜂( − − −) − (𝜚+ 1)}d𝑦,

(𝜆) −(0) = 1 − 𝜃

(𝜃)
{𝜀𝜐 − (𝜚+ 𝜒)}

+ 𝜃

(𝜃)Γ(𝜃)

𝜆

∫
0

(𝜆− 𝑦)𝜃−1{𝜀𝜐 − (𝜚+ 𝜒)}d𝑦,

(𝜆) −(0) = 1 − 𝜃

(𝜃)
{(1 − 𝜀𝜐) − (𝜚+ 𝜇)}

+ 𝜃

(𝜃)Γ(𝜃)

𝜆

∫
0

(𝜆− 𝑦)𝜃−1{(1 − 𝜀𝜐) − (𝜚+ 𝜇)}d𝑦.

(3.1)

We simplify (3.1) by writing

𝐾1(𝜆,) = 𝛾 − 𝜚 − 𝜒 − 𝜇,
𝐾2(𝜆,) = 𝜂( − − −) − (𝜚+ 1) ,
𝐾3(𝜆,) = 𝜀𝜐 − (𝜚+ 𝜒) ,
𝐾4(𝜆,) = (1 − 𝜀𝜐) − (𝜚+ 𝜇).

Theorem 3.1. If the aforementioned inequality holds:

0 ⩽ 𝛽1 < 1,

0 ⩽ 𝛽2 < 1,

0 ⩽ 𝛽3 < 1,

0 ⩽ 𝛽4 < 1.

Then the kernels 1, 2, 3 and 4 satisfy the Lipschitz condition and con-

traction.

Proof. By taking the kernel 1(𝜆, )=𝛾 − 𝜚 − 𝜒 − 𝜇. Let  and 
1 be two functions, so we have:‖‖‖1(𝜆,(𝜆)) −1

(
𝜆,1(𝜆)

)‖‖‖ = ||𝜚( −1)||,
⩽ 𝜚|| −1||,
⩽ 𝛽1 ‖‖ −1‖‖ .

Taking 𝛽1 = 𝜚, where 𝑃1 = max𝜆∈𝐽 ‖(𝜆)‖, 𝑃2 = max𝜆∈𝐽 ‖(𝜆)‖, 𝑃3 =
max𝜆∈𝐽 ‖(𝜆)‖, 𝑃4 = max𝜆∈𝐽 ‖(𝜆)‖ are bounded function, then we get

‖‖‖1(𝜆,(𝜆)) −1
(
𝜆,1(𝜆)

)‖‖‖ ⩽ 𝛽1 ‖‖(𝜆) −1(𝜆)‖‖ .
Thus, 1 satisfied the Lipschitz condition, and if 0 ⩽ 𝛽1 < 1, then it is 
also a contraction for 1. In same manner, the Lipschitz condition is 
satisfied by other kernels:‖‖‖2(𝜆,(𝜆)) −2

(
𝜆,1(𝜆)

)‖‖‖ ⩽ 𝛽2 ‖‖(𝜆) −1(𝜆)‖‖ ,‖‖‖3(𝜆,(𝜆)) −3
(
𝜆,1(𝜆)

)‖‖‖ ⩽ 𝛽3 ‖‖(𝜆) −1(𝜆)‖‖ ,( )
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‖‖‖4(𝜆,(𝜆)) −4 𝜆,1(𝜆)
‖‖‖ ⩽ 𝛽4 ‖‖(𝜆) −1(𝜆)‖‖ .
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By taking the kernels for the model in consideration, (3.1) can be pre-
sented by:

(𝜆) =(0) + 1 − 𝜃

(𝜃)
1(𝜆,) + 𝜃

(𝜃)Γ(𝜃)

𝜆

∫
0

(𝜆− 𝑦)𝜃−11(𝑦,)d𝑦,

(𝜆) =(0) + 1 − 𝜃

(𝜃)
2(𝜆,) + 𝜃

(𝜃)Γ(𝜃)

𝜆

∫
0

(𝜆− 𝑦)𝜃−12(𝑦,)d𝑦,

(𝜆) =(0) + 1 − 𝜃

(𝜃)
3(𝜆,) + 𝜃

(𝜃)Γ(𝜃)

𝜆

∫
0

(𝜆− 𝑦)𝜃−13(𝑦,)d𝑦,

(𝜆) =(0) + 1 − 𝜃

(𝜃)
4(𝜆,) + 𝜃

(𝜃)Γ(𝜃)

𝜆

∫
0

(𝜆− 𝑦)𝜃−14(𝑦,)d𝑦.

