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Introduction: Approximately 200 million people worldwide are a�ected by

arsenic toxicity emanating from the consumption of drinking water containing

inorganic arsenic above the prescribed maximum contaminant level. The current

investigation deals with the role of prenatal arsenic exposure in modulating the

gut microbial community and functional pathways of the host.

Method: 16S rRNA-based next-generation sequencing was carried out to

understand the e�ects of in utero 0.04 mg/kg (LD) and 0.4 mg/kg (HD) of arsenic

exposure. This was carried out from gestational day 15 (GD-15) until the birth of

pups to understand the alterations in bacterial diversity.

Results: The study focused on gestational exposure to arsenic and the altered

gut microbial community at phyla and genus levels, along with diversity indices. A

significant decrease in firmicutes was observed in the gut microbiome of mice

treated with arsenic. Functional analysis revealed that a shift in genes involved

in crucial pathways such as insulin signaling and non-alcoholic fatty liver disease

pathways may lead to metabolic diseases in the host.

Discussion: The present investigation may hypothesize that in utero arsenic

exposure can perturb the gut bacterial composition significantly as well as the

functional pathways of the gestationally treated pups. This research paves the way

to further investigate the probable mechanistic insights in the field of maternal

exposure environments, which may play a key role in epigenetic modulations in

developing various disease endpoints in the progeny.
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Introduction

Arsenic is a common toxic contaminant found in the environment and is categorized

as a group I carcinogen (Bhattacharya et al., 2007; IARC Working Group on the Evaluation

of Carcinogenic Risks to Humans, 2012). Many populations around the world are exposed

to above-permissible levels of arsenic via drinking water [World Health Organization and

the U.S. Environmental Protection Agency (EPA)]. The established guidelines for arsenic

are <10 µg/L (Hughes et al., 2011). Various epidemiological and animal studies have linked
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chronic arsenic exposure with cancers of various organs such as the

skin, bladder, and liver, along with non-cancer endpoints such as

diabetes, obesity, hypertension, and cardiovascular diseases (van de

Wiele et al., 2010; Hughes et al., 2011; Gribble et al., 2012; Naujokas

et al., 2013; Grau-Perez et al., 2018). Recently, many studies have

shown the correlation between arsenic exposure and metabolic

disorders (Paul et al., 2011; Maull et al., 2012; Castriota et al., 2018).

Trillions of microbes are present in the human gut and work in

symbiosis with the host to maintain vital functions such as food

digestion, metabolic processing, immune system development,

epithelial homeostasis, and xenobiotic biotransformation (Ley

et al., 2006a,b; Young et al., 2008; Qin et al., 2010; Nicholson et al.,

2012; Jandhyala et al., 2015). In recent years, many reports have

indicated a link between perturbed gut microbiota and the cause of

many diseases such as cancer, diabetes, cardiovascular diseases, and

obesity (Ley et al., 2005, 2006b; Wang et al., 2011; Qin et al., 2012;

Roderburg and Luedde, 2014; Gentile and Weir, 2018; Guglielmi,

2018). Besides, the composition of gut microbiota is known to

be affected by a variety of external factors such as antibiotics,

food, stress, drugs, and environmental chemicals such as arsenic,

mercury, and hydrocarbons (Liebert et al., 1997; van deWiele et al.,

2005, 2010; Pinyayev et al., 2011; Choi et al., 2013; Zhang et al.,

2015a,b; An et al., 2019). Linking altogether, it can be hypothesized

that arsenic has the potential to perturb the composition of the gut

microbiota and thus alter the metabolic state of the organisms.

Some findings are able to establish the relationship between

arsenic exposure, gut microbiota, and metabolic disorders in the

adult population (Lu et al., 2014; Hur and Lee, 2015; Brabec et al.,

2020; Yang et al., 2021). The gutmicrobiota of the infant is primarily

established during birth and early life and is transferred vertically

from the mother (Yao et al., 2021). Alteration of the gut microbiota

and metabolic disorders due to prenatal arsenic exposure has

not yet been well-studied. Therefore, the present investigation

planned to study the effect of prenatal arsenic exposure on the gut

microbiota and metabolic profile of resident microbes.

