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Abstract: Forest fires have significant impacts on economies, cultures, and ecologies worldwide.
Developing predictive models for forest fire probability is crucial for preventing and managing
these fires. Such models contribute to reducing losses and the frequency of forest fires by informing
prevention efforts effectively. The objective of this study was to assess and map the forest fire
susceptibility (FFS) in the Indian Western Himalayas (IWH) region by employing a GIS-based fuzzy
analytic hierarchy process (Fuzzy-AHP) technique, and to evaluate the FFS based on forest type and
at district level in the states of Jammu and Kashmir, Himachal Pradesh, and Uttarakhand. Seventeen
potential indicators were chosen for the vulnerability assessment of the IWH region to forest fires.
These indicators encompassed physiographic factors, meteorological factors, and anthropogenic
factors that significantly affect the susceptibility to fire in the region. The significant factors in FFS
mapping included FCR, temperature, and distance to settlement. An FFS zone map of the IWH
region was generated and classified into five categories of very low, low, medium, high, and very
high FFS. The analysis of FFS based on the forest type revealed that tropical moist deciduous forests
have a significant vulnerability to forest fire, with 86.85% of its total area having very high FFS. At
the district level, FFS was found to be high in sixteen districts and very high in seventeen districts,
constituting 25.7% and 22.6% of the area of the IWH region. Particularly, Lahul and Spiti had 63.9% of
their total area designated as having very low FSS, making it the district least vulnerable to forest fires,
while Udham Singh Nagar had a high vulnerability with approximately 86% of its area classified as
having very high FFS. ROC-AUC analysis, which provided an appreciable accuracy of 79.9%, was
used to assess the validity of the FFS map produced in the present study. Incorporating the FFS map
into sustainable development planning will assist in devising a holistic strategy that harmonizes
environmental conservation, community safety, and economic advancement. This approach can
empower decision makers and relevant stakeholders to take more proactive and informed actions,
promoting resilience and enhancing long-term well-being.

Keywords: forest fire susceptibility; remote sensing; GIS-based Fuzzy-AHP; physiographic; meteoro-
logical; anthropogenic drivers; Indian Western Himalayas

1. Introduction

Forests are an essential natural resource that play a vital role in maintaining global
ecological equilibrium and ensuring the long-term survival of human civilization [1–4].
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A Food and Agriculture Organization (FAO) report suggests that the Earth’s surface en-
compasses a total of 4.06 billion hectares (30.06%) of global forest coverage. Among these,
ref. [5] estimated that approximately 420 million hectares of forested areas worldwide are
subjected to annual burning, surpassing the entire land area of India. Besides deforestation,
forest fires stand as one of the utmost significant threats to forest ecosystems on a global
scale [6]. Forest fires are considered a catastrophic occurrence that has the potential to cause
significant damage to forest ecosystems [7]. These fires represent a complex phenomenon
that can stem from a combination of natural and human activities, under the influence of
interrelated factors including fuel composition, weather conditions, geography, ignition
sources, etc. [8]. According to [8], human activities are responsible for the predominant
proportion of wildfire incidents (approximately 90%). In contrast, the remaining 10% of
wildfires are triggered by natural lightning. Over the past several decades, there has been
an increase in the number of forest fire incidents on a global scale, leading to heightened
apprehension among the public and governmental bodies regarding the environmental
and socioeconomic consequences of these fires [9].

Globally, Asia ranks as the fourth most affected continent, facing significant threats
from forest fires [10]. Within the South Asian region, India emerges as the second most
at-risk nation, with a 32% vulnerability rate, ref. [11]. Over the past two decades, India has
witnessed a staggering tenfold increase (52%) in intense forest fire incidents [12]. These fires
primarily impact the deciduous forests in central and southern India, as well as the forests
within the western and eastern Himalayas [13–15]. Forest fires in India are widespread,
encompassing a vast geographical area and arising from both natural and human factors.
Each year, an estimated 3.73 million hectares of forest land experience burning, resulting
in an approximate economic loss of about USD 110 million [16]. Forest fires in the Indian
Western Himalayas (IWH) region are a persistent hazard that is further intensified by the
changing climatic trends [17]. The IWH region is renowned for its rich biodiversity, pristine
landscapes, and significant contribution to the provision of vital ecosystem services. The
geographical area under consideration is characterized by diverse forest types, steep terrain,
and a wide range of climatic conditions, making it particularly vulnerable to forest fires. The
susceptibility of these forests to fire has been further exacerbated by climate-change-induced
variations in temperature and precipitation patterns. States such as Uttarakhand, Himachal
Pradesh, and Jammu and Kashmir are particularly vulnerable to forest fires due to the
combined effects of climatic conditions, geographical features, vegetation types, and human
activities [18]. The Indian Western Himalayas has witnessed significant forest fire incidents
in recent decades, mainly concentrated during the hot and arid pre-monsoon season
spanning from March to June [19,20]. Between 2001 and 2019, the burn area increased in
Uttarakhand and Himachal Pradesh at a rate of 72.94 km2 per year [21]. These fires not
only pose a direct threat to forest ecosystems and wildlife but also have adverse impacts on
air quality, water resources, and the livelihoods of local communities. Hence, as part of
broader initiatives to tackle this challenge, effective fire management strategies, community
engagement, the identification of forest fire vulnerability, and sustainable land management
practices are crucial [22].

Through the utilization of geospatial techniques including remote sensing (RS), geo-
graphic information systems (GIS), and statistical methods, it becomes feasible to create a
reliable spatial map outlining potential zones of forest fire risk across varying geographical
regions. The adoption of geospatial methodologies empowers individuals to incorporate
multiple models and processes, leading to precise outcomes within a concise timeframe.
Since the 1970s, satellite-based remote sensing data have been used successfully to differen-
tiate between areas affected by fire and those that are actively burning. This is achieved
by measuring the temperature difference between the reflectance of vegetation and the
reflectance of burned areas [23]. The identification and delineation of forest-fire-prone
regions have emerged as crucial duties in modern times since they play a pivotal role in
effectively controlling this calamity at a national level. Diverse categories of earth observa-
tion sensors, including multi- and hyper-spectral sensors, have already showcased their
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precision within this field. Remote sensing satellite data using MODIS (moderate-resolution
imaging spectroradiometer) play a pivotal role across multiple sectors, encompassing land
cover classification, vegetation monitoring, climate analysis, and disaster management [24].
Its moderate geographical and temporal resolutions strike an optimal balance between
detailed observations and comprehensive coverage, rendering it invaluable for analyses
spanning from regional to global scales [25]. In the present study, the NDVI was extracted
from MODIS Vegetation Indices-V6. Additionally, forest incident point data were acquired
from MODIS/Visible Infrared Imaging Radiometer Suite (VIIRS), which was utilized to
validate the FFS maps.

Over the past few decades, forest fires have received significant attention from re-
searchers due to their devastating nature and their potential for causing substantial eco-
nomic losses and ecological losses on a global scale. In recent times, the utilization of
remote sensing (RS) and geographic information system (GIS) technologies has provided
valuable insights for the field of forest fire susceptibility studies by integrating MCDM
and ML techniques. The mapping of forest fire susceptibility involves the analysis of a
multi-temporal dataset [26], and GIS tools play a crucial role in generating, managing,
and integrating forest fire event databases alongside various causative factors. Numerous
GIS-based forest fire susceptibility models have been employed in the literature, including
the frequency ratio [27], random forest [28,29], artificial neural network [30], gradient boost-
ing machine [31], support vector machine [29], and ensemble statistical machine learning
models [32], which extensively employ geospatial data for analysis. These models have
been widely adopted for the evaluation of susceptibility to various hazards based on the
existing literature. While machine learning models are effective for making predictions in
various fields, they present certain limitations when applied to macro-level studies because
of the unavailability of sufficient training data [33]. MCDM, on the other hand, has emerged
as a successful approach which provides a structured approach for dealing with complex
problems involving multiple criteria and stakeholders, making it suitable for resolving
macro-level complex decision making and policy analysis [34,35]. The analytical hierarchy
process (AHP) was developed by [36] and is a prominent method within the field of MCDA.
Using pairwise comparison matrices, this method is used to analyze the relative importance
of various contributing factors and their related sub-categories. The technique may limit
the decision maker’s ability to appropriately express their preferred choice because of
the probability of inconsistency in paired comparisons at a particular level [37–39]. In
this study, the Fuzzy-AHP, developed by [40], was employed. The integration of AHP
with fuzzy set theory was aimed at effectively addressing the challenges associated with
MCDA. The Fuzzy-AHP employs the triangular fuzzy number (TFN) as a substitute for
exact numerical values in order to get the final result. The utilization of TFNs has revealed
significant advantages in assessing numerous factors that impact forest fires, as highlighted
in several research studies [41–43]. Many researchers have used Fuzzy-AHP for assigning
weights since traditional AHP fails to accommodate both fuzziness and uncertainty [44].
In this study, an FFS map was created using a variety of information, including historical
fire reports and an analysis of secondary data obtained from various physiographic, mete-
orological, and anthropogenic data sources. This study aimed to (i) evaluate and depict
forest fire susceptibility (FFS) in the IWH region through the utilization of a GIS-based
Fuzzy-AHP technique, and (ii) perform an analysis of forest fire susceptibility based on
forest type and district within the IWH region. The evaluation involved quantifying the
impact of physiographic, meteorological, and anthropogenic factors on forest fires, with
the assignment of weights determined by their relevance in susceptibility estimation. The
receiver operating characteristic (ROC) curve and the area under the curve (AUC) were
utilized to assess the performance of the proposed model. Ultimately, the findings of this
research hold significant implications for estimating the potential environmental conse-
quences of fires. This empowers researchers and decision makers to formulate appropriate
post-fire restoration strategies and prioritize conservation efforts.
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2. Materials and Methods
2.1. Study Area

