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Abstract: Energy is an important denominator for evaluating the development of any country. Energy
consumption, energy production and steps towards obtaining green energy are important factors
for sustainable development. With the advent of forecasting technologies, these factors can be
accessed earlier, and the planning path for sustainable development can be chalked out. Forecasting
technologies pertaining to grey systems are in the spotlight due to the fact that they do not require
many data points. In this work, an optimized model with grey machine learning architecture
of a polynomial realization was employed to predict power generation, power consumption and
CO2 emissions. A nonlinear kernel was taken and optimized with a recently published algorithm,
the augmented crow search algorithm (ACSA), for prediction. It was found that as compared to
conventional grey models, the proposed framework yields better results in terms of accuracy.

Keywords: grey model; polynomial based kernel; augmented crow search algorithm; optimiza-
tion; soft computing; forecasting; optimized fractional overhead power term polynomial grey
model (OFOPGM)

MSC: 60G25; 68U01

1. Introduction

Accurate estimation of energy generation, energy consumption and greenhouse gas
emissions can determine a path for sustainable development of any country. Out of these
three factors, two factors are generally monotonically increasing functions, i.e., (generation
and consumption). Additionally, these are sometimes nonlinear functions that depend
upon several conditions, such as political decisions, consumer-oriented policy, demand-
based programs and energy conservation policies. In such a case, forecasting of these
parameters becomes quite crucial. First, the non-linearity plays a crucial role, and secondly,
limited data availability becomes a hurdle in the prediction.

The systems having such partial known characteristics are characterized as grey sys-
tems [1]. These systems are difficult to model and sometimes yield pretty erroneous results.
Hence, during the last two decades, the research has focused on the development of a
robust framework for grey architecture. In reference [2], a novel Bernoulli grey model
was presented for forecasting the consumption of renewable energy. Another very inter-
esting approach pertaining to the forecasting of renewable energy consumption has been
showcased in the reference [3]. The latest research showcases the prediction of energy
price with cubic polynomial realization [4]. In this work, the authors provided a cubic
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polynomial-based realization for market-clearing price prediction. Another important
study integrating metaheuristics and grey mathematics was reported in reference [5]. The
research showcased an amalgamation of a metaheuristic algorithm for parameter optimiza-
tion of a whitening equation for market-clearing price prediction. The research focused on
the fact that the accuracy of prediction engines can be enhanced with the applications of
optimization. Applications of some optimized devices have also been investigated in the
work [6]. Likewise, for modeling of carbon dioxide emissions, different intelligent methods
are discussed in reference [7]. Optimization approaches require statistical comparisons;
hence, a novel approach has been addressed in reference [8]. This model employs an
extended deep statistical comparison to compare the optimization performance of meta-
heuristics. A novel adaptive structure has been implemented in reference [9] for prediction
of crude oil production in China. The approach employed a fractional-order grey model
along with grey wolf optimization (GWO) for implementation. Reference [10] employed
the concept of weighted fractional accumulation generation in the prediction of natural
gas production. The authors employed five distinct nature inspired optimization algo-
rithms in this work. A seasonal variation index has been proposed for consumption of the
residential electricity consumption. The authors claimed that this integration can bring
speed to forecasting [11]. An application of the cuckoo search for forecasting the consumer
demand in the New South Wales area was conducted in reference [12]. In this work, a single
parameter was optimized by the algorithm. Another very interesting approach with this
algorithm can be seen in reference [13]. The algorithm was employed to predict thermal
error compensation for CNC machine tools.

It is also worth mentioning here that integration of a grey architecture with opti-
mization algorithms for tuning the parameters is also a potential area of research. In
reference [14], a rolling grey model was proposed for economic prediction with the help
particle swarm optimization (PSO). It is worth mentioning here that PSO is still the most
suitable algorithm for nonlinear functions. Further, in reference [15], a very interesting
prediction was executed for sales and stock piling of electric vehicles using an adaptive
optimized grey model. From these approaches, it is evident that research is aggregating
towards the adaptive and optimized model as compared to rigid, fixed-structure grey
models. The inverse square reverse unit (ISRU) activation function has been integrated
with the grey model to forecast power consumption in China. This function helps to explain
data growth, and this yields high accuracy in the predictions [16]. Likewise, an integration
of the grasshopper optimization algorithm (GOA) and the time-delayed grey model has
been presented in reference [17], and its applications in the prediction have been reported
prominently.