(3.2)

Therefore, we can present recursively as:

𝜐(𝜆) =
1 − 𝜃

(𝜃)
1

(
𝜆,𝜐−1

)
+ 𝜃

(𝜃)Γ(𝜃)

𝜆

∫
0

(𝜆− 𝑦)𝜃−11
(
𝑦,𝜐−1

)
d𝑦,

𝜐(𝜆) =
1 − 𝜃

(𝜃)
2

(
𝜆,𝜐−1

)
+ 𝜃

(𝜃)Γ(𝜃)

𝜆

∫
0

(𝜆− 𝑦)𝜃−12
(
𝑦,𝜐−1

)
d𝑦,

𝜐(𝜆) =
1 − 𝜃

(𝜃)
3

(
𝜆,𝜐−1

)
+ 𝜃

(𝜃)Γ(𝜃)

𝜆

∫
0

(𝜆− 𝑦)𝜃−13
(
𝑦,𝜐−1

)
d𝑦,

𝜐(𝜆) =
1 − 𝜃

(𝜃)
4

(
𝜆,𝜐−1

)
+ 𝜃

(𝜃)Γ(𝜃)

𝜆

∫
0

(𝜆− 𝑦)𝜃−14
(
𝑦,𝜐−1

)
d𝑦.

With the defined initial conditions as:

0(𝜆) =(0),

0(𝜆) =(0),

0(𝜆) =(0),

0(𝜆) =(0).

The following system of equations is formed by using the initial condi-
tions and the difference between the succeeding terms.

Δ𝜐(𝜆) =𝜐(𝜆) −𝜐−1(𝜆) =
1 − 𝜃

(𝜃)
(1

(
𝜆,𝜐−1

)
−1

(
𝜆,𝜐−2

))
+ 𝜃

(𝜃)Γ(𝜃)

𝜆

∫
0

(𝜆− 𝑦)𝜃−1
(1

(
𝑦,𝜐−1

)
−1

(
𝑦,𝜐−2

))
d𝑦,

ℵ𝜐(𝜆) = 𝜐(𝜆) −𝜐−1(𝜆) =
1 − 𝜃

(𝜃)
(2

(
𝜆,𝜐−1

)
−2

(
𝜆,𝜐−2

))
+

𝜃

(𝜃)Γ(𝜃)

𝜆

∫
0

(𝜆− 𝑦)𝜃−1
(2

(
𝑦,𝜐−1

)
−2

(
𝑦,𝜐−2

))
d𝑦,

Ψ𝜐(𝜆) =𝜐(𝜆) −𝜐−1(𝜆) =
1 − 𝜃

(𝜃)
(3

(
𝜆,𝜐−1

)
−3

(
𝜆,𝜐−2

))
+

𝜃

(𝜃)Γ(𝜃)

𝜆

∫
0

(𝜆− 𝑦)𝜃−1
(3

(
𝑦,𝜐−1

)
−3

(
𝑦,𝜐−2

))
d𝑦,

ϝ𝜐(𝜆) =𝜐(𝜆) −𝜐−1(𝜆) =
1 − 𝜃

(𝜃)
(4

(
𝜆,𝜐−1

)
−4

(
𝜆,𝜐−2

))
+

𝜃

(𝜃)Γ(𝜃)

𝜆

∫
0

(𝜆− 𝑦)𝜃−1
(4

(
𝑦,𝜐−1

)
−4

(
𝑦,𝜐−2

))
d𝑦.

(3.3)
It should be noted that
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𝜐(𝜆) =
𝜐∑
𝑖=1

Δ𝑖(𝜆),

𝜐(𝜆) =
𝜐∑
𝑖=1

ℵ𝑖(𝜆),

𝜐(𝜆) =
𝜐∑
𝑖=1

Ψ𝑖(𝜆),

𝜐(𝜆) =
𝜐∑
𝑖=1

ϝ𝑖(𝜆).