This study was conducted for the three Indian Himalayan states of Jammu and
Kashmir (JK), Himachal Pradesh (HP), and Uttarakhand (UK), which collectively span
151,382 km2 of the Indian Western Himalayas (IWH) region and constitute 4.6% of the
country’s total area. This study area (Figure 1) extends between 73◦26′E and 81◦01′E and
between 28◦44′N and 36◦58′N. Using the Köppen climate classification, most of the IWH
region has a subtropical highland climate (Cwb), and the average temperature ranges from
37 ◦C in summers to 2.2 ◦C in winters, with the warmest months being March to June
(pre-monsoon). The monsoon season, which lasts from July to September, accounts for the
majority of the annual rainfall, which ranges from 600 to 2000 mm. Altitude in this region
ranges from 187 m to more than 7000 m. The Pir Panjal Range, Dhauladhar Range, Zanskar
Range, and the Great Himalayas are just a few of the notable mountain ranges that make
up the Western Himalayas. These mountain ranges are made up of high peaks, jagged
summits, and deep valleys. This altitudinal variation results in the formation of a specific
pattern of vegetation that includes subtropical woods, conifer mountain forests, alluvial
grasslands, and alpine meadows. One of the world’s mega-biodiversity hotspots, this area
is the habitat for half of India’s native plant species and one-tenth of the world’s higher-
altitude plant and animal species; however, many of the species are yet to be thoroughly
studied [45].
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The IWH region experiences a fire season that lasts from February to June, peaking
in May. Data from Global Forest Watch shows that between 2001 and 2021, wildfires in
the Himalayas destroyed more than 35,000 hectares of forest cover. The overall area of
forest that was partially or completely burned increased from over 7,200,000 hectares to
more than 7,300,000 hectares between 2011 and 2020, according to an analysis of the data.
For this reason, probability- or susceptibility-based fire occurrence modeling and future
forecasting are crucial for this delicate mountain ecology [13].

2.2. Methodology

The methodology of this work comprised (1) the selection of meteorological, phys-
iographic, and anthropogenic parameters, (2) the use of a GIS-based fuzzy analytical
hierarchy process (Fuzzy-AHP) approach, and (3) map validation using the area under the
curve (AUC) method. This whole process aimed to assess and map the FFS of the Indian
Western Himalayas (IWH) region of India. All the necessary data were gathered from a
number of sources, and a thorough description of the data is given in Table 1. Data were
prepared and analyzed using ArcGIS, SPSS, and MS-Office, and the resulting information
was shown as an FFS map. Figure 2 provides an understanding of the general methodology
of this study.
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Table 1. Comprehensive database table summarizing the relevant data.

Factors Data Layer Resolution/
Scale

Preparation
Method

Relation to
Forest Fire
Susceptibility

Data Source Period

Ph
ys

io
gr

ap
hi

c
Fa

ct
or

s

Elevation

30 m × 30 m

DEM
Classification Negative relation

SRTM Plus V3
(https://earthexplorer.usgs.gov/, accessed on
20 October 2022)

2013

Slope
Spatial analysis
using slope,
aspect, and
curvature tools

Positive relation

Aspect
South-facing
more susceptible
and vice versa

Curvature Negative relation

Distance to
river

Euclidean
distance Positive relation

TRI

Calculating
map algebra
using raster
calculator

Positive relation

NDVI 1000 m

Downloaded,
mosaiced,
clipped, and
averaged

Positive relation
MODIS Vegetation Indices- V6
(https://earthexplorer.usgs.gov/, accessed on
25 October 2022)

2020–
2021

LULC

10 m × 10 m

Clipped from
World LULC
Database

Positive relation SENTINEL 2A
(https://www.arcgis.com/home/item.html?
id=d3da5dd386d140cf93fc9ecbf8da5e31,
accessed on 4 November 2022)

2020
FCR Positive relation

Forest type
Digitized from
the obtained
data

Positive relation

Wikimedia Commons
(https://commons.wikimedia.org/wiki/File:
Forest_type_areas_by_counties,_Minnesota,_1
962_(IA_foresttypeareasb55chas).pdf,
accessed on 5 November 2022)

M
et

eo
ro

lo
gi

ca
lF

ac
to

rs

Temperature

0.5◦ × 0.5◦

10 years
gridded
data
interpolation
using IDW

Positive
relation

CRU TS v. 4.07
(https://crudata.uea.ac.uk/cru/data/hrg/
cru_ts_4.07/cruts.2304141047.v4.07/pre/,
accessed on 11 November 2022)

2011–
2020

Mean annual
rainfall Negative relation

Wind speed 375 m Downloaded
and clipped Negative relation

Global Wind Atlas
(https://globalwindatlas.info/en accessed on
16 Novomber 2022)

2020

Humidity 0.5◦ × 0.62◦

10 years
gridded
data
interpolation
using IDW

Positive relation
POWER Data Access Viewer (https:
//power.larc.nasa.gov/data-access-viewer/
accessed on 22 November 2022)

2011–
2020

A
nt

hr
op

og
en

ic
Fa

ct
or

Distance to
settlement

10 m × 10 m

Clipped from
World LULC
Database Negative relation

SENTINEL 2A
(https://www.arcgis.com/home/item.html?
id=d3da5dd386d140cf93fc9ecbf8da5e31,
accessed on 4 November 2022 )

Distance to
road

Euclidean
distance DIVA GIS

(https://www.diva-gis.org/datadown,
accessed on 29 November 2022)Road density Density tool Positive relation

A
nc

il
la

ry
D

at
a

State outline
Uttarakhand
Himachal
Pradesh
J & K

1:1,000,000

Downloaded
and merged
internal
polygons

SOI (https://onlinemaps.surveyofindia.gov.
in/Digital_Product_Show.aspx, accessed on 15
October 2022)

https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://www.arcgis.com/home/item.html?id=d3da5dd386d140cf93fc9ecbf8da5e31
https://www.arcgis.com/home/item.html?id=d3da5dd386d140cf93fc9ecbf8da5e31
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https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_4.07/cruts.2304141047.v4.07/pre/
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2.2.1. Forest Fire Driving Forces
Physiographic Factors

Elevation

According to [45], the Indian Western Himalayas, which include the states of Uttarak-
hand, Himachal Pradesh, and Jammu and Kashmir, range in elevation from 187 m to
7383 m. The composition and availability of fuels, such as vegetation and dead biomass,
can vary with elevation due to changes in climate, rainfall patterns, and vegetation types.
Higher elevations tend to have cooler temperatures, with the temperature falling by 6.5 ◦C
per 1000 m, and higher humidity, which can limit fire spread, while lower elevations with
higher temperatures and lower humidity are more susceptible to rapid fire growth and
spreading [46–48].

Slope

Slopes can influence the direction of fire spread. Fires generally tend to spread more
rapidly on up slopes than down slopes [49]. Steep slopes can accelerate the spread of fire by
enhancing the upward movement of heated air and producing a chimney effect. Preheating
of fuels owing to radiant heat from flames increases as slope increases, resulting in faster
combustion rates and more intense fires [49]. The landforms of the western Himalayas,
which are a result of localized earthquake activity, continuous uplift, river erosion, and
tectonic pressures, have a particular type of slope that is characterized by steep inclines,
rough terrain, deep valleys, and small gorges [50].

Aspect

The Himalayas, being in the northern hemisphere, receive more direct solar radiation
on their south-facing slopes. As a result, these slopes tend to have vegetation that is more
adapted to warmer and drier conditions, such as grasses and shrubs. In contrast, the
north-facing slopes often support more moisture-loving vegetation such as coniferous
forest. South-facing vegetations are more flammable and contribute to the spread of forest
fires also because of higher temperatures and drier conditions as compared to north-facing
slopes [13,51].

Curvature

The concept of curvature pertains to the quantification of the extent to which a surface
deviates from being planar [52]. There are two types of curvature of a terrain used in
GIS. The first one is plan curvature. This orientation is perpendicular to the steepest slope
direction and impacts the way flow converges and diverges across the surface. A positive
value indicates lateral convexity of the surface at a specific location, whereas a negative
value signifies lateral concavity at that spot. A value of zero denotes a linear surface [53].
The second measure is profile curvature, aligned parallel to the steepest slope direction.
A negative value indicates a downward convexity of the surface at a specific location,
whereas a positive value signifies upward concavity. A value of zero implies a linear
surface. Profile curvature plays a role in affecting the acceleration or deceleration of flow
across the surface [53].