On the basis of this discussion, the following research objectives are framed. The
outcomes of this research were evaluated with the help of the framework proposed to reach
these objectives.

1. To discuss the mathematical framework of the proposed nonlinear-kernel-based
implementation and develop an optimization routine for estimating parameters of
the nonlinear whitening equation.

2. To assure applicability of this realization for the prediction of energy generation,
consumer demand, and forecasting of CO2 emissions.

3. To employ the augmented crow search algorithm (ACSA) for optimizing the parame-
ters of this framework and evaluate the framework by the calculation of various error
indices, such as absolute percentage error and the mean of this error.

The remaining part of the paper is organized as follows. Section 2 presents a devel-
opment model of OFOPGM and mathematical details of the naïve grey model. Section 3
showcases the optimization capabilities of the augmented crow search algorithm and estab-
lishes the efficacy and implementation details of the ACSA for the parameter-estimation
process. Section 4 presents analysis of the results for the proposed approach and compara-
tive analysis with other conventional grey models for predictions of various parameters.



Mathematics 2023, 11, 1505 3 of 13

Finally, all major findings are summarized in a lucid form in Section 5. Some future research
directions are also chalked out with reference to our experimentation.

2. Development of a Grey Model Based on the Optimized Fractional Overhead Power
Term Polynomial Grey Model (OFOPGM)

The model based on optimized whitening equation has been presented in reference [5].
The model has been employed for the prediction of the market-clearing price for energy
trading. The model has been tested for various datasets of market-clearing price. The
efficacy of the model for dealing with nonlinear data became a primary reason to employ it
for this work.

Theorem 1. The representative expression for time series for energy generation, energy consump-
tion and related to CO2 emissions can be cumulatively represented by the following notation:

E(0) = [E(0)(1), E(0)(2)......E(0)(k)]

and
E(1) = [E(1)(1), E(1)(2)......E(1)(k)]

represents the series obtained after one time accumulation; z(1)(k) is the background value. The
basic form of an optimized grey model is proposed as

dE(1)(t)
dt

+ aE(1)(t) = mtα + ntβ + d (1)

where a is the development coefficient and mtα + ntβ + d is stochastic grey action quantity. Here, α
and β are design parameters, which are computed through an optimization process.
Now, the system can be represented as

E(0)(l) + az(1)(l) =
m

(α + 1)
× (lα+1 − (l − 1)α+1)..

+
n

(β + 1)
× (lβ+1 − (l − 1)β+1) + d

(2)

Proof of Theorem 1. The whitening equation integration between the interval [l − 1, l] is

∫ l

l−1
dE(1)(t)dt +

∫ l

l−1
aE(1)(t)dt =

∫ l

l−1

(
mtα + ntβ + d

)
dt (3)

[
E(1)(l)− E(1)(l − 1)

]
+ a

∫ l

l−1
E(1)(t)dt =

m
(α + 1)

(lα+1 − (l − 1)α+1) +
n

(β + 1)
(lβ+1 − (l − 1)β+1) + d

(4)

From the expression for inverse accumulation, the original values can be obtained from
accumulated values and can be expressed as:

E(0)(l) = E(1)(l)− E(1)(l − 1) (5)

and part of the expression (11) can be appended from trapezoidal rule application; i.e.,

a
∫ l

l−1
E(1)(t)dt =

a
2
× (E(1)(l) + E(1)(l − 1)) (6)
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by substituting the expressions from (5) and (6) in expression (4), the theorem can be proved.

E(0)(l) + az1(l) =
m

(α + 1)
× (lα+1 − (l − 1)α+1)..

+
n

(β + 1)
× (lβ+1 − (l − 1)β+1) + d

(7)

Theorem 2. The parameters of whitening equation can be given by a least-square algorithm:
(a, m, n, d)T = (BT B−1)BTY where

Y =
[

E(0)(2) .. .. .. E(0)(k)
]T

and B can be expressed as

B =


−z(1)(2) 1

(α+1) × (2(α+1) − 1(α+1)) 1
(β+1) × (2(β+1) − 1(β+1)) 1

−z(1)(3) 1
(α+1) × (3(α+1) − 2(α+1)) 1

(β+1) × (3(β+1) − 2(β+1)) 1
: : : :
: : : :

−z(1)(k) 1
(α+1) × (k(α+1) − (k − 1)(α+1)) 1

(β+1) × (k(β+1) − (k − 1)(β+1)) 1

 (8)

Proof. By considering the expression (7), we substitute in k = 2.