Materials and methods

Animal treatment

Female Balb/C mice (6–8 weeks old) weighing between 25 and

28 g were acquired from the animal housing and rearing facility of

CSIR-IITR, Lucknow, India. Animals were kept in polypropylene

cages at 25◦C with 12 h light/12 h dark cycles and had ad libitum

access to purified water and a standard chow diet. The female mice

were divided into three groups (n = 10 in each group), viz., (i)

control (without arsenic exposure), (ii) 0.04 mg/kg as exposure

group (low dose LD), and (iii) 0.4 mg/kg as arsenic group (high

dose HD). A working dose of arsenic, i.e., 0.04 and 0.4 mg/kg, was

freshly prepared by dissolving sodium (meta) arsenite (NaAsO2) in

water and was given daily via oral gavage from GD-15 (gestational

day minus 15; i.e., 15 days prior to mating) until delivery (i.e.,

GD-21; Sharma et al., 2022). Water was administered orally to the

control group. Animals were set for mating in a 2:1 (female:male)

ratio after 15 days of dosing and on getting a positive plug; the

males were separated. The pups were housed with their mothers

for weaning until 21 days after birth. After weaning, the male

and female offspring were segregated, and three male pups from

each group were sacrificed at 6 weeks. For studying the bacterial

diversity, gut microbiota samples were procured by collecting

fecal samples from the respective groups. The fecal collection was

carried out under aseptic conditions using a sterile spatula. All the

experimental procedures performed in this study were approved

by the Institutional Animal Ethical Committee (IAEC) of the

Council of Scientific and Industrial Research—Indian Institute of

Toxicology Research (CSIR-IITR), Lucknow, India.

Sample collection, DNA extraction, and
sequencing

Fecal samples of 6-week-old mouse offspring were collected

via standard protocol, and their metagenomic DNA was extracted

using a QIAamp Power Fecal Pro DNA Kit—QIAGEN (Germany)

and stored at −20◦C until use. The extracted metagenomes were

processed for amplification of the bacterial-specific 16S rRNA

V3-V4 hypervariable region. Amplicon library was prepared by

Qubit quantification of 40 ng of extracted fecal metagenome for

amplifying the V1−3F (5′AGAGTTTGATGMTGGCTCAG3′) and

V (5′TTACCGCGGCMGCSGGCAC3′) hypervariable regions of

the 16S rRNA encoding gene using the TAQ Master MIX (Biokart

India Pvt. Ltd., India). Furthermore, next-generation sequencing

(NGS) was performed using the Illumina Miseq platform with a

2×300 paired-end V3 sequencing kit at Biokart India Pvt. Ltd.,

Bangalore, Karnataka, India.

Denoising and taxonomy assignment

Raw reads obtained from the Illumina sequencing were further

denoised using DADA2 in QIIME2 (2020.11) for quality filtering,

removal of chimeric sequences, and generation of Amplicon

Sequence Variants (ASVs; Bolyen et al., 2019). Further good-

quality reads obtained after denoising were processed for taxonomy

assignment in QIIME2 (2020.11) by training a feature classifier in

the SILVA 16S database to obtain various taxa (phylum, class, order,

family, and genus) level distributions for each sample with 99%

sequence identity (Quast et al., 2013).

Analysis of diversity indices, data
interpretation, and the PICRUSt analysis

Various diversity indices (Chao1, Shannon, Simpson, Pielou

evenness, observed features, and Faith_pd) were calculated to

analyse the bacterial diversity of each sample. The data have been

interpreted for different outputs such as GraphPad Software, v.

6.0; San Diego, CA; Microsoft Excel; NCSS V20.0.2; and STAMP

V2.1.3 (Parks et al., 2014). The functional prediction of the 16S

rDNA genes was performed using the Phylogenetic Investigation

of Communities by Reconstruction of Unobserved States (PICRUSt

2.0; version 2.4.1) algorithm (Douglas et al., 2020).
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Interpretation of the data and statistical
analysis

The generated ASVs were analyzed for the overall bacterial

composition in the gut microbiota of control and prenatally

arsenic-treated animals at various taxon levels. The statistically

significant differences at the level of tier I, tier II, and tier III were

performed using a two-sided G-test (w/Yates)+Fisher’s test at a 95%

confidence interval to analyse the PICRUSt2 output using STAMP

(https://stamp-software.com/). Data were depicted as mean ± SE

normalized to control values in the figures. Comparative analyses

among the three groups were performed using a one-way ANOVA

(p < 0.05) using GraphPad software (GraphPad Software, v. 6.0;

San Diego, CA) and Microsoft Excel.