Curvature of the land can impact how fire behaves by changing the way wind moves,
affecting the amount of fuel present, and influencing the speed at which the fire spreads.
When considering the direction and speed of the wind, convex slopes (curving outward)
cause the wind to diverge and accelerate, potentially causing the fire to spread faster. In
contrast, concave slopes (curving inward) can cause the wind to converge and decelerate,
leading to different fire behavior. In terms of fuel accumulation and distribution, convex
slopes tend to accumulate fuel due to the collection of debris, which can result in more
intense fires.

Distance to River

Rivers can act as natural firebreaks due to their moisture content. The presence of
water and the relatively moist conditions near rivers can create a barrier that hinders the
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spread of fires. Vegetation along the riverbanks may also have a different moisture content,
which can reduce the availability of flammable materials and act as a natural fuel break,
slowing down or stopping the fire’s progression. The rivers in the western Himalayas form
an intricate network of tributaries. This naturally explains the presence of a significant
amount of water in the region, which can act as a savior in the case of a fire.

Topographic Roughness Index (TRI)

The topographic roughness index (TRI) is a measure of the surface roughness of
a landscape. It estimates elevation changes within a specific neighborhood, providing
information about the terrain’s roughness or complexity. The topographic roughness index
(TRI) quantifies the extent of elevation variation among neighboring cells in a DEM [54].
Topographical roughness influences the rate at which a fire can spread across the landscape.
Steep slopes and rugged terrain can accelerate fire spread, as flames can be aided by upslope
winds and the preheating of fuels. Flat or gently sloping terrain, on the other hand, can
slow down fire spread. Furthermore, high TRI scores frequently indicate more rugged and
difficult terrain. This can obstruct firefighters’ access to the location of the fire, slowing
reaction times and increasing the risk to firefighting teams.

NDVI

NDVI stands for normalized difference vegetation index. The health and density of the
vegetation cover for an area are measured using this index. NDVI can offer important details
regarding the state of the vegetation and possible fire risk in the context of mountainous
forest fires. Generally, healthy, thick vegetation has a high NDVI rating, indicating a
significant amount of chlorophyll and active photosynthesis [55–57]. On the other hand,
low NDVI readings could point to places with little vegetation, bare soil, or vegetation
stressed because of issues like disease or drought. Low NDVI values in forested mountain
regions can indicate less fuel moisture and higher vulnerability to fire ignition and spread
during times of heightened fire risk, such as dry seasons or protracted heat waves. NDVI
data can be used to determine the intensity of a forest fire after it has occurred. Post-fire
areas with significantly lower NDVI values indicate extensive vegetation degradation. This
type of data is critical for post-fire recovery and restoration operations. Continuous NDVI
monitoring can aid in the early detection of potentially fire-prone locations. Changes in
NDVI patterns, particularly during dry seasons, might warn authorities of an increased
fire danger and prompt proactive fire prevention responses. NDVI data for the months of
April to June of 2020 and 2021 were obtained from MODIS Vegetation Indices—V6.1 which
is provided by NASA LPDAAC.

Land Use/Land Cover (LULC)

Changes in LULC significantly affect the occurrence of forest fire. An increase or
decrease in the abundance of vegetation and changes in its composition can result in
increases or decreases in forest fires. Increased human activities, such as urbanization,
infrastructure development, or tourism, can introduce new ignition sources and increase the
likelihood of accidental fires. Deforestation is leading to changes in local climate patterns,
including temperature and rainfall, which may create dried and narrowed water channels
and more fire-prone conditions.

Based on previous studies, it can be stated that water availability is the factor that
most decreases the likelihood of forest fires igniting, while the presence of fuels such as
dense vegetation, dried leaves, and woods is the factor that most increases the likelihood
of forest fires igniting [58–60].

Forest Coverage Ratio (FCR)

The forest coverage ratio, which refers to the proportion of land covered by forests,
can influence the amount of fuel available for forest fires [61]. The Indian Himalayan region
has a very diverse range of forests. About 62.1% of the land is covered by forests, which
come in a range of varieties from subtropical to alpine. These forests are home to a variety
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of flora and fauna which include many endemic and endangered species [61]. A higher
forest coverage ratio denotes the presence of more biomass and vegetation, both of which
serve as possible fire starters. Equation (1) was used to calculate the FCR.

FCR = Fa/Fc (1)

where Fa is the area of forest in a cell, and Fc is the total area of the cell.

Forest Types

There are five types of forest in the IWH region [62]. These are alpine and subalpine,
cold desert, Himalayan moist temperate, subtropical coniferous, and tropical moist decid-
uous. Diversity in flora leads to variation in the amount of dry or wet fuel available for
forest fire. It reflects the five different types of forest with their varying flora species which
consequently contribute to forest fires in differing percentages. Sub-tropical coniferous
forest is very much prone to forest fire while cold desert, alpine, and subalpine forests are
the least prone to it.

Meteorological Factors

Temperature

The northwestern Himalayan peaks normally have dry weather, experiencing average
temperatures between 37 ◦C in the hottest month (June) and 2.2 ◦C in the coldest month
(January), along with significant snowfall. As the temperature rises, the moisture in the
soil dries out, leading to vegetation and trees that are flammable. Consequently, the land
experiences droughts and is no longer suitable for irrigation or other uses. As temperatures
continue to climb and global warming continues, forest fires will occur more frequently in
upcoming years.

Rainfall

Increased rainfall generally leads to reduced fire occurrence and size, as it enhances
fuel moisture levels and decreases fire ignition potential [63,64]. Conversely, drought
conditions associated with lower rainfall levels were found to increase the likelihood of
forest fires. The warmest months in the western Himalayas are April, May, and June, which
have the least rainfall of the year. As a result, the western Himalayan region experiences a
fire season that lasts from February to June, peaking in May.

Wind Speed

Wind speed plays a crucial role in determining the behavior and spread of forest
fires in mountainous regions. The interaction between wind and fire can significantly
impact fire growth, spread rate, and direction of spread [49]. Higher wind speeds can
accelerate the rate at which a fire moves through a forested area. The rate of spread is
directly proportional to wind speed up to a certain point, beyond which other factors such
as fuel availability and topography become more dominant [65].

Humidity

The relative humidity in the western Himalayan region is never greater than 60%. This
suggests that the western Himalayas have less moisture, which keeps the relative humidity
(RH) value within the range 60% even during the monsoon season. Relative humidity
has an effect on wildfires since it can dampen or dry out potential fuel. Low humidity
levels can both temporarily increase the risk of a forest fire and also temporarily dry out
vegetative fuels. When the air temperature and dew point temperature are both high, the
relative humidity is at its lowest.
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Anthropogenic Factors

Distance to Settlement

The western Himalayas are home to many villages. These typically consist of groups
of homes, frequently made of wood or stone, placed on terraces or slopes. In most self-
sufficient villages, the main sources of income are their agricultural areas, orchards, and
livestock rearing. The distance between a settlement and a fire source can influence the
speed at which the fire spreads. One study [66] found that as fires moved closer to structures,
their rate of spread increased significantly. This is because of the presence of flammable
materials in settlements, which may act as additional fuel for the fire.

Distance to Road

The development of roads, clearing vegetation, and the movement of travelers are
important factors in forest management and investment. Moreover, the construction of
roads establishes a direct interface between substantial human activities and the forest
ecosystem, elevating the potential for occurrences of forest fire events.

Road Density

The road density in the western Himalayas varies across different regions, depending
on factors such as terrain, accessibility, and development priorities. In some areas, par-
ticularly in the more populous and developed regions, road density is relatively higher.
These regions include the states of Himachal Pradesh and Uttarakhand, where roads con-
nect various towns, villages, and tourist destinations. Increased human activity, such
as recreational use, logging, and construction, is frequently correlated with higher road
density. The likelihood of human-caused ignitions fueling forest fires can increase because
of these activities.

2.2.2. GIS-Based Fuzzy Analytical Hierarchy Process (Fuzzy-AHP) Approach

The analytical hierarchy process (AHP), devised by [36], is a very successful groupware
multi-criteria decision-making process that enables the integration of expert perspectives
by breaking down difficult issues across the hierarchical levels. According to published
research, AHP has been widely used in academia and industry to solve complex decision-
making issues and to determine the weights of criteria that can be combined with other
operational or probabilistic techniques. Examples of these techniques include the hybrid
AHP-SWOT (strengths, weaknesses, opportunities, and threats) method [67] and the AHP
integration with decision tree analysis [68].

The AHP is one of the best multi-criteria approaches for determining where forest
fires may start. Numerous research studies have examined evidence for AHP’s alleged
usefulness against forest fires [69–71]. AHP, however, has several real-world issues. First, as
the number of criteria and choices rises, overall performance of the method declines. Second,
the method does not provide for justification of the ambiguity in assessors’ (experts’)
subjective judgments. Due to these factors, studies favor the application of fuzzy logic (FL)
theory to enhance the mathematical notion of simple AHP [72,73].

Fuzzy analytic hierarchy process (Fuzzy-AHP) is the integration of qualitative and
quantitative methods. The Fuzzy-AHP has been gradually improved as a useful technique
for handling complications involving decision making. The author of [74] developed fuzzy
set theory in 1965, a modeling technique that effectively reflects complicated systems for
which crisp numerical explanations are not possible. This method makes use of membership
values ranging from 0 to 1, showing the extent of membership, expressing the inherent
ambiguity of real-world events [74]. Notably, the concept of fuzzy sets theory has found
application in various other MCDA techniques, including fuzzy TOPSIS (technique for
order of preference by similarity to ideal solution) [75], and fuzzy PROMETHEE (preference
ranking organization method for enrichment of evaluations) [76]. The linguistic expressions
utilized in Fuzzy-AHP to conduct pairwise comparisons can be assigned numerical values
using the 1–9 scale introduced by Saaty in 1980. The associated conversion scale for
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transforming these values into fuzzy numbers representing relative importance is presented
in Table 2 [77].