M(0)(2) = a ×−z(1)(2) +
m

(α + 1)
× (2(α+1) − 1(α+1))..

+
n

(β + 1)
× (2(β+1) − 1(β+1)) + d

(9)

Now by substituting with k = j

M(0)(j) = a ×−z(1)(j) +
b

(α + 1)
× (j(α+1) − (j − 1)(α+1))..

+
c

(β + 1)
× (j(β+1) − (j − 1)(β+1)) + d

(10)

With the application of mathematical induction, we can write the same expression for
k = j + 1:

E(0)(j + 1) = a ×−z(1)(j + 1)

+
m

(α + 1)
× ((j + 1)(α+1) − j(α+1))

+
n

(β + 1)
× ((j + 1)(β+1) − j(β+1)) + d

(11)

By converting the expressions (9)–(11), the matrix form of these equations (for nthterms can
be obtained, and a solution of the least-square algorithm can be found.


−z(1)(2) 1

(α+1) × (2(α+1) − 1(α+1)) 1
(β+1) × (2(β+1) − 1(β+1)) 1

−z(1)(3) 1
(α+1) × (3(α+1) − 2(α+1)) 1

(β+1) × (3(β+1) − 2(β+1)) 1
: : : :
: : : :

−z(1)(k) 1
(α+1) × (k(α+1) − (k − 1)(α+1)) 1

(β+1) × (k(β+1) − (k − 1)(β+1)) 1

×


a
m
n
d

 =


E(0)(2)
E(0)(3)

:
:

E(0)(k)

 (12)
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After calculating the coefficient of the whitening equation, the response of the fore-
caster has been evaluated with the help of the following equation.

E0(k) = E(1)(1)× e−a(k−1) +
k

∑
l=2

1
2
× [e−a(k−l) × (mlα + nlβ + d)

+e−a(k−l+1) × (m(l − 1)α + n(l − 1)β + d)]− E(1)(1)× e−a(k−2)

−
k−1

∑
l=2

1
2
× [e−a(k−1−l) × (mlα + nlβ + d)

−e−a(k−l) × (m(l − 1)α − n(l − 1)β + d)]

(13)

Here, in this equation, the parameters α and β are adaptive and computed with the help of
an optimization routine. For establishing an optimized framework, let us define the error
(mean absolute percentage error (MAPE)) as per the following expression:

MAPE =
1
k

k

∑
r=1

∣∣∣∣∣ Ê(0)(r)− E(0)(r)
E(0)(r)

∣∣∣∣∣× 100 (14)

where Ê(0)(r) is the predicted output by the forecaster, and E0(r) is the actual value of the
corresponding sth sample. Further the optimization routine has been established consid-
ering the cumulative values of all the samples in forecasting. In most of the forecasting
approaches, the MAPE index is chosen.

J(α,β) = Min(
1
k

k

∑
r=1

∣∣∣∣∣ Ê(0)(r)− E(0)(r)
E(0)(r)

∣∣∣∣∣× 100) (15)

The objective function is defined as per Equation (15), where the variables are optimized
with the help of an optimization algorithm and a fixed structure of whitening equation is
obtained. Readers are directed to reference [5] for proof of Equation (13).

3. Augmented Crow Search Algorithm (ACSA)

Recently, a crow search algorithm has caught the eyes of researchers with its excellent
convergence properties and the ability to solve complex design problems with ease [18].
Diverse applications of the algorithm have been reported in many fields. A rich survey of
CSA was conducted [19] to depict the diverse applications and fields of implementation of
CSA. Recently, a version of CSA has been developed that employs a sinusoidal truncated
function with opposition-based learning for solving harmonic estimation problems. The
method has been tested over diverse sets of harmonics, and analysis of the proposed algo-
rithm exposed real challenges. From the observation of the author, it has been concluded
that the algorithm is very useful for applications on nonlinear functions [20]. The following
features of the ACSA are noteworthy for its implementation as an estimation agent for this
problem (Algorithm 1):

• The author has tested the ACSA on diverse sets of nonlinear, noisy and composite
functions. These functions contain exponential, trigonometric and other nonlinear
terms. From this application to 40 different functions, it is evident that the algorithm
is capable of handling the parameter-estimation process very efficiently.