Results

FastQC analysis and pre-processing of the
reads

Amplicon libraries achieved from nine samples (three male

samples from each group) revealed a total of 9,91,471 raw reads,

which were converted to 5,12,543 high-quality non-chimeric reads

using the DADA2 denoiser in the QIIME2 pipeline to generate

amplicon sequence variants (ASVs) for taxonomy assignment

(Supplementary Table 1).

Taxonomic assignment

On taxonomic assignment, the filtered reads were assigned

into nine phyla, 13 classes, 25 orders, 35 families, 53 genera, and

27 species.

Dominant phyla

Overall data analysis revealed that Firmicutes (79.56%)

were the most abundant phyla in the gut microbiota

followed by Bacteroidota (10.57%), Actinobacteriota (5.58%),

Verrucomicrobiota (2.14%), Cyanobacteria (1.29%), Patescibacteria

(1.12%), and Desulfobacterota (1.01%). Other phyla were

Deferribacterota (0.40%) and Proteobacteria (0.34%), which

contributed <1%. Phyla Verrucomicrobiota, Cyanobacteria,

Deferribacterota, and Proteobacteria did not appear in the

control animals and were present only in either of the prenatally

arsenic-treated groups (Figure 1A).

Dominant genera

Of the 53 genera, Lactobacillus (33.87%) was themost abundant

in the gut microbiota, followed by Staphylococcus (9.38%),

Muribaculum (4.65%), Bacteroides (4.52%), Erysipelatoclostridium

(4.4%), Blautia (4.28%), Coprostanoligenes [Eubacterium] (2.79%),

Akkermansia (2.76%), Lachnoclostridium (2.36%), and Moryella

(2.06%), which constituted the top 10 genera. Thirty-six genera

were absent in the control group and observed in prenatally

arsenic-treated groups only. Four genera (Roseburia, Odoribacter,

Prevotella, and RF39) were detected only in the control group, while

the remaining genera exhibited a portion below 2%, thus exhibiting

low significance in modulating the physiology of the gut. The top

20 genus abundances have been shown in Figure 1B.

Comparative analysis between control and
arsenic-treated group

Out of the top nine phyla, Firmicutes (88.66%) and

Patescibacteria (4.74%) showed relatively high dominance in

the control group, i.e., without arsenic dose. Whereas in the

LD group, Bacteroidota (14.78%), Actinobacteriota (5.27%),

Verrucomicrobiota (4.02%), Deferribacterota (0.76%), and

Proteobacteria (0.51%) were relatively dominant. In the HD

group, Cyanobacteria (2.19%) and Desulfobacterota (2.28%) were

relatively dominant.

Out of the 53 genera, Lactobacillus (52.77%), Staphylococcus

(17.25%), Candidatus Saccharimonas (8.78%), Alistipes (3.41%),

Desulfovibrio (0.82%), Roseburia (0.83%), Odoribacter (0.77%),

Prevotella (0.43%), and RF39 (0.27%) showed relatively high

dominance in the control group. In the LD group, 29 genera

showed relative dominance, out of which 15 were more than 1%.

Muribaculum (5.61%), Bacteroides (6.87%), Erysipelatoclostridium

(6.08%), Blautia (6.29%), Akkermansia (4.74%), Lachnoclostridium

(4.05%), Streptococcus (1.41%), [Clostridium] innocuum group

(2.05%), Bifidobacterium (2.19%), Muribaculaceae (1.75%),

Phascolarctobacterium (1.96%), [Ruminococcus] gnavus group

(1.86%), Corynebacterium (1.22%), [Ruminococcus] torques group

(1.09%), and Prevotellaceae UCG-001 (1.02%) were relatively

dominant genera. Fourteen dominant genera had <1%. In the HD

group, [Eubacterium] coprostanoligenes group (7.22%), Moryella

(2.90%), Gastranaerophilales (2.97%), Candidatus Stoquefichus

(5.63%), Lachnospiraceae NK4A136 group (5.60%), Allobaculum

(5.20%), Enterorhabdus (1.93%), Erysipelotrichaceae UCG-003

(2.72%), Dubosiella (3.07%), Clostridia UCG-014 (1.60%),

Enterococcus (1.45%), Lawsonia (2.44%), Lactococcus (1.27%),

Anaerostipes (1.28%), and Clostridium sensu stricto 1 (0.43%) were

relatively dominant genera.