Table 2. Fuzzy scale of the relative importance [77].

Saaty Scale Definition of Linguistic Terms Triangular Fuzzy Numbers Scale Reversed Values TFN Conversion

1 Equal (EQ) (1,1,1) 1/1 (1/1, 1/1, 1/1)
3 Moderate (MD) (2,3,4) 1/3 (1/4, 1/3, 1/2)
5 Strong (ST) (4,5,6) 1/5 (1/6, 1/5, 1/4)
7 Very Strong (VS) (6,7,8) 1/7 (1/8, 1/7, 1/6)
9 Extremely Strong (ES) (9,9,9) 1/9 (1/9, 1/9, 1/9)
2

Intermediate Values

(1,2,3) 1/2 (1/3, 1/2, 1/1)
4 (3,4,5) 1/4 (1/5, 1/4, 1/3)
6 (5,6,7) 1/6 (1/7, 1/6, 1/5)
8 (7,8,9) 1/8 (1/9, 1/8, 1/7)

Mathematical Definitions of Fuzzy Numbers and Membership Function

A collection of fuzzy numbers, denoted as Ã, within a subset X of the real number set
R, is established as a set of ordered pairs Ã = {x, µÃ(x)}, where x belongs to X and µÃ(x):
X→ [0, 1]. The function µÃ(x) is recognized as the membership function for Ã, responsible
for assigning a membership grade ranging between 0 and 1 to each element x, signifying its
degree of association [74,78]. A normalized fuzzy set has a special case in which the total
of the membership values of all its elements is equal to 1. In other words, the membership
values are scaled or changed so that they total one [79]. Depending on membership function,
there are many kinds of fuzzy numbers, but the triangular and trapezoidal shapes are
the most common and useful. Trapezoid fuzzy numbers address more widespread cases
of ambiguity in decision-making analysis ideas [80,81]. But triangular fuzzy numbers
are preferred over trapezoidal fuzzy numbers due to their inherent simplicity and better
interpretability in multi-criteria decision-making problems [82]. Furthermore, the usage of
triangular fuzzy numbers frequently results in simpler mathematical computations and
streamlined decision algorithms [83]. The triangular fuzzy number is depicted in Figure 3.
The triangular fuzzy numbers (TFNs) used in this paper for the FFS zonation of the IWH
were given by [72].
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Geometric Mean—Fuzzy-AHP Method

Within this paper, the application of Buckley’s Fuzzy-AHP method from 1985 was
undertaken to analyze forest fire risk factors and define FFS zones. The entire procedure
has been methodically organized and constructed in accordance with the following steps:

Step-1: Establishing the objective, constructing the hierarchical structure, and identify-
ing each risk factor and its corresponding sub-factors.

Step-2: Development of the pairwise comparison matrix, in which the elements [ãij]k
represents the kth experts’ preference of the risk factor i over the risk factor j; i, j ∈ N. The
fundamental relationship between the elements of the reciprocal matrix is (ãij)·(ãji) = 1. If
criteria 1–9 are used for the measurement of relative importance of criterion i with respect to
criterion j, then values 1̃−1, 2̃−1, 3̃−1, 4̃−1, 5̃−1, 6̃−1, 7̃−1, 8̃−1, 9̃−1 represent its reciprocal and
the values represent the degree of importance of criterion j relative to criterion i. Description
of the fuzzy conversion scale is provided in a study [84].

Step-3: Creating the average pairwise comparison matrix denoted as [a], in which the
elements consist of the average values of the preferences of experts, achieved by employing
Equation (2):

Aij =
∑
(

aij1 + aij2 + . . . + aijk
)

k
(k : number of experts engaged) (2)

Step-4: AHP weight is calculated and validated on the basis of consistency ratio (CR),
whether it is less than 0.10 or not. In the second case, the matrix is revised, and further
weight is calculated to make sure that the CR is less than 0.10.

Step-5: Construction of fuzzy pairwise comparison matrix denoted as [ã], where the
elements are represented by fuzzy values denoted as ãij. These fuzzy values are determined
using the linguistic scale of the MF along with the processes of TFN numerical conversion
as outlined in Table 2.

Step-6: Estimation of the fuzzy geometric mean value for each risk factor Ri (Equation (3)),
according to the approach of [72]:

Ri =

{
n

∏
j=1

∼
Aij

}1/n

=
(
Ãi1⊗Ãi2⊗Ãi3 ⊗ ...Ãin

)1/n (3)

Upon determination of geometric means, the vector of fuzzy geometric risk factors is
formulated as per Equation (4).

R = [R1,R2,R3,. . .Rn]T (4)

Step-7: Defining the fuzzy risk factors, which correspond to the fuzzy relative weights
denoted as Wi, in the following manner:

Wi =
∼
Ri ⊗

[
∑n

j=1 Rj

]−1
= Ri⊗ (R1⊕ R2⊕ R3⊕ . . .⊕ Rn)− 1R (5)



Remote Sens. 2023, 15, 4701 13 of 32

Step-8: Converting the fuzzy relative weights Wi into crisp values Wi through the
process of de-fuzzification. This is achieved by utilizing the center of the area (CoA) method,
using Equation (6).

Wi =
L.Wi + M.Wi + U.Wi

3
(6)

Step-9: Standardizing the de-fuzzified relative weights Wi using normalization, carried
out by employing Equation (7):

WNi = Wi/
(
∑n

i=1 Wi

)
(7)

Step-10: All layers are finally combined according to Equation (8) to create the forest
fire susceptibility (FFS) zone map.

FFS Zones = ∑n
i=1 Xi.WNi (8)

where WNi is the normalized fuzzy weight for the Xi factor.

2.2.3. Validation of Forest Fire Susceptibility Maps

Validation is an essential procedure to determine the effectiveness of the chosen methodol-
ogy in forest fire vulnerability assessment [6]. The receiver operating characteristic—area under
the curve (ROC-AUC) technique is frequently used in accuracy assessment of various MCDM
techniques, and because of its adaptability and efficacy in capturing the degree of vulnerability,
this approach is preferred for assessing the accuracy of used models. In the current study, this
approach was used for assessing the effectiveness of Fuzzy-AHP in FFS zonation. The ROC
curve is a visual tool for evaluating the trade-off between specificity and sensitivity (calculated
according to Equations (9) and (10)), with the x-axis showing a false-positive rate (specificity)
and the y-axis showing a true-positive rate (sensitivity) to judge the accuracy of the model’s
predicting ability [85].

Sensitivity =
TP

TP + FN
(9)

Specificity =
TN

FP + TN
(10)

where TP: true positive; TN: true negative; FP: false positive; FN: false negative.

3. Results
3.1. Preparation of the Spatial Databases

The drivers, or forest fire conditioning factors, used in this study to map FFS in
the western Himalayas consisted of physiographic, meteorological, and anthropogenic
parameters. The spatial data layers of these parameters were compiled in ArcGIS from the
sources listed in Table 1.

The physiographic factors, including elevation, slope, aspect, curvature, distance to
river, and TRI (Figure 5a–f), were extracted from the SRTM-DEM. The IWH is characterized
by a 7–7383 m elevation range, with a mean elevation of 2528.16 m; a 0◦–46.67◦ slope range
dominated by steeper slopes of 11.75◦; south- and southwest-facing slope aspects; and a
(−0.008111)–(0.00455) curvature. Moreover, the maximum distance of a location to a river
was found to be 30.92 km, and the IWH is dominated by a TRI range of 0.42–0.58. The
NDVI map of the region (Figure 5g) was extracted from MODIS Vegetation Indices-V6 data,
and the IWH has a mean NDVI of 0.25. The LULC map (Figure 5h) was extracted from
the World LULC Database, which uses Sentinel-2A data, and it is evident that the IWH
has significant area under forest cover. The FCR map of the IWH (Figure 5i) was created
on the basis of areal expanses of forests in the LULC map according to the Equation (1).
The forest type map of the IWH (Figure 5j) was digitized from a Wikimedia Commons
(2021) map. The IWH consists of five types of forests, including the area-dominating alpine
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and subalpine forests, Himalayan moist temperate forests, subtropical coniferous forests,
tropical moist deciduous forests, and the cold desert areas.

The meteorological factors included in this study include temperature, mean annual
rainfall, wind speed, and humidity. The temperature and mean annual rainfall data layers
(Figure 5k–l) were developed from global gridded data (0.5◦ × 0.5◦) of the Climate Research
Unit, University of East Anglia. Annual rainfall and temperature for the IWH average
940.6 mm and 12.78 ◦C, respectively. The wind speed map (Figure 5m) was created from
Global Wind Atlas data of 375 m resolution. On average, wind speeds of less than 2 ms-1
dominate across the IWH, except in the higher reaches of the Himalayan ranges where
friction and obstruction are the lowest. A humidity map of the IWH (Figure 5n) was
prepared from the global gridded data (0.5◦ × 0.62◦) of NASA POWER, and the map shows
that humidity in the IWH ranges between 3.07–10.79%.