• The ACSA employs an opposition-based algorithm for initializing the search agents.
This phenomenon can be seen in many prominent algorithms. By employing opposition-
based learning in this phase, the designer wishes to ensure the effective exploration. In
many of the experiments, these facts have been established that with the incorporation
of OBL, the performance of the algorithm is significantly enhanced [20].
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• The ACSA employs a sinusoidal truncated function that restricts the algorithm search
space in exploitation phase. This function provides a bridge between exploration and
exploitation.

For further information about the CSA, readers are directed to the following Refs. [21,22].
The following section presents the analysis of the results for the implemented approach.

Algorithm 1 Augmented crow search algorithm.

1: Generate an initial half of the population of size Np/2 consisting of each vector with
dimension D = 2 (α, β). Remaining Half will be the opposite population.

2: Iteration = 0
3: while Iteration < Maximum no. of Iteration do
4: Evaluate fitness for each crow, position and memory updation.
5: for i = 1 to Np do
6: Randomly choose any crow, Define Awareness probability and Flight length as

per updated Cosine law.
7: if fitness of solution < fitness of target then
8: Trail replaces target.
9: end if

10: end for
11: Update memory of the crows
12: Iteration = Iteration + 1
13: end while
14: Output

4. Results

For showcasing the efficacy of the proposed non-linear framework, four case studies
were chosen, and predictions were made. The following four case studies were considered.

• Case study 1—carbon dioxide emission [23]: The author of reference [23] developed
a forecasting model for prediction of carbon dioxide emission in Vietnam. In addition
to that, the same models were applied for prediction of the generation forecast. The
analysis was performed for the years 2010–2019. Case studies 1–4 were conducted
with the data of the reference.

• Case study 2—carbon dioxide emission [24]: An exponential grey forecasting model
was deployed for the forecasting of carbon dioxide emissions in Taiwan during 2002
to 2012.

• Case study 3—energy generation forecast [25]: The data were taken from the refer-
ence, where a foe was developed for 5.6 kW grid-connected PV-system generation
data in Beijing from 1997 to 2006. The forecast was conducted with the help of a
conventional grey model, along with grey Markov models.

• Case study 4—energy consumption forecast [23]: The energy consumption data of
Vietnam were taken for the analysis.

To compare the proposed framework to others, three conventional grey models were
employed. The first one was a conventional grey model that was formed on the basis of
research presented in reference [26]. A comparison was made with discrete and novel
grey forecasting models presented in references [27,28]. The results of case study 1 are
depicted in Table 1, which show a case comparison of the proposed framework with the
conventional grey model, DGM and NGM. When inspecting the values of error depicted in
table, it is evident to say that the MAPE (0.65) is optimal for the proposed grey framework
and other forecasts contain high values of errors. It is worth mentioning here that for this
particular case, NGM gives very high values of error (11.38). The best values and worst
values both are highlighted. The significance of the grey model is seen by the fact that
when the data points were limited, it could still generate a fair forecast. From here, it can
be observed that with five data values, it can generate an accurate forecast.
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In addition to the MAPE values, error and absolute percentage error (APE) are also
shown in the tables. From these values, it is clear that the forecast is not very far from the
actual values for the proposed framework. Hence, it can be concluded that the proposed
framework is able to conduct forecasts in an efficient manner.

Table 1. CO2 emission forecast [23].

Original Value OFOPGM Error APE GM Error APE
14,273 14,273 0 0 14,273 0 0
15,216 15,336.59 0.792528425 0.792528 14,451.25 −5.02595 5.025951
14,222 14,342.85 0.849768383 0.849768 14,946.08 5.091282 5.091282
14,723 14,848.07 0.849474876 0.849475 15,457.86 4.991216 4.991216
16,691 16,821.13 0.779644077 0.779644 15,987.16 −4.21691 4.216912

MAPE 0.654283 3.865072
DGM Error APE NGM Error APE

14,273 14,273 0 0 14,273 0 0
15,216 14,475.15 −4.86891695 4.868917 8499.795 −44.1391 44.1391
14,222 14,956.17 5.162214843 5.162215 13,930.95 −2.04646 2.046457
14,723 15,453.18 4.959449536 4.95945 15,019.86 2.016268 2.016268
16,691 15,966.71 −4.33943158 4.339432 15,238.17 −8.70427 8.704266

MAPE 3.866003 11.38122

Similar results were witnessed when case study 2 was evaluated. The prediction
results of the case study are showcased in Table 2. Here also, the MAPE values are quite
optimal for the proposed framework (1.515536). However, unlike the previous case, the
performance of NGM (6.02) was not compromised much. From this, it is concluded that
the performances of the grey models are quite sensitive to data characteristics. Hence, it
can also be seen that to have good forecasting performance, the forecaster should be able to
handle the data in a very efficient manner, like the proposed framework.