(3.4)

By taking (3.3), the triangular inequality is taken into account after 
applying the norm on (3.4) the equation transformed into (3.5),

‖‖Δ𝜐(𝜆)‖‖ = ‖‖𝜐(𝜆) −𝜐−1(𝜆)‖‖ ,
⩽ 1 − 𝜃

(𝜃)
‖‖‖1

(
𝜆,𝜐−1

)
−1

(
𝜆,𝜐−2

)‖‖‖
+ 𝜃

(𝜃)Γ(𝜃)

‖‖‖‖‖‖‖
𝜆

∫
0

(𝜆− 𝑦)𝜃−1
(1

(
𝑦,𝜐−1

)
−1

(
𝑦,𝜐−2

))
d𝑦
‖‖‖‖‖‖‖ .

(3.5)

As the Lipschitz condition is satisfied by the kernel, the following equa-
tion is obtained;

‖‖𝜐(𝜆) −𝜐−1(𝜆)‖‖ ⩽ 1 − 𝜃

(𝜃)
𝛽1 ‖‖𝜐−1 −𝜐−2‖‖

+ 𝜃

(𝜃)Γ(𝜃)
𝛽1

𝜆

∫
0

(𝜆− 𝑦)𝜃−1 ‖‖𝜐−1 −𝜐−2‖‖𝑑𝑦.
Also,

‖‖Δ𝜐(𝜆)‖‖ ⩽ 1 − 𝜃

(𝜃)
𝛽1 ‖‖Δ𝜐−1(𝜆)‖‖+ 𝜃

(𝜃)Γ(𝜃)
𝛽1

𝜆

∫
0

(𝜆− 𝑦)𝜃−1 ‖‖Δ𝜐−1(𝑦)‖‖d𝑦.
(3.6)

In same manner we derived the following results:

‖‖ℵ𝜐(𝜆)‖‖ ⩽ 1 − 𝜃

(𝜃)
𝛽2 ‖‖ℵ𝜐−1(𝜆)‖‖+ 𝜃

(𝜃)Γ(𝜃)
𝛽2

𝜆

∫
0

(𝜆− 𝑦)𝜃−1 ‖‖ℵ𝜐−1(𝑦)‖‖d𝑦,
‖‖Ψ𝜐(𝜆)‖‖ ⩽ 1 − 𝜃

(𝜃)
𝛽3 ‖‖Ψ𝜐−1(𝜆)‖‖+ 𝜃

(𝜃)Γ(𝜃)
𝛽3

𝜆

∫
0

(𝜆− 𝑦)𝜃−1 ‖‖Ψ𝜐−1(𝑦)‖‖d𝑦,
‖‖ϝ𝜐(𝜆)‖‖ ⩽ 1 − 𝜃

(𝜃)
𝛽4 ‖‖ϝ𝜐−1(𝜆)‖‖+ 𝜃

(𝜃)Γ(𝜃)
𝛽4

𝜆

∫
0

(𝜆− 𝑦)𝜃−1 ‖‖ϝ𝜐−1(𝑦)‖‖d𝑦. □

Theorem 3.2. A unique solution is possessed by the proposed fractional 
order diabetes mellitus model with ABC operator (2.2) having the following 
condition that is satisfying the 𝜆max as

1 − 𝜃

(𝜃)
𝛽𝑖 +

𝜆𝜃max
(𝜃)Γ(𝜃)

𝛽𝑖 < 1, for 𝑖 = 1,2,3,4.

Proof. It is clear that (𝜆), (𝜆), (𝜆), and (𝜆) are bounded. The ker-
nels of these functions also satisfy the Lipschitz condition. Therefore, 
employing the succeeding relation with the application of (3.6), we de-
rived:

‖‖Δ𝜐(𝜆)‖‖ ⩽ ‖(0)‖[ 1 − 𝜃

(𝜃)
𝛽1 +

𝜆𝜃max
(𝜃)Γ(𝜃)

𝛽1

]𝜐
,

‖ ‖ [
1 − 𝜃 𝜆𝜃max

]𝜐

204
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‖‖Ψ𝜐(𝜆)‖‖ ⩽ ‖(0)‖[ 1 − 𝜃

(𝜃)
𝛽3 +

𝜆𝜃max
(𝜃)Γ(𝜃)

𝛽3

]𝜐
,

‖‖ϝ𝜐(𝜆)‖‖ ⩽ ‖(0)‖[ 1 − 𝜃

(𝜃)
𝛽4 +

𝜆𝜃max
(𝜃)Γ(𝜃)

𝛽4

]𝜐
.