The data layers for the anthropogenic factors were prepared as follows. The distance-
to-settlement map (Figure 5o) was prepared using built-up areas extracted from LULC
using the Euclidean distance tool. The distance-to-road map (Figure 5p) was created from
the Roads shapefile downloaded from the DIVA GIS Portal using Euclidean distance, and
the road density map was prepared using the line density tool.

The data layers of all the aforementioned drivers were converted into raster data
layers and resampled to the spatial resolution of 1000 m. These factor maps were classified
into sub-classes so that the differential influence of these classes on the occurrence of fire
incidents could be ranked. The factors, including elevation, slope, curvature, distance to
river, TRI, NDVI, temperature, mean annual rainfall, humidity, road density, distance to
road, and distance to settlement, were classified into five classes by quantile method as this
method assigns the same number of data values to each class and represents the maximum
spatial variation of a geographical attribute. The wind speed map was classified into five
classes by the defined interval method, while aspect, LULC, and forest type, and have the
predefined classification schemes. The classification of FCR, intended to be divided into
two distinct groups, was done by the equal interval approach to categorize the data based
on the central value.

3.2. Forest Fire Susceptibility (FFS) Mapping

In this study, seventeen drivers that influence the forest fire were considered to study
FFS in the IWH. The factors categorized into physiographic, meteorological, and anthro-
pogenic factors were separately subjected to the Fuzzy-AHP process.

Firstly, to determine the relative importance of the factors in conditioning forest fires
in the Himalayan region, ordinal ranks of the factors (Table 3) were determined based on
the knowledge of the group of decision makers (GDM). The GDM unanimously ranked
the physiographic factors from 1 to 10, suggesting that the influence of the physiographic
factors descended in the order FCR > NDVI > forest type > distance to river > LULC >
slope > TRI > elevation > curvature > aspect. Similarly, the meteorological factors and
anthropogenic factors were ranked in the ranges of 1 to 4 and 1 to 3, respectively. The role
of meteorological factors decreased in the order temperature > wind speed > humidity >
rainfall, and that of anthropogenic factors decreased in the order distance to settlement >
road density > distance to road.

Secondly, the ranks of the sub-classes of the drivers were determined by the GDM
on the basis of trends of susceptibility followed by the factor sub-classes. The numerical
ordering ranks were assigned unanimously such that the least important sub-class of a
factor was ranked 0 or 1, with increasing ranks for subsequent numerical ranks. Table 4
represents the ordinal ranking of the sub-classes of the drivers.
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Figure 5. Forest fire drivers: (a) elevation; (b) slope; (c) aspect; NDVI; (d) curvature; (e) distance
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speed; (n) humidity; (o) distance to settlement; (p) distance to road; (q) road density.
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Table 3. Rankwise ordering of the drivers.

Factor Category Drivers Order

Physiographic factors

FCR 1

NDVI 2

Forest Type 3

Distance to River 4

LULC 5

Slope 6

TRI 7

DEM 8

Curvature 9

Aspect 10

Meteorological factors

Temperature 1

Wind speed 2

Humidity 3

Rainfall 4

Anthropogenic factors
Distance to Settlement 1

Road Density 2

Distance to Road 3

Table 4. Weights for the sub-classes of meteorological, physiographic, and anthropogenic factors.

Factors Sub-Classes Class Interval Rank

Physiographic Factors

Elevation

187–920.709804 5

920.709804–1739.078431 4

1739.078431–2811.423529 3

2811.423529–4278.843137 2

4278.843137–7383 1

Slope

0–3.477381 4

3.477381–8.784962 4

8.784962–13.543483 3

13.543483–19.034084 2

19.034084–46.670109 1

Aspect

Flat 1

North 2

Northeast 3

East 4

Southeast 5

South 6

Southwest 5

West 4

Northwest 3

North 2
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Table 4. Cont.

Factors Sub-Classes Class Interval Rank

Physiographic Factors

Curvature

(−0.2128)–(−0.037654) 1

(−0.037654)–(−0.008111) 2

(−0.008111)–(0.00455) 3

0.00455–0.038313 2

0.038313–0.3253 1

Distance to River

0–3274.353033 1

3274.353033–6669.978401 2

6669.978401–9944.331434 3

9944.331434–13825.04614 4

13825.04614–30924.445313 5

TRI

0.111084–0.266644 1

0.266644–0.422205 2

0.422205–0.577765 3

0.577765–0.733325 4

0.733325–0.888885 5

NDVI

(−0.1793)–(0.064559) 1

0.064559–0.436547 2

0.436547–0.54401 3

0.54401–0.622541 4

0.622541–0.874667 5

LULC

Water 1

Trees 7

Flooded Vegetation 2

Crops 6

Built Area 5

Bare Ground 4

Snow/Ice 1

Rangeland 3

FCR
1 1

0 0

Forest Type

Alpine and subalpine 2

Cold desert 1

Himalayan moist temperate 3

Sub-tropical coniferous 4

Tropical moist deciduous 5

Meteorological Factors Temperature

(−3.800027)–(2.026002) 1

2.026002–7.852031 2

7.852031–13.67806 3

13.67806–19.504089 4

19.504089–25.330118 5
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Table 4. Cont.

Factors Sub-Classes Class Interval Rank

Meteorological Factors

Wind speed

0–1 1

01–02 2

02–03 3

03–05 4

05–23 5

Humidity

3.074757–4.830578 5

4.830578–6.192852 4

6.192852–7.5854 3

7.5854–8.917402 2

8.917402–10.794313 1

Rainfall

115.253502–469.642621 5

469.642621–824.03174 4

824.03174–1178.420859 3

1178.420859–1532.809978 2

1532.809978–1887.199097 1

Anthropogenic Factors

Distance to
Settlement

0 5

0–0.023484 4

0.023484–0.070453 3

0.070453–0.152649 2

0.152649–0.598854 1

Road Density

0–0.012692 1

0.012692–0.021154 2

0.021154–0.027077 3

0.027077–0.033564 4

0.033564–0.071923 5

Distance to Road

0 5

0–0.025008 4

0.025008–0.055786 3

0.055786–0.113496 2

0.113496–0.490533 1

Thirdly, in accordance with the TFN scale given in Table 2 and the subjective judgment
of the GDM, separate pairwise comparison matrices of the physiographic factors (Table 5),
meteorological factors (Table 6), and anthropogenic factors (Table 7) were developed. Using
these pairwise comparison matrices, the geometric mean of each driver was calculated
using Equation (5), followed by calculation of the fuzzy weights according to Equation (6).
The fuzzy weights thus derived were de-fuzzified using the center of area method given in
Equation (7) to determine the final normalized weights of each conditioning factor. The
geometric mean, fuzzy weights, and normalized weights of all the drivers are given along
with their respective pairwise comparison matrix tables.
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Table 5. Pairwise comparison matrix (physiographic factors).

Factors FCR NDVI Forest Type Distance to River LULC Slope

FCR 1.00 1.00 1.00 1.00 2.00 3.00 3.00 4.00 5.00 3.00 4.00 5.00 3.00 4.00 5.00 3.00 4.00 5.00

NDVI 0.33 0.50 1.00 1.00 1.00 1.00 1.00 2.00 3.00 3.00 4.00 5.00 3.00 4.00 5.00 3.00 4.00 5.00

Forest Type 0.20 0.25 0.33 0.33 0.50 1.00 1.00 1.00 1.00 1.00 2.00 3.00 2.00 3.00 4.00 2.00 3.00 4.00

Distance to
River 0.20 0.25 0.33 0.20 0.25 0.33 0.33 0.50 1.00 1.00 1.00 1.00 1.00 1.00 2.00 1.00 2.00 3.00

LULC 0.20 0.25 0.33 0.20 0.25 0.33 0.25 0.33 0.50 0.50 1.00 1.00 1.00 1.00 1.00 1.00 2.00 3.00

Slope 0.20 0.25 0.33 0.20 0.25 0.33 0.25 0.33 0.50 0.33 0.50 1.00 0.33 0.50 1.00 1.00 1.00 1.00

TRI 0.14 0.17 0.20 0.17 0.20 0.25 0.20 0.25 0.33 0.20 0.25 0.33 0.25 0.33 0.50 0.33 0.50 1.00

DEM 0.13 0.14 0.17 0.14 0.17 0.20 0.17 0.20 0.25 0.17 0.20 0.25 0.20 0.25 0.33 0.25 0.33 0.50

Curvature 0.13 0.14 0.17 0.14 0.17 0.20 0.17 0.20 0.25 0.17 0.20 0.25 0.20 0.25 0.33 0.25 0.33 0.50

Aspect 0.13 0.14 0.17 0.14 0.17 0.20 0.17 0.20 0.25 0.17 0.20 0.25 0.20 0.25 0.33 0.25 0.33 0.50

TRI DEM Curvature Aspect Geometric Mean Fuzzy Weight Normalized Weight

5.00 6.00 7.006.00 7.00 8.00 6.00 7.00 8.00 6.00 7.00 8.00 3.12 4.00 4.82 0.29 0.28 0.26 0.28