Diversity indices

Various diversity indices were analyzed for control and

prenatally arsenic-exposed groups, i.e., LD and HD (Figure 2;

Table 1). Prenatally arsenic-exposed groups LD and HD showed a

higher richness of bacterial diversity than the control group. The

highest average Chao1-index was observed in the LD group (49.33),

followed by the HD (44.0.0) and the control groups (15). The

highest average Shannon index was also observed in the LD group

(5.01) as compared to the control (3.21) and the HD groups (2.81).

Similarly, the average Simpson index was also maximum for the LD

group (0.96) in comparison to the HD (0.86) and control groups

(0.57). Average Pielou evenness was highest in the LD group (0.90),

followed by the control (0.84) and the HD groups (0.50). Average

Frontiers inMicrobiology 03 frontiersin.org

https://doi.org/10.3389/fmicb.2023.1147505
https://stamp-software.com/
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Shukla et al. 10.3389/fmicb.2023.1147505

FIGURE 1

Relative percentage abundance at the level of phyla between C (control), LD (low dose), and HD (high dose) groups (A). Relative percentage

abundance of top 20 genera among the three groups (C, LD, and HD) (B).

observed features were also higher in the LD (48.67) and the HD

(43.00) groups compared to the control group (15.00). Average

Faith_pd was also measured, which was higher in the HD (8.37)

and the LD (7.27) groups compared to the control (4.58) group.

Shared bacterial phyla and genera among
the groups

A total of nine bacterial phyla were identified among the

three groups. Of them, only four phyla (Firmicutes, Bacteroidota,

Actinobacteriota, and Desulfobacterota) were present in the gut

microbiota of both the control and arsenic-exposed groups

(LD and HD). At the genus level, 53 genera were identified

among the three groups where Lactobacillus, Staphylococcus,

Bacteroides, Erysipelatoclostridium, Blautia, Coprostanoligenes

group, Streptococcus, Muribaculaceae, and Desulfovibrio were

observed in the gut microbiota of both the control and the

treated groups.

Inter-individual di�erences among the
groups

Inter-individual differences were observed at the phyla and

genera levels among the control and arsenic-treated groups. At the

phyla level, Cyanobacteria and Proteobacteriawere seen in both the

arsenic-treated groups, while their occurrence was missing in the

control group. Moreover, Verrucomicrobiota and Deferribacterota

were found only in the LD group. Whereas Patescibacteria was

detected only in the control and HD groups. At the genera

level, Muribaculum, Moryella, Gastranaerophilales, [Clostridium]

innocuum group, Enterorhabdus, Dubosiella, Clostridia UCG-

014, Enterococcus, Prevotellaceae UCG-003, Gordonibacter, and

Clostridium sensu stricto 1 were present in both the arsenic-treated

groups but were not present in the control group. Candidatus

Stoquefichus, Lachnospiraceae NK4A136 group, Allobaculum,

Lawsonia, and Anaerostipes were the genera that were only present

in the HD group.

Functional analysis of the gut microbiota

The PICRUSt 2 (version 2.4.1) analysis was performed in

QIIME2 on a command basis for exploring the bacterial functional

role in the treated groups, and the control groups showed

significant variations in the functionality. In tier I, the majority

of the genes were involved in the metabolic pathways (50.05%),

followed by the genes of genetic information processing (18.08%),

environmental information processing (15.46%), cellular processes

(7.67%), human diseases (6.02%), and organismal systems (2.73%;

Supplementary Figure 1). Tier I analysis revealed that in a dose-

dependent gene expression in all the functional groups, the

HD group showed the highest value, followed by the LD

group, and then the control group. Tier II analysis showed a

significant abundance for the genes that belong to carbohydrate

metabolism (23.08%), translation (49.23%), membrane transport

(65.83%), cellular community prokaryotes (54.23%), endocrine

system (41.54%), and antimicrobial drug resistance (31.15%;

Supplementary Figures 2A–C, 3A–C). Twelve relevant pathways

were chosen for further investigation. A comparative analysis of

these genes showed that most pathways (10) were not altered due

to arsenic treatment, either at lower or higher doses of arsenic.
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FIGURE 2

Box-plot analysis of the alpha diversity indices [Chao1 (A), Shannon (B), and Simpson (C)] among the three groups (C, LD, and HD).