Table 2. Co2 emission forecast 2 [24].

Original GM(1,1) APE OFOPGM APE
225.245 225.245 0 225.245 0
243.804 255.4287 4.76804 243.804 1.29 × 10−8

252.647 256.0806 1.359047 259.4589 2.696208
260.702 256.7342 1.521978 265.2393 1.740402
267.782 257.3894 3.880984 266.1546 0.607738
271.85 258.0463 5.077672 264.7293 2.61936

261.524 258.7049 1.077933 262.4669 0.360559
246.128 259.3652 5.378189 260.3375 5.773206
262.799 260.0272 1.054724 258.9959 1.447156
255.73 260.6909 1.939878 258.898 1.238822

260.857 261.3562 0.191369 260.368 0.187446
MAPE 2.386347 1.515536
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Table 2. Cont.

Original DGM APE NGM APE
225.245 225.245 0 225.245 0
243.804 255.4992 4.796955 147.5414 39.4836
252.647 256.1357 1.380872 233.016 7.770137
260.702 256.7739 1.506746 254.0143 2.565284
267.782 257.4136 3.871946 259.1728 3.21499
271.85 258.055 5.074504 260.4401 4.19712

261.524 258.6979 1.08063 260.7515 0.295399
246.128 259.3424 5.368925 260.8279 5.972479
262.799 259.9886 1.069423 260.8467 0.742874
255.73 260.6363 1.918554 260.8513 2.002639

260.857 261.2857 0.164336 260.8525 0.001731
MAPE 2.384808 6.022387

While inspecting the forecasting performance of the engine for case 3, especially
for forecasting the energy generation, Table 3 shows the obtained results. The pictorial
representation of APE is showcased with the help of Figure 1. The x axis of the figure
showcases the no. of datapoints, and on the y axis, the APE is shown. It can be observed
that again, the NGM gives pessimistic results, but the proposed framework outperforms
the other model, achieving high accuracy. Hence, it is concluded that the proposed optimal
framework is meaningful, and it can conduct forecasts with higher accuracy. Further,
similar results were obtained for case 4. The results are depicted with the help of Table 4
and Figure 2. The x axis of the figure showcases the no. of datapoints, and on the y axis,
the APE is shown.

Figure 1. APE—power generation forecast.
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Table 3. Energy Generation Forecast [25].

Year Data OFOPGM Error APE GM Error APE
1997 5147.36 5147.36 0 0 5147.36 0 0
1998 5084 5084 1.41 × 10−9 1.41 × 10−9 5051.05 −0.64812 0.648117
1999 5026 5031.646 0.112213 0.112213 5038.35 0.245722 0.245722
2000 4960.26 5011.29 1.018303 1.018303 5025.68 1.318882 1.318882
2001 5024.98 5002.337 −0.45264 0.452643 5013.05 −0.23741 0.237414
2002 5094.76 4996.969 −1.95701 1.957011 5000.44 −1.85131 1.851314
2003 4946.36 4991.135 0.897098 0.897098 4987.87 0.839203 0.839203
2004 4886.02 4982.355 1.93353 1.93353 4975.33 1.827868 1.827868
2005 5043.88 4968.929 −1.50839 1.50839 4962.83 −1.6069 1.606898
2006 4938.76 4949.596 0.218925 0.218925 4950.35 0.234674 0.234674
MAPE 0.809811 0.881009
Year Data DGM Error APE NGM Error APE
1997 5147.36 5147.36 0 0 5147.36 0 0
1998 5084 5051.259 −0.644 0.643999 2868.134 −43.5851 43.5851
1999 5026 5038.509 0.248879 0.248879 4768.478 −5.1238 5.123805
2000 4960.26 5025.79 1.321109 1.321109 4969.252 0.181272 0.181272
2001 5024.98 5013.104 −0.23633 0.236333 4990.464 −0.6869 0.686896
2002 5094.76 5000.45 −1.85111 1.851113 4992.705 −2.00314 2.003143
2003 4946.36 4987.828 0.838355 0.838355 4992.941 0.941732 0.941732
2004 4886.02 4975.238 1.825981 1.825981 4992.966 2.188826 2.188826
2005 5043.88 4962.679 −1.60989 1.609886 4992.969 −1.00936 1.00936
2006 4938.76 4950.152 0.230674 0.230674 4992.969 1.097632 1.097632
MAPE 0.880633 5.681776

Table 4. Energy consumption forecast [23].