4.00 5.00 6.005.00 6.00 7.00 5.00 6.00 7.00 5.00 6.00 7.00 2.32 3.05 3.88 0.21 0.21 0.21 0.21

3.00 4.00 5.004.00 5.00 6.00 4.00 5.00 6.00 4.00 5.00 6.00 1.48 2.02 2.65 0.14 0.14 0.14 0.14

3.00 4.00 5.004.00 5.00 6.00 4.00 5.00 6.00 4.00 5.00 6.00 1.10 1.41 1.93 0.10 0.10 0.11 0.10

2.00 3.00 4.003.00 4.00 5.00 3.00 4.00 5.00 3.00 4.00 5.00 0.88 1.23 1.56 0.08 0.09 0.08 0.08

1.00 2.00 3.002.00 3.00 4.00 2.00 3.00 4.00 2.00 3.00 4.00 0.62 0.88 1.27 0.06 0.06 0.07 0.06

1.00 1.00 1.002.00 3.00 4.00 2.00 3.00 4.00 2.00 3.00 4.00 0.48 0.63 0.84 0.04 0.04 0.05 0.04

0.25 0.33 0.501.00 1.00 1.00 2.00 3.00 4.00 2.00 3.00 4.00 0.35 0.43 0.56 0.03 0.03 0.03 0.03

0.25 0.33 0.500.25 0.33 0.50 1.00 1.00 1.00 2.00 3.00 4.00 0.28 0.35 0.45 0.03 0.02 0.02 0.02

0.25 0.33 0.500.25 0.33 0.50 0.25 0.33 0.50 1.00 1.00 1.00 0.23 0.28 0.37 0.02 0.02 0.02 0.02
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Table 6. Pairwise comparison matrix (meteorological factors).

Factors Temperature Wind Speed Humidity Rainfall Geometric Mean Fuzzy Weight Normalized Weight

Temperature 1.00 1.00 1.00 2.00 3.00 4.00 3.00 4.00 5.00 4.00 5.00 6.00 2.21 2.78 3.31 0.53 0.53 0.51 0.52

Wind Speed 0.25 0.33 0.50 1.00 1.00 1.00 2.00 3.00 4.00 4.00 5.00 6.00 1.19 1.50 1.86 0.28 0.28 0.29 0.28

Humidity 0.20 0.25 0.33 0.25 0.33 0.50 1.00 1.00 1.00 1.00 2.00 3.00 0.47 0.64 0.84 0.11 0.12 0.13 0.12

Rainfall 0.17 0.20 0.25 0.16 0.20 0.25 0.33 0.50 1.00 1.00 1.00 1.00 0.31 0.38 0.50 0.07 0.07 0.08 0.07

Table 7. Pairwise comparison matrix (anthropogenic factors).

Factors Distance to Settlement Road Density Distance to Road Geometric Mean Fuzzy Weight Normalized Weighted

Distance to Settlement 1.00 1.00 1.00 3.00 4.00 5.00 4.00 5.00 6.00 2.29 2.71 3.11 0.70 0.68 0.66 0.68

Road Density 0.20 0.25 0.33 1.00 1.00 1.00 1.00 2.00 3.00 0.58 0.79 1.00 0.18 0.20 0.21 0.20

Distance to Road 0.17 0.20 0.25 0.33 0.50 1.00 1.00 1.00 1.00 0.38 0.46 0.63 0.12 0.12 0.13 0.12

Table 8. Pairwise comparison matrix (all factors).

Factors Anthropogenic Physiographic Climatic Geometric Mean Fuzzy Weight Avg Fuzzy

Anthropogenic 1.00 1.00 1.00 1.00 2.00 3.00 2.00 3.00 4.00 1.26 1.82 2.29 0.53 0.54 0.51 0.52

Physiographic 0.33 0.50 1.00 1.00 1.00 1.00 1.00 2.00 3.00 0.69 1.00 1.44 0.29 0.30 0.32 0.30

Climatic 0.25 0.33 0.50 0.33 0.50 1.00 1.00 1.00 1.00 0.44 0.55 0.79 0.18 0.16 0.18 0.17
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The normalized weights of the physiographic factors, given in Table 5, were inte-
grated with their respective raster data layers in the ArcGIS, and the layers were then
combined in accordance with Equation (8) to synthesize the physiographic FFS map
of the IWH (Figure 6a). Similarly, the meteorological and anthropogenic FFS maps
(Figure 6b,c) were synthesized on the basis of the normalized weights of the drivers given
in Tables 6 and 7, respectively.
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low fire susceptibility (VL) to very high fire susceptibility (VH) using the quantile method. 

Figure 6. Forest fire susceptibility (FSS): (a) physiographic FSS, (b) meteorological FSS, (c) anthro-
pogenic FSS.

Using the physiographic, meteorological, and anthropogenic FFS maps of the IWH
as factors, an overall FFS map was synthesized using the pairwise comparison matrix of
geometric means, fuzzy weights, and normalized weights given in Table 8, as determined
by the Fuzzy-AHP method. The overall FFS map was classified into five zones from very
low fire susceptibility (VL) to very high fire susceptibility (VH) using the quantile method.
The classified map is shown in Figure 7. The map shows that 50,693 km2 (22.66%) of the
IWH falls in the very high FFS zone; 57,494 km2 (25.7%) in the high susceptibility zone;
37,385 km2 (16.71%) in the medium susceptibility zone; 39,200 km2 (17.52%) in the low
susceptibility zone; and 38,954 km2 (17.41%) in the very low susceptibility zone.
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3.3. Map Validation Using ROC-AUC

The validation of the FFS map generated through the GIS-based Fuzzy-AHP approach
was conducted using receiver operating characteristic–area under curve (ROC-AUC) analy-
sis. A total of 790 true positive data points were extracted from the Visible Infrared Imaging
Radiometer Suite (S-NPP/VIIRS) at a 375 m resolution for the years 2011 and 2022 (depicted
in Figure 8a). Based on the assumption that the snow, water bodies, flooded vegetation,
and rangeland classes of the land use/land cover (LU/LC) map lack the fuels for forest
fire, an equal number of true negative points were derived from the snow, water bodies,
flooded vegetation, and rangeland classes of the land use/land cover (LU/LC) map.
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The resulting FFS map, produced as part of this study, demonstrated a predictive
accuracy of 79.9%. This accuracy level indicates a substantial agreement between the
projected and observed FFS, as illustrated in Figure 8b. This outcome underscores the
efficacy of the methodology employed, which involved assigning weights to different
meteorological, physiographic, and anthropogenic parameters. Through this approach, the
research successfully captured and conveyed the genuine FFS across the entire study area.

3.4. Analysis of the Vulnerability to Forest Fires by Forest Type

The vulnerability of various forest types of the IWH to forest fires is summarized in
Table 9 and depicted in Figure 9. Among the five different forest types of the IWH, the
tropical moist deciduous forest cover is highly prone to forest fire with 86.85% of its area in
a very high FFS zone, 12% in a high FFS zone, 1.15% in a medium FFS zone, and no area the
low and very low FFS zones. Subtropical coniferous forest ranked second in vulnerability
to forest fire with 47.84%, and 41.29% in the very high and high FFS zones. Only 9.76% and
1.11% of these forests were in the medium and low FFS zones, with no area in the very low
FFS zone. The Himalayan moist temperate forests in the IWH ranked third in vulnerability
to forest fire with 30.01%, 34.04%, 20.01%, 12.16%, and 3.79% of their area in very high,
high, medium, low, and very low FFS zones, respectively. Alpine and subalpine forests are
relatively less vulnerable, as 9.64%, 16.76%, and 17.81% of these forests fall in the very high,
high, and medium FFS zones of the IWH. Moreover, 29.57% and 26.22% of these forests fall
in the very low and low FFS zones, indicating their relative invulnerability. The cold desert
has the highest percentage of area in the very low FFS zones (70.51%), followed by its area
in low FFS zones (28.01%), medium FFS zones (1.39%), and less than 1% in the high and
very high FFS zones. This indicates that the region spanned by the cold desert is immune
to forest fire. As per these results, the forest fire vulnerability of different forest types in the
IWH was ranked in the order tropical moist deciduous forest > subtropical coniferous >
Himalayan moist temperate > alpine and subalpine > cold desert. Since the distribution



Remote Sens. 2023, 15, 4701 23 of 32

of these forests is regulated primarily by the elevation, it was determined that there is a
strong influence of topography, especially elevation, on the FFS.

Table 9. Percentage of area of each forest type under the varying intensities of FFS.

Forest Type Very Low Low Medium High Very High

Cold desert 70.52 28.01 1.39 0.08 0.00

Alpine and subalpine 29.57 26.22 17.81 16.76 9.64

Himalayan moist temperate 3.79 12.16 20.01 34.04 30.01

Subtropical coniferous 0.00 1.11 9.76 41.29 47.84

Tropical moist deciduous 0.00 0.00 1.15 12.00 86.85
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Figure 9. Percentage of area of each forest type under the varying intensities of FFS.