Hence, (3.4) is a smooth function and exists.
Let us suppose, that the aforementioned functions represent the model’s 
solutions

(𝜆) −(0) =𝜐(𝜆) − Θ1(𝜐)(𝜆),

(𝜆) −(0) = 𝜐(𝜆) − Θ2(𝜐)(𝜆),

(𝜆) −(0) =𝜐(𝜆) − Θ3(𝜐)(𝜆),

(𝜆) −(0) =𝜐(𝜆) − Θ4(𝜐)(𝜆).

The term ‖‖Θ∞(𝜆)‖‖→ 0 at infinity. To show this, the following is taken

‖‖‖Θ1(𝜐)(𝜆)
‖‖‖ ⩽

‖‖‖‖‖‖‖
1 − 𝜃

(𝜃)
1(𝜆,) −1

(
𝜆,𝜐−1

)

+ 𝜃

(𝜃)Γ(𝜃)

𝜆

∫
0

(𝜆− 𝑦)𝜃−1(1(𝜆,) −1
(
𝜆,𝜐−1

)
)d𝑦

‖‖‖‖‖‖‖ ,‖‖‖Θ1(𝜐)(𝜆)
‖‖‖ ⩽ 1 − 𝜃

(𝜃)
‖‖‖1(𝜆,) −1

(
𝜆,𝜐−1

)‖‖‖
+ 𝜃

(𝜃)Γ(𝜃)

𝜆

∫
0

(𝜆− 𝑦)𝜃−1 ‖‖‖1(𝜆,) −1
(
𝜆,𝜐−1

)‖‖‖d𝑦,
⩽ 1 − 𝜃

(𝜃)
𝛽1 ‖‖ −𝜐−1‖‖+ 𝜆𝜃

(𝜃)Γ(𝜃)
𝛽1 ‖‖ −𝜐−1‖‖ .

By recursively repeating the process, we get

‖‖‖Θ1(𝜐)(𝜆)
‖‖‖ ⩽

[
1 − 𝜃

(𝜃)
+ 𝜆𝜃

(𝜃)Γ(𝜃)

]𝜐+1
𝛽𝜐1𝑀.

So, for 𝜆max we get

‖‖‖Θ1(𝜐)(𝜆)
‖‖‖ ⩽

[
1 − 𝜃

(𝜃)
+

𝜆𝜃max
(𝜃)Γ(𝜃)

]𝜐+1
𝛽𝜐1𝑀.

By taking limit on both sides as 𝜐 →∞, we get ‖‖Θ∞(𝜆)‖‖→ 0. □

Uniqueness of the solution

The ability to demonstrate the system’s uniqueness is an important ap-
plication. So, via contraction, we suppose that there is another system 
of solutions to (2.2), 1(𝜆), 1(𝜆), 1(𝜆) and 1(𝜆). Then

‖‖(𝜆) −1(𝜆)‖‖ ⩽ 1 − 𝜃

(𝜃)
(1(𝜆,) −1

(
𝜆,1

))
+ 𝜃

(𝜃)Γ(𝜃)

𝜆

∫
0

(𝜆− 𝑦)𝜃−1
(1(𝜆,) −1

(
𝜆,1

))
𝑑𝑦.

(3.7)

Now applying the norm to (3.7), we compute

‖‖(𝜆) −1(𝜆)‖‖ ⩽ 1 − 𝜃

(𝜃)
‖‖‖1(𝜆,) −1

(
𝜆,1

)‖‖‖
+ 𝜃

(𝜃)Γ(𝜃)

𝜆

∫
0

(𝜆− 𝑦)𝜃−1 ‖‖‖1(𝜆,) −1
(
𝜆,1

)‖‖‖𝑑𝑦.
By utilizing the kernel’s Lipschitz condition properties, we obtain

1 − 𝜃 𝛽1𝜆
𝜃
‖‖(𝜆) −1(𝜆)‖‖ ⩽ (𝜃)

‖‖(𝜆) −1(𝜆)‖‖𝛽1 + (𝜃)Γ(𝜃)
‖‖(𝜆) −1(𝜆)‖‖ ,
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which gives

‖‖(𝜆) −1(𝜆)‖‖(1 − 𝛽1
1 − 𝜃

(𝜃)
+

𝜆𝜃𝛽1
(𝜃)Γ(𝜃)

)
⩽ 0,

‖‖(𝜆) −1(𝜆)‖‖ = 0.