TABLE 1 Various diversity indices and estimators obtained among control (C) and arsenic treated groups (LD and HD).

Average diversity indices and estimators

Sample name Dominant
phyla (%)

Dominant
genera (%)

Chao1 Shannon Simpson Pielou
evenness

Observed
features

Faith_pd

Control

(C)

Firmicutes

(88.66%)

Lactobacillus

(52.77%)

15.00 3.21 0.86 0.84 15.00 4.58

Low dose

(LD)

Firmicutes

(73.03%)

Lactobacillus

(30.01%)

49.33 5.01 0.96 0.90 48.67 7.27

High dose

(HD)

Firmicutes

(85.81%)

Lactobacillus

(32.58%)

44.00 2.81 0.57 0.50 43.00 8.37

Only genes involved in non-alcoholic fatty liver diseases and insulin

signaling pathways showed a decrease in their relative counts as

compared to the control groups. In addition, neither of the genes

was significantly different among the groups (p > 0.05).

Discussion

It was demonstrated that an environmentally relevant level

of arsenic exposure during the gestational period can perturb

the normal community composition and functional pathways in

the mouse gut microbiome. It has been previously described in

chronic arsenic exposure studies that patterns of energymetabolism

genes were altered (Lu et al., 2014; Chi et al., 2017), and genes

involved in LPS synthesis (Chi et al., 2017; Yang et al., 2021),

oxidative stress responses, and DNA repair were broadly increased

due to long-term exposure to arsenic (Lu et al., 2014; Chi et al.,

2017, 2018). In addition, arsenic exposure also enriched genes

that encode conjugative transposon proteins, components of the

multidrug efflux system, and the synthesis of multiple vitamins.

As the exposure to low, environmentally relevant doses of arsenic

during the gestation period culminates in the disruption of glucose

homeostasis and energy metabolism-related genes, the current

study explored whether it also affects the establishment and

maintenance of the natural gut microbiome or not. The results of

the study provide a new understanding of the effects of arsenic on

the gut microbiome, especially at environmentally relevant doses.

High-throughput 16S rRNA gene sequencing was used for profiling

to study the impact of arsenic exposure on the gut microbiome

and its metabolic profiles. In a study, 16S RNA-based analysis

of the gut microbiome unveiled that perturbation in the gut

microbiome enhances the arsenic bioaccumulation of its toxicity

(Coryell et al., 2018). Our observations clearly show that arsenic

exposure induced a noteworthy change in the gut microbiome

composition of prenatally treatedmale mice, indicating that arsenic

exposure not only disturbs gut bacteria at the abundance level

but also substantially alters the metabolomic profile of the host,

resulting in the disturbance of host metabolite homeostasis after

arsenic exposure. Chi et al. (2017) observed that the 100-ppb

arsenic dose for 13 weeks was sufficient to alter the bacterial

diversity of the gut microbiome of mice. Therefore, the current

findings may provide mechanistic insights regarding perturbations

of the gut microbiome as a new mechanism of environmental

chemical-induced human diseases. It may be hypothesized that

these alterations might be due to the vertical transfer of arsenic-

exposed gut microbiota from the mother to F1-generation after

gestational arsenic exposure. In the F1-generation, which has

acquired arsenic-exposed microbiota from its mother, along with

other adaptations and epigenetic modifications, an increase in

the diversity of gut microbiota was observed. In the normal
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gut microbiota, the relative abundance of both Firmicutes and

Bacteroidetes was recorded, but a shift in the relative abundance

of Firmicutes and Bacteroidetes was observed in obese vs. lean

mice, with a statistically significant reduction in Bacteroidetes and

an increase in Firmicutes in obese mice. Overall analysis revealed

that Firmicutes, Bacteroidota, and Actinobacteriota constitute the

major phyla as reported in several investigations on arsenic toxicity

(Thursby and Juge, 2017; Binda et al., 2018; Magne et al., 2020) in

the gut microbiome. The members of these phyla are prominently

present in the gut microbiota of humans as well as mice. Firmicutes

and Bacteroidetes exhibit a plethora of enzymes involved in

carbohydrate metabolism (Turnbaugh et al., 2006). Moreover,

the prevalence of Lactobacillus, Staphylococcus, Muribaculum, and

Bacteroides-like genera further corroborates the findings of several

investigations (Bervoets et al., 2013; Harakeh et al., 2016; Crovesy

et al., 2017, 2020; Halawa et al., 2019; Tokarek et al., 2021;