Original OFOPGM Error APE GM Error APE
3479 3479 0 0 3479 0 0
3652 3658.935 0.18989855 0.189899 3729.86 2.131988 2.131988
3810 3833.542 0.617903739 0.617904 3713.234 −2.53978 2.539784
3738 3764.506 0.709090175 0.70909 3696.682 −1.10534 1.105341
3620 3648.64 0.791146875 0.791147 3680.204 1.663101 1.663101

MAPE 0.461608 1.488043
Original DGM Error APE NGM Error APE
3479 3479 0 0 3479 0 0
3652 3730.692 2.154761975 2.154762 2164.233 −40.7384 40.73841
3810 3713.51 −2.53254274 2.532543 3451.338 −9.41371 9.413708
3738 3696.407 −1.11269483 1.112695 3676.288 −1.65094 1.650936
3620 3679.384 1.640430373 1.64043 3715.603 2.640969 2.640969

MAPE 1.488086 10.8888
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Figure 2. APE—energy consumption forecast.

5. Discussion

The pictorial representation of the MAPE values is shown in Figure 3. From this figure,
it is evident that the MAPE values are optimal for the proposed model. Additionally, it
can be concluded that the NGM model provides pessimistic results, and the scope for
improvement in the forecasting performance is there. Additionally, with a slight change
in the whitening equation, grey models can be applicable for this prediction. Hence, it is
concluded that the proposed optimized framework can be employed for the design and
planning of a town.

Figure 3. MAPE values of different test cases (case 1–case 4).

Further, the results of optimization process handled by the ACSA have been showcased
in terms of α and β values (Table 5). While using these parameters, one can easily obtain
the whitening equation. For all cases, these values of parameters were obtained, and the
forecast was calculated. It can be observed that with the help of the ACSA, the parameter-
estimation process can be easily handled, and that too with higher accuracy as compared
with other conventional models of the grey systems.
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Table 5. Polynomial coefficients generated by the ACSA.

Parameter/Cases α β

Case-1 2.1011 0.8822

Case-2 3.2674 0.6822

Case-3 2.2576 0.1512

Case-4 3.2649 0.1499

6. Conclusions

The paper addresses an important issue of forecasting of energy consumption, energy
generation and carbon emission forecasting. We proposed an optimized framework based
on a nonlinear polynomial-based machine learning kernel for prediction of these three
parameters. The structure of this polynomial was optimized with the application of the
ACSA. Three different case studies of forecasting were accomplished by implementing this
optimized framework. The following are the major outcomes of this study:

• An optimized framework for forecasting of a grey system was evaluated, and the
mathematical foundation of the work has been exhibited. While presenting this
framework, the implication of the correctness of polynomial coefficients was also
demonstrated.

• Three case studies were performed for evaluating the performance of this kernel-based
implementation. The case studies are related to forecasting of the energy generation,
energy consumption and carbon dioxide gas emission. It was found that the proposed
architecture yields a good performance on these datasets when compared with other
conventional models.

• The evaluation of the framework was performed through the use of error indices
called APE and mean absolute percentage error (MAPE). It was observed that the
MAPE of the optimized model is optimal when compared with those of other models.
The accurate estimation of these parameters would be quite helpful for planners of
energy grids and towns.

• It is worth mentioning here that while evaluating the forecaster’s performance, the
Lewis criterion was employed. As mentioned in reference [29] and according to
criterion of Lewis, the MAPE obtained from the proposed framework fell in a fair
range for each case study. Hence, it can be concluded that optimization handled with
the help of the ACSA yields an optimal architecture for the whitening equation of the
model, and it exhibited fair performance.

Further, the application of this model will be evaluated with the application of different
metaheuristics and on more challenging time-series prediction problems.
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