Thus, (𝜆) = 1(𝜆). So the equation has a unique solution. In same 
manner, one can obtain the same outcomes for other solutions of 
(𝜆), (𝜆) and (𝜆).

4. Numerical scheme

A unique numerical approach for solving several particular problems 
with non-singular, non-local kernels of fractional derivatives has been 
proposed by Toufik and Atangana [13]. It is apparent from their study 
that their technique is not only remarkably precise but also rapidly 
converges to exact solutions. As other well-known methods such as Eu-
lers, Adams-Bashforth, etc. cannot efficiently and convergently solve 
the fractional derivatives of non-singular, non-local kernels, this method 
has the benefit of enhancing the limitations of those methods. By taking 
the aforementioned non-linear fractional ordinary equation to illustrate 
their methodology:{

𝐴𝐵𝐶
0 𝐷𝜃

𝜆
𝜘(𝜆) = 𝑓 (𝜆,𝜘(𝜆)),

𝜘(0) = 𝜘0. (4.1)

Using the core concepts of fractional calculus, the (4.1) is converted 
into a fractional integral equation.

𝜘(𝜆) − 𝜘(0) = 1 − 𝜃

(𝜃)
𝑓 (𝜆,𝜘(𝜆)) + 𝜃

(𝜃)Γ(𝜃)

𝜆

∫
0

𝑓 (𝑦,𝜘(𝑦))(𝜆− 𝑦)𝜃−1 d𝑦. (4.2)

At the point 𝜆 = 𝜆𝜐+1, 𝜐 = 0, 1, 2, … the above (4.2) can be written as

𝜘 (
𝜆𝜐+1

)
− 𝜘(0) = 1 − 𝜃

(𝜃)
𝑓
(
𝜆𝜐,𝜘 (

𝜆𝜐
))

+ 𝜃

(𝜃)Γ(𝜃)

𝜆𝜐+1

∫
0

𝑓 (𝑦,𝜘(𝑦))(𝜆𝜐+1 − 𝑦
)𝜃−1 d𝑦.

(4.3)

Let us assume 𝑓 (𝑦, 𝜘(𝑦)) in the interval 
[
𝜆𝑙, 𝜆𝑙+1

]
and applying Lagrange 

interpolation, we get:

𝑝𝑙(𝑦) = 𝑓 (𝑦,𝜘(𝑦)),
=

𝑦− 𝜆𝑙−1
𝜆𝑙 − 𝜆𝑙−1

𝑓
(
𝜆𝑙,𝜘 (

𝜆𝑙
))

−
𝑦− 𝜆𝑙

𝜆𝑙 − 𝜆𝑙−1
𝑓
(
𝜆𝑙−1,𝜘 (

𝜆𝑙−1
))
,

=
𝑓
(
𝜆𝑙,𝜘 (

𝜆𝑙
))

ℎ

(
𝑦− 𝜆𝑙−1

)
−
𝑓
(
𝜆𝑙−1,𝜘 (

𝜆𝑙−1
))

ℎ

(
𝑦− 𝜆𝑙

)
,

≃
𝑓
(
𝜆𝑙,𝜘𝑙)
ℎ

(
𝑦− 𝜆𝑙−1

)
−
𝑓
(
𝜆𝑙−1,𝜘𝑙−1)

ℎ

(
𝑦− 𝜆𝑙

)
.