Zheng et al., 2022). Guo et al. reported an increase in Firmicutes

and Proteobacteria and a decrease in Bacteroidetes after arsenic

exposure, which is consistent with changes observed here in the

two lowest doses (Richardson et al., 2018). In the current study,

the highest dose also showed an increase in Proteobacteria, but

not in Firmicutes or Bacteroidetes populations (Richardson et al.,

2018).

The comparative analysis among the three groups (control,

LD, and HD) showed the differences at the phyla level. Firmicutes

were dominant in the control groups, which follows the routine

pattern of the majority of the gut bacteriome (Chi et al., 2017).

The depletion of Firmicutes in LD and HD groups indicates the

effect of arsenic on the firmicute population and its alterations,

which follows the findings of previous studies (Dheer et al., 2015;

Wu et al., 2019). Lu et al. (2014) also reported a significant

decrease in Firmicutes due to arsenic exposure, which plays a

significant role in affecting energy harvesting pathways and short-

chain fatty acid (SCFA) production. Several Firmicutes are known

for butyrate production (Tremaroli and Bäckhed, 2012; Lu et al.,

2014). SCFA such as propionate, butyrate, and acetate acts as the

primary energy source for gut epithelial cells and promotes the

first line of cellular defense (Vinolo et al., 2011). The abundance of

Bacteroidota was prevalent in the LD group and exhibited a cluster

of carbohydrate-utilizing enzymes such as Firmicutes. It may be

due to the low dose of arsenic exposure to the LD group (0.04

mg/kg) as compared to the HD group (0.4 mg/kg). Dheer et al.

(2015) observed a positive correlation between Bacteroidetes count

and a higher dose of arsenic. In the HD group, a drastic depletion

in Firmicutes, Bacteroidetes, and Actinobacteria was observed

due to a higher dose of arsenic exposure. Studies examining

alterations in the microbial composition after arsenic exposure

have shown results that appear to conflict. However, Guo et al.

found that providing mice with water containing arsenic increased

the abundance of Firmicutes and decreased the abundance of

Bacteroidetes (Richardson et al., 2018). Proteobacteria are often

overrepresented in several intestinal and extraintestinal diseases,

mostly with an inflammatory phenotype (Mukhopadhya et al.,

2012; Rizzatti et al., 2017). At the late stages of life, the microbiota

composition becomes less diverse andmore dynamic, characterized

by a higher Bacteroides to Firmicutes ratio and an increase in

Proteobacteria (Biagi et al., 2010). Similar findings were observed

at the genera level, where the control group harbored a higher

count of the genera Firmicutes and Bacteroidetes in the control and

LD groups. An increase in Lactobacillus in the control group was

observed, whereas in the arsenic-exposed groups (LD and HD),

the Lactobacillus count was significantly decreased. Lactobacillus

spp. are known for their protective role in arsenic-induced health

damage (Sanders et al., 2019; Du et al., 2020). Lactobacillus may

acquire arsenic resistance by reverting the oxidative stress and

the production of pro-inflammatory cytokines (de Matuoka et al.,

2020). Du et al. (2020) observed the restoration of Lactobacillus spp.

in the gut microbiome after 30 days of arsenic exposure in mice.