3.5. District-Wise Analysis of FFS

There are 47 districts altogether in Uttarakhand (UK), Himachal Pradesh (HP), and
Jammu and Kashmir (JK). By analyzing the percentage of the area of each district (Figure 10
and Table 10) that fell in each of the five distinct FFS zones, it was found that the very
high FFS zone covered 17 districts out of the total of 47 districts. These included Haridwar,
Nainital, and Udham Singh Nagar (UK); Sirmaur, Bilaspur, Hamirpur, Kangra, Mandi,
Solan, and Una (HP); and Baramulla, Kathua, Badgam, Pulwama, Shupiyan, Samba, and
Jammu (JK). Udham Singh Nagar, with 86.25% of its total area in the very high FFS zone,
was the most vulnerable district of the IWH region. The districts falling under the high
FFS zone included Almora, Bageshwar, Champawat, Dehradun, Pauri Garhwal, and Tehri
Garhwal, (UK); Shimla (HP); and Mirpur, Poonch, Udhampur, Kupwara, Rajauri, Raisi,
Srinagar, Doda, and Ramban (JK). Srinagar led the pack with 58.60% of its whole area
falling in the high FFS zone. None of the districts fell under a medium FFS zone. It was
found that seven districts fell under the very low FFS zone. These included Chamoli,
Pithoragarh, and Uttarkashi (UK); Chamba, Kullu, Lahul and Spiti (HP); and Kishtwar (JK).
Among these, Lahul and Spiti had 63.87% of its total area under this category, making it the
district least vulnerable to forest fire. Seven districts fell under the low FFS zone, namely,
Rudraprayag (UK); Kinnaur (HP); and Muzzafarabad, Anantnag, Bandipura, Ganderbal,
and Kulgam (JK). Comparing all of them, Bandipura had the maximum % (52.93%) of its
area under this category.
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Table 10. District-wise analysis (area and percentage) of FFS intensity.

District VL_Area
(sq·km) Area_% L_Area

(sq·km) Area_% M_Area
(sq·km) Area_% H_Area

(sq·km) Area_% VH_Area
(sq·km) Area_% Total Area

(sq·km)

ALMORA 0.00 0.00 124.00 2.98 1000.00 24.04 1740.00 41.84 1295.00 31.14 4159

BAGESHWAR 475.00 15.97 322.00 10.83 767.00 25.79 909.00 30.56 501.00 16.85 2974

BILASPUR 0.00 0.00 7.00 0.46 138.00 9.04 566.00 37.09 815.00 53.41 1526

CHAMBA 3083.00 33.92 2088.00 22.97 1840.00 20.24 1374.00 15.12 705.00 7.76 9090

CHAMPAWAT 0.00 0.00 67.00 2.99 485.00 21.64 974.00 43.46 715.00 31.91 2241

DEHRADUN 0.00 0.00 222.00 5.44 861.00 21.10 1731.00 42.43 1266.00 31.03 4080

HAMIRPUR 0.00 0.00 0.00 0.00 27.00 1.75 473.00 30.71 1040.00 67.53 1540

HARIDWAR 0.00 0.00 5.00 0.17 104.00 3.64 824.00 28.83 1925.00 67.35 2858

KANGRA 430.00 5.51 980.00 12.56 570.00 7.30 1631.00 20.90 4194.00 53.73 7805

KULLU 2121.00 27.92 1631.00 21.47 1891.00 24.89 1469.00 19.33 486.00 6.40 7598

MANDI 0.00 0.00 141.00 2.59 831.00 15.28 2157.00 39.67 2308.00 42.45 5437

NAINITAL 0.00 0.00 67.00 1.28 585.00 11.17 2142.00 40.89 2445.00 46.67 5239

PAURI
GARHWAL 0.00 0.00 265.00 3.85 1903.00 27.63 3328.00 48.32 1391.00 20.20 6887

RUDRAPRAYAG 371.00 13.85 485.00 18.11 897.00 33.50 731.00 27.30 194.00 7.24 2678

SHIMLA 182.00 2.60 607.00 8.68 1400.00 20.01 2783.00 39.79 2023.00 28.92 6995

SIRMAUR 0.00 0.00 77.00 2.10 860.00 23.50 1194.00 32.63 1528.00 41.76 3659

SOLAN 0.00 0.00 3.00 0.12 81.00 3.18 928.00 36.44 1535.00 60.27 2547

TEHRI
GARHWAL 299.00 5.69 271.00 5.16 1450.00 27.60 2208.00 42.03 1026.00 19.53 5254

UDHAM SINGH
NAGAR 0.00 0.00 0.00 0.00 30.00 0.96 401.00 12.80 2703.00 86.25 3134

UNA 0.00 0.00 2.00 0.10 31.00 1.58 528.00 26.91 1401.00 71.41 1962

MIRPUR 0.00 0.00 68.00 1.41 598.00 12.38 2351.00 48.65 1815.00 37.56 4832

MUZAFFARABAD 798.00 11.99 1745.00 26.22 1721.00 25.86 1734.00 26.06 657.00 9.87 6655
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Table 10. Cont.

District VL_Area
(sq·km) Area_% L_Area

(sq·km) Area_% M_Area
(sq·km) Area_% H_Area

(sq·km) Area_% VH_Area
(sq·km) Area_% Total Area

(sq·km)

POONCH 10.00 0.16 284.00 4.67 686.00 11.27 3391.00 55.72 1715.00 28.18 6086

ANANTNAG 147.00 3.73 1143.00 28.97 606.00 15.36 1099.00 27.85 951.00 24.10 3946

BARAMULA 1.00 0.03 228.00 7.59 400.00 13.32 1186.00 39.49 1188.00 39.56 3003

KATHUA 4.00 0.12 153.00 4.54 624.00 18.52 1033.00 30.65 1556.00 46.17 3370

UDHAMPUR 3.00 0.09 60.00 1.86 478.00 14.84 1441.00 44.75 1238.00 38.45 3220

BADGAM 3.00 0.17 393.00 21.66 137.00 7.55 603.00 33.24 678.00 37.38 1814

BANDIPURA 320.00 5.58 3035.00 52.93 1296.00 22.60 725.00 12.64 358.00 6.24 5734

GANDERBAL 75.00 3.16 789.00 33.25 627.00 26.42 586.00 24.69 296.00 12.47 2373

KULGAM 82.00 4.48 605.00 33.08 249.00 13.61 406.00 22.20 487.00 26.63 1829

KUPWARA 0.00 0.00 534.00 13.19 1002.00 24.76 1312.00 32.42 1199.00 29.63 4047

PULWAMA 0.00 0.00 73.00 5.58 130.00 9.94 470.00 35.93 635.00 48.55 1308

RAJAURI 0.00 0.00 94.00 2.50 501.00 13.32 1726.00 45.88 1441.00 38.30 3762

RAMBAN 0.00 0.00 230.00 12.52 670.00 36.47 683.00 37.18 254.00 13.83 1837

RIASI 42.00 1.52 416.00 15.07 787.00 28.50 885.00 32.05 631.00 22.85 2761

SHUPIYAN 7.00 0.97 39.00 5.38 25.00 3.45 277.00 38.21 377.00 52.00 725

SRINAGAR 0.00 0.00 0.00 0.00 20.00 4.99 235.00 58.60 146.00 36.41 401

KISHTWAR 5448.00 47.28 2996.00 26.00 1891.00 16.41 954.00 8.28 235.00 2.04 11,524

DODA 186.00 5.43 240.00 7.00 988.00 28.82 1329.00 38.77 685.00 19.98 3428

SAMBA 0.00 0.00 0.00 0.00 111.00 8.80 321.00 25.44 830.00 65.77 1262

CHAMOLI 3270.00 31.52 2916.00 28.11 2342.00 22.57 1555.00 14.99 292.00 2.81 10,375

KINNAUR 2829.00 32.35 4129.00 47.22 1174.00 13.42 511.00 5.84 102.00 1.17 8745

LAHUL AND
SPITI 12,161.00 63.87 6221.00 32.68 583.00 3.06 71.00 0.37 3.00 0.02 19,039

PITHORAGARH 3096.00 33.69 2367.00 25.76 1589.00 17.29 1323.00 14.40 815.00 8.87 9190

UTTARKASHI 3115.00 29.17 2769.00 25.93 2180.00 20.41 1978.00 18.52 637.00 5.96 10,679

JAMMU 0.00 0.00 9.00 0.28 190.00 5.82 1167.00 35.73 1900.00 58.18 3266
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4. Discussion

The mapping and evaluation of FFS hold significant importance in the contexts of
disaster management and the sustainable development of forests. Once the appropriate
indicators have been identified, it becomes straightforward to assess the level of susceptibil-
ity for each setting. The vulnerability assessment for the Indian Western Himalayas (IWH)
region, encompassing the states of Jammu and Kashmir, Himachal Pradesh, and Uttarak-
hand, was conducted by employing remote sensing data and the GIS-based Fuzzy-AHP
technique. Remote sensing data and GIS-based analysis offer the advantage of being able to
monitor large areas from a distance, providing valuable information on the state of forests
and potential threats such as forest fires [86]. The Fuzzy-AHP technique is an effective tool
in multi-criteria evaluations and has been found effective for vulnerability assessment in
various studies, including [87–90]. In this investigation, a Fuzzy-AHP model was created
and evaluated for assessing vulnerability to forest fires. The results demonstrated that the
model exhibits substantial efficacy in this area as well.