By assuming (4.3) again for 𝑓 (𝑦, 𝜘(𝑦)) and applying Lagrange interpola-
tion where h is step length, one gets:

𝜘𝜐+1 =1 − 𝜃

(𝜃)
𝑓
(
𝜆𝜐,𝜘 (

𝜆𝜐
))

+ 𝜃

(𝜃)Γ(𝜃)

𝜐∑
𝑙=0

⎛⎜⎜⎜⎝
𝑓
(
𝜆𝑙,𝜘𝑙)
ℎ

𝜆𝑙+1

∫
𝜆𝑙

(
𝑦− 𝜆𝑙−1

)(
𝜆𝜐+1 − 𝑦

)𝜃−1 d𝑦

−
𝑓
(
𝜆𝑙−1,𝜘𝑙−1)

ℎ

𝜆𝑙+1

∫
𝜆𝑙

(
𝑦− 𝜆𝑙

)(
𝜆𝜐+1 − 𝑦

)𝜃−1 d𝑦
⎞⎟⎟⎟⎠+ 𝜘0.

(4.4)

Let us take, the following equation without losing its generality

𝑃𝜃,𝑙,1 =

𝜆𝑙+1(
𝑦− 𝜆𝑙−1

)(
𝜆𝜐+1 − 𝑦

)𝜃−1
𝑑𝑦, (4.5)
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and

𝑃𝜃,𝑙,2 =

𝜆𝑙+1

∫
𝜆𝑙

(
𝑦− 𝜆𝑙

)(
𝜆𝜐+1 − 𝑦

)𝜃−1
𝑑𝑦, (4.6)

so that

𝑃𝜃,𝑙,1 = ℎ𝜃+1
(𝜐− 𝑙 + 1)𝜃(𝜐− 𝑙 + 𝜃 + 2) − (𝜐− 𝑙)𝜃(𝜐− 𝑙 + 2 + 2𝜃)

𝜃(𝜃 + 1)
, (4.7)

and

𝑃𝜃,𝑙,2 = ℎ𝜃+1
(𝜐− 𝑙 + 1)𝜃+1 − (𝜐− 𝑙)𝜃(𝜐+ 1 − 𝑙 + 𝜃)

𝜃(𝜃 + 1)
. (4.8)

By integrating (4.6), (4.7), (4.8), and replacing them into (4.4), we com-
pute

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜘𝜐+1 = (1−𝜃)
(𝜃) 𝑓

(
𝜆𝜐,𝜘 (

𝜆𝜐
))

+ 𝜃

(𝜃)
∑𝜐

𝑙=0 ×
(

ℎ𝜃𝑓
(
𝜆𝑙 ,𝜘𝑙)

Γ(𝜃+2)(
(𝜐− 𝑙 + 1)𝜃(𝜐− 𝑙 + 𝜃 + 2) − (𝜐− 𝑙)𝜃(𝜐− 𝑙 + 2 + 2𝜃)

))
− 𝜃

(𝜃)
∑𝜐

𝑙=0(
ℎ𝜃𝑓

(
𝜆𝑙−1 ,𝜘𝑙−1)
Γ(𝜃+2)

(
(𝜐− 𝑙 + 1)𝜃+1 − (𝜐− 𝑙)𝜃(𝜐+ 1 − 𝑙 + 𝜃)

))
+ 𝜘(0).

(4.9)

The fractional derivative of ABC is numerically represented in (4.9). By 
applying this approach in suggested system (2.3), the following results 
are obtained:⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜐+1 =
(1−𝜃)
(𝜃) 1

(
𝜆𝑛, (

𝜆𝑛
))

+ 𝜃

(𝜃)
∑𝜐

𝑙=0

(
ℎ𝜃1

(
𝜆𝑙 ,𝑙

)
Γ(𝜃+2)(

(𝜐− 𝑙 + 1)𝜃(𝜐− 𝑙 + 𝜃 + 2) − (𝜐− 𝑙)𝜃(𝜐− 𝑙 + 2 + 2𝜃)
))

− 𝜃

(𝜃)∑𝜐

𝑙=0

(
ℎ𝜃1

(
𝜆𝑙−1 ,𝑙−1

)
Γ(𝜃+2)

(
(𝜐− 𝑙 + 1)𝜃+1 − (𝜐− 𝑙)𝜃(𝜐+ 1 − 𝑙 + 𝜃)

))
+(0),

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜐+1 =
(1−𝜃)
(𝜃) 2

(
𝜆𝑛, (

𝜆𝑛
))