Lactobacillus spp. exhibit antimicrobial and antioxidative probiotic

activity to stabilize the gut microbiome (Sanders et al., 2019; Wu

et al., 2019). The LD and HD groups showed several pathogenic

bacteria, such as Streptococcus, Prevotellaceae, Corynebacterium,

and Enterococcus, that altered bacterial diversity due to arsenic

doses in mice. Besides, the overall diversity of the LD and HD

groups showed variation compared to the control group. A long-

term arsenic exposure of 6 months in adults reduced the count of

Muribaculum; however, this genus was not observed in arsenic-

treated groups only (Wang et al., 2020). Similarly, the count

of Dubosiella significantly decreased after 30 days of arsenic

exposure. Here, we observed the presence of Dubosiella in the

treated group (Wang et al., 2020). The physiology of Dubosiella is

not well-defined and needs to be further explored. Enterococcus,

another unique genus of the treated group, belongs to the lactic

acid bacteria (LAB) family, comprising both pathogenic and

commensal microorganisms ubiquitous in the environment even

as gut symbionts (Hanchi et al., 2018). Due to their tolerance to

salts and acids, the strains of Enterococcus spp. are highly adapted

to several food systems (Hanchi et al., 2018). Several arsenic-

resistant strains of Enterococcus are known to assist in coping with

high metal environments (Abrantes et al., 2011; Parsons et al.,

2020).

In adult studies of metal exposures, a dose-dependent response

in the alteration of the gut microbial community has been

observed (Dheer et al., 2015; Gokulan et al., 2018). However,

in the current investigation, a dose-dependent response in the

alteration of gutmicrobiota was not detected.Whereas inmetabolic

pathways, there is an increase in pathways involved in carbohydrate

metabolism, translation, membrane transport, cellular community

prokaryotes, endocrine system, and antimicrobial drug resistance

in a dose-dependent manner. This might be due to adaptation,

epigenetic modifications, and transfer of altered microbial

communities from directly arsenic-exposed mothers to the

offspring during the gestation period, which needs to be

further confirmed. The depletion of Roseburia, Ruminococcaceae,

Odoribacter, and Prevotella-like genera in the control group

identified them as arsenic-sensitive genera. Prevotella constitute the

core bacteriome of the human gut (Nam et al., 2011; Bhute et al.,

2016) and participate extensively in hydrolysing high-fiber-based

polysaccharides. Prevotella spp. exhibit a repertoire of carbohydrate

hydrolysing complexes (Yeoh et al., 2022). Roseburia is associated

with the effects of colonic motility, immunity maintenance, and

anti-inflammatory properties (Shao and Zhu, 2020). Roseburia spp.

could also serve as biomarkers for symptomatic pathologies (e.g.,

gallstone formation) or as probiotics for the restoration of beneficial

flora (Tamanai-Shacoori et al., 2017). The studies on Prevotella state

that this genus was found to be enriched in the treated group.
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Whereas in the current investigation, it was present in the control

group only (Wang et al., 2020).

In another study, Ashutosh et al. reported that Prevotella can

suppress disease through the modulation of systemic immune

responses (Mangalam et al., 2017). In addition, it was absent in

the arsenic-treated group, which can play a role in metabolic

deregulation. Whereas, Odoribacter showed a significant increase

in the presence of cadmium and aluminum exposure (Zhai et al.,

2017), which is contradictory to the current investigation, needs to

be further examined, and may be attributed to the indirect effect of

arsenic on prenatally treated mice.

The PICRUSt-based functional prediction showed the

dominance of metabolic pathways (50.05%), which follows the

pattern of several microbiome-based investigations. As it was a

gut microbiome-based investigation, several genes of carbohydrate

and fatty acid metabolism were assessed. It was observed that most

pathways (10) were not altered due to arsenic treatment either

at lower or higher doses of arsenic. Only genes involved in non-

alcoholic fatty liver diseases and insulin-signaling pathways showed

a decrease in their relative counts in the treated group as compared

to the control groups. Frediani et al. (2018) reported a positive

association between NAFLD and arsenic exposure. However, this

investigation was not a microbiome-based study and therefore

cannot be truly correlated with insulin-signaling pathways.

Conclusion

Overall, we can conclude that only gestational arsenic exposure

is sufficient to alter the gut microbial community in the progeny.

The effects of prenatal exposure are manifested through an

increased gene expression profile in the gut microbiota with

most of the genes clustered in metabolism and its pathways.

The outcomes of the study illustrate that arsenic exposure

perturbs the gut microbiome composition and associatedmetabolic

profiles in mice, which represents an early and crucial step in

understanding how arsenic exposure affects the gut microbiome

and its functions.
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information processing (C).

SUPPLEMENTARY FIGURE 3

The PICRUSt analysis tier II shows the ASVs distribution in cellular processes

(A), human diseases (B), and organismal systems (C).
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