+ 𝜃

(𝜃)
∑𝜐

𝑙=0

(
ℎ𝜃2

(
𝜆𝑙 ,𝑙)

Γ(𝜃+2)(
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))

+ 𝜃
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∑𝜐

𝑙=0

(
ℎ𝜃3

(
𝜆𝑙 ,𝑙)

Γ(𝜃+2)(
(𝜐− 𝑙 + 1)𝜃(𝜐− 𝑙 + 𝜃 + 2) − (𝜐− 𝑙)𝜃(𝜐− 𝑙 + 2 + 2𝜃)
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− 𝜃

(𝜃)∑𝜐

𝑙=0
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(
𝜆𝑙−1 ,𝑙−1)
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(
(𝜐− 𝑙 + 1)𝜃+1 − (𝜐− 𝑙)𝜃(𝜐+ 1 − 𝑙 + 𝜃)

))
+(0),
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𝜐+1 =
(1−𝜃)
(𝜃) 4

(
𝜆𝑛,(

𝜆𝑛
))

+ 𝜃

(𝜃)
∑𝜐
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ℎ𝜃4

(
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)
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(𝜐− 𝑙 + 1)𝜃(𝜐− 𝑙 + 𝜃 + 2) − (𝜐− 𝑙)𝜃(𝜐− 𝑙 + 2 + 2𝜃)
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− 𝜃

(𝜃)∑𝜐

𝑙=0

(
ℎ𝜃4

(
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))
+(0).

5. Numerical simulation

Here, we focus on the fractional diabetes mellitus model’s numerical 
solution. To enhance the clarity of our findings, we employ simulations 
to approximate the solutions for the system (1). For our simulation, we 
consider specific parameter values and t = 80 days is the total simula-
tion time. The parameters used in the system are: the birth rate is 𝛾 = 
1, the death rate of untreated patients with diabetes is 𝜒 = 0.06654, 
the rate of infective contact of susceptible individuals to latent indi-
viduals is 𝜂 = 0.0009, the rate of death of the treated patients with 
diabetes is 𝜇 = 0.09281, and the latent rate of movement of the indi-
vidual becoming infected is 𝜀𝜐 = 0.88187, 𝜚 = 0.13869 is the natural 

death rate. These parameter values contribute to the dynamics of the 
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Fig. 2. Simulation of (𝜆), (𝜆), (𝜆), (𝜆) with 𝛾=1, 𝜂=0.0009 for different fractional order of 𝜃.
model and allow us to evaluate the behavior of the fractional model 
(2.3) through numerical simulations. All the simulations are performed 
and graphically shown using the software MATLAB (R2022a).

Fig. 2 illustrates the dynamic effects observed across a range of 
values for 𝜃 (𝜃 = 0.80, 0.85, 0.90, 0.95, 1). Notably, when consider-
ing a fractional order, both the susceptible and infected populations 
demonstrate an increasing trend. However, as 𝜃 approaches 1, there 
is a significant decrease in these populations. This suggests that a de-
crease in the 𝜃 parameters leads to an increase in both the infected and 
susceptible populations. The results highlight the influence of 𝜃 on the 
dynamics of the system, emphasizing the importance of considering dif-
ferent values of this parameter in analyzing susceptible and infected 
populations.

Fig. 3 displays the dynamics of susceptible individuals (𝜆), ex-
posed individuals (𝜆), infected population (𝜆), and recovered indi-
viduals (𝜆) in response to parameter perturbation with 𝜂 (𝜂 = 0.009), 
representing the rate of infectious contact between susceptible individ-
uals and the latent population. The figure compares the behavior of 
the system under both integer and various fractional orders. It provides 
insights into how the different orders impact the trajectories of the sus-
ceptible, exposed, infected, and recovered populations. By examining 
these variations, we can gain a deeper understanding of the effects of 
fractional orders on the dynamics of the model and the importance of 
the parameter 𝜂 in shaping the population dynamics. Furthermore, the 
206

results shown in Fig. 3 offer a foundation for further exploration and 
refinement of the model, potentially leading to more effective disease 
control and prevention strategies.

Upon examining the dynamic response presented in Fig. 4, an inter-
esting finding emerged: a higher number of individuals were observed 
to be living with diabetes mellitus as the values of 𝜃 decreased. The pa-
rameters 𝛾 = 0.04 and 𝜂 = 0.009 were chosen for this analysis, with 
𝜃 values of 1, 0.90, 0.80, and 0.70. This observation suggests a corre-
lation between the value of 𝜃 and the prevalence of diabetes mellitus, 
indicating that lower values of 𝜃 are associated with a greater number 
of individuals affected by the disease. To minimize the affected class, it 
is crucial for the fractional order parameter 𝜃 → 1.

As demonstrated in the previous section, the proposed model estab-
lishes both the existence and uniqueness of its solution. Similarly, we 
will substantiate the existence of the solution for the diabetes melli-
tus model in the context of the ABC operator through numerical ex-
periments. Fig. 5 illustrates the presence of attractors, indicating the 
enduring coexistence and stability of the entire population over time, 
irrespective of the fractional orders employed. This observation under-
scores the importance of fractional calculus in capturing the complex 
and enduring behavior of the model, demonstrating the inherent stabil-
ity and resilience of the system. Therefore, the fractional dimension 
𝜃 assumes a critical role in the simulation experiments of the dia-
betes mellitus model conducted in this study. In contrast, our study 
incorporates the ABC fractional order derivative to capture the behav-

ior of the diabetes mellitus model. The simulation outcomes demon-
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Fig. 3. Simulation outcomes of diabetes mellitus model with different fractional order of 𝜃 by setting 𝛾=1, 𝜂=0.009.
strate that even slight adjustments in the derivative order can sig-
nificantly influence the numerical results. Therefore, when working 
with real data, it becomes crucial to accurately determine the precise 
value of the fractional order to attain enhanced precision in the out-
comes.

The in-depth qualitative analysis of the findings obtained from the 
simulation outcomes of the diabetes mellitus model with different frac-
tional orders of 𝜃 provides valuable insights into the dynamics of the 
disease. By considering glucose regulation, insulin sensitivity, oscilla-
tory behavior, long-term stability, and clinical relevance, we can in-
terpret the implications of the results and gain a better understanding 
of the underlying mechanisms. This knowledge can inform future re-
search, treatment strategies, and potentially contribute to improved 
management of diabetes mellitus.

6. Conclusion

The application of fractional calculus has been utilized to analyze 
the mathematical model of diabetes mellitus in this study. Specifically, 
the model has been modified using the fractional ABC derivative, which 
incorporates a nonsingular kernel. To discretize the suggested model, an 
effective numerical approximation approach was developed, which fa-
cilitates practical implementation and computer analysis. Through the 
utilization of fixed point theory, we establish the existence and unique-
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ness of a system of solutions for the modified diabetes mellitus model 
under specific conditions. Through simulation experiments, it was ob-
served that as the values of 𝜃 decrease and approach 0, there is a notable 
increase in the number of individuals living with diabetes. Conversely, 
when 𝜃 approaches 1, the number of people living with diabetes tends 
to decrease. This observation highlights the significant impact of the 
parameter 𝜃 on the prevalence of diabetes, emphasizing the need for 
effective interventions and strategies to mitigate the rising burden of 
this disease. In order to obtain a diabetes-free population, it is neces-
sary for the parameter 𝜃 to approach unity. This approach allows for 
a deeper understanding of the dynamics and behavior of diabetes mel-
litus, contributing to the advancement of research in this field. In the 
future, the proposed algorithm has the potential for extension to tackle 
a wide range of biological and physical models. In particular, one can 
use the proposed model for analyzing the Hepatitis B model, smoking 
model, alzheimer’s disease model, pine wilt disease model of fractional 
order. To gain deeper insights into the diabetes mellitus model, uti-
lizing non-local and non-singular kernel operators like Caputo-Fabrizio 
and ABC differential (integral) operators can capture natural phenom-
ena more efficiently than conventional mathematical operators. By em-
ploying these fractional operators, it becomes possible to assess their 
respective strengths and weaknesses in modeling the diabetes mellitus 
disease. As a result, it would be advantageous for young researchers in-
terested in this field to compare their findings with the outcomes of this 

study.
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Fig. 4. Simulation of (𝜆), (𝜆), (𝜆), (𝜆) with 𝜂=0.009, 𝛾=0.04 for different fractional order of 𝜃.
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