This study found that the forest fire vulnerability of the IWH region is mainly con-
trolled by the forest type, temperature, and distance to settlement. This is in line with
previous research, including [91,92], that has shown similar factors to have a significant
influence on forest fire susceptibility. By superimposing the forest type map of the IWH
region onto the FFS zones map, we were able to obtain a comprehensive analysis of forest
fires in our research area based on the different forest types. Since the forest type is influ-
enced by rainfall and temperature, which are regulated by the elevation in the mountainous
terrain, it is necessary to acknowledge that elevation is the hidden controller of forest fire
vulnerability in the IWH region. This is consistent with the dispersion of the relatively
small number of forest fire emission patches in the higher elevations of the IWH [93]. More-
over, regions at higher elevations have lower temperatures, leading to limited vegetation.
Conversely, as elevation decreases, temperatures become more favorable, and as a result,
the lower elevations in the Himalayas have a dense forest canopy, making these areas
particularly susceptible to the risks associated with forest fires. This pattern is effectively
conveyed through what was discovered in this research work.

The cold desert lies at an elevation of over 4000 m in the study region and has 70.51% of
its area in the very low FFS zone. Alpine and subalpine forests lie within the elevation range
of 1000–7000 m and are mainly dominated by the very low FFS zone. The Himalayan moist
temperate forest is situated at elevations ranging from 1000 to 4000 m, and approximately
34% of its total area falls in the high FFS zone. In comparison, the subtropical coniferous
forest, located within the elevation range of 1000 to 2000 m, has 47.84% of its area classified
as in the very high FFS zone. Lastly, the tropical moist deciduous forest, found at elevations
below 1000 m, exhibited the highest vulnerability among the forest types in the IWH region,
with approximately 86.85% of its area falling in the very high FFS zone.

The present study’s results can be effectively matched with the research conducted
by [17], which examined the spatial pattern and trends of forest fires in active fire data
derived from a moderate-resolution imaging spectroradiometer and spanning the years
2001 to 2020. That study revealed that the evergreen needle-leaf forests (resembling sub-
tropical coniferous forests in terms of the same flora species found, i.e., Pinus roxburghii
(Chir pine)) experienced the most intense forest fires (57.07%), followed by deciduous
broadleaf forests with 24.44%, shrubland (resembling alpine and subalpine forests) with
8.9%, evergreen broadleaf forests (resembling tropical moist deciduous forests) with 4.47%,
mixed forests with 4.15%, and grassland with 0.9% of fire intensity. The role of elevation
in [13] also indicated the highest likelihood (>0.8) of fire at elevations < 2500 m, and a
reduced probability of fire at higher-elevation regions. They looked at the predicted fire
susceptibility for 2030, 2040, and 2050, along with the change in elevation.

According to [20], a forest fire in 2016 had a significant impact on the land area in
Himachal Pradesh, affecting over 45 km2. Similarly, Uttarakhand saw a substantial impact,
with around 31.85 km2 being affected by the same forest fire event. The larger affected
portion of the forest had an abundance of Chir pine. Chir pine, being among the major flora
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species found in subtropical coniferous forests in the Himalayas, makes this forest highly
vulnerable to fire. In our study, the subtropical coniferous forest had 47.8% of its area under
the very high FFS zone, which included the Kathua, Jammu, and Samba districts of JK, the
Kangra and Una districts of HP, and the Nainital and Haridwar districts of UK. A district-
wise analysis in our study clearly indicated that districts at lower elevations and with higher
levels of anthropogenic activities fell under the very high FFS zone. Pithoragarh, Chamoli,
Lahul and Spiti, Kullu, Kishtwar, and Uttarkashi are in the elevation range of >4000 m
and they were the least vulnerable to forest fire, whereas the Una, Baramulla, Kathua,
Badgam, Pulwama, Shupiyan, Samba, and Jammu districts of JK, Bilaspur, Hamirpur,
Kangra, Mandi, Solan, and Sirmaur districts of Himachal Pradesh, and Haridwar, Nainital,
and Udham Singh Nagar districts of Uttarakhand, which lie within the elevation range of
1000–2000 m, were the most susceptible districts in the IWH states. While [94] revealed that
the Sirmaur district falls under the very-high- to high-risk zones, our study placed 36.81%
of its area under the very-high- to high-risk zones.

Based on this assessment using a few selected vulnerability indicators, it was found
that the forests at higher elevations, such as the cold desert and alpine forests (dry, moist,
and subalpine), are the least vulnerable forests compared to the other forest-type groups
of the IWH in the current scenario. However, there are not many studies that specifically
show how vulnerable particular districts are at different elevations in the IWH region to
forest fires.

Despite the impressive performance by this study’s model, it is important to note that
its limitations lie in the dependence on decision makers’ assumptions and approximations.
Moreover, there are the inherent challenges of uncertainty and subjectivity when defining
preferences using fuzzy numbers. In addition, the scope of this research was limited
to the IWH region. Thus, it should be noted that these findings may not possess direct
applicability to other geographical regions.

5. Conclusions

One of the most notable signs of the destruction of the world’s forest systems is forest
fires. The objective of this assessment was to determine the spatial vulnerability to forest fire
in the IWH region, which is regularly subject to forest fire events. A forest fire susceptibility
map was created using a flexible and efficient strategy that combined remote sensing, GIS,
and the Fuzzy-AHP technique. The map was created at two different levels, with one being
the determination of susceptibility individually according to physiography, meteorology,
or anthropogenic influence in the IWH region, followed by the combination of these three
into a comprehensive FFS map. The conclusions of this study are as follows:

• The IWH region has significant susceptibility to forest fire as nearly 50% area of the
region is characterized as a high or very high FFS zone.

• The incidence of forest fire is specific to the forest types in the IWH region. The higher
susceptibility is associated with the subtropical coniferous forests and tropical moist
deciduous forests owing to the dominance of the relatively more flammable Chir pine
species, in addition to the higher FCR.

• The forest fire incidence is regulated majorly by elevation, temperature, and moisture
conditions in the region, and by nearness to the settlements and the roads in the IWH
region.

The results of this research will enhance the ability of forest planners and managers
to provide improved forest protection and preventive services within the designated
study region. According to several studies and publications, a decreased level of human
intervention can play a significant role in preserving forest ecosystems. It is recommended
that the government establish stringent laws and regulations to effectively mitigate human
disruptions to the environment, with the aim of conserving and promoting the nation’s
diversified and significant physiography.
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28. Milanović, S.; Marković, N.; Pamučar, D.; Gigović, L.; Kostić, P.; Milanović, S.D. Forest Fire Probability Mapping in Eastern Serbia:
Logistic Regression versus Random Forest Method. Forests 2020, 12, 5. [CrossRef]

29. Iban, M.C.; Sekertekin, A. Machine learning based wildfire susceptibility mapping using remotely sensed fire data and GIS: A
case study of Adana and Mersin provinces, Turkey. Ecol. Inform. 2022, 69, 101647. [CrossRef]

30. Babu, K.N.; Gour, R.; Ayushi, K.; Ayyappan, N.; Parthasarathy, N. Environmental drivers and spatial prediction of forest fires in
the Western Ghats biodiversity hotspot, India: An ensemble machine learning approach. For. Ecol. Manag. 2023, 540, 121057.
[CrossRef]

31. Abujayyab, S.K.M.; Kassem, M.M.; Khan, A.A.; Wazirali, R.; Coşkun, M.; Taşoğlu, E.; Öztürk, A.; Toprak, F. Wildfire Susceptibility
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52. Minár, J.; Evans, I.S.; Jenčo, M. A comprehensive system of definitions of land surface (topographic) curvatures, with implications
for their application in geoscience modelling and prediction. Earth-Sci. Rev. 2020, 211, 103414. [CrossRef]

53. Kimerling, A.J.; Muehrcke, P.C.; Muehrcke, J.O.; Muehrcke, P. Map Use: Reading, Analysis, Interpretation; ESRI Press Academic:
Redlands, CA, USA, 2016.

54. Riley, S.J. A Terrain Ruggedness Index that Quantifies Topographic Heterogeneity. 1999. Available online: https://download.
osgeo.org/qgis/doc/reference-docs/Terrain_Ruggedness_Index.pdf (accessed on 19 August 2023).

55. Jensen, J.R. Remote Sensing of the Environment: An Earth Resource Perspective 2/e; Pearson Education India: Bengaluru, India, 2009.
56. Rouse, J.W.; Haas, R.H.; Deering, D.W.; Schell, J.A.; Harlan, J.C. Monitoring the Vernal Advancement and Retrogradation (Green

Wave Effect) of Natural Vegetation. E75-10354, Nov. 1974. Available online: https://ntrs.nasa.gov/citations/19750020419
(accessed on 19 August 2023).

57. Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150.
[CrossRef]

58. Cohen, J. Preventing disaster: Home ignitability in the wildland-urban interface. J. For. 2000, 98, 15–21. [CrossRef]
59. Pyne, S.J. Wild Hearth A Prolegomenon to the Cultural Fire History of Northern Eurasia. In Fire in Ecosystems of Boreal Eurasia;

Goldammer, J.G., Furyaev, V.V., Eds.; Forestry Sciences; Springer: Dordrecht, The Netherlands, 1996; pp. 21–44. [CrossRef]
60. Rothermel, R.C. A Mathematical Model for Predicting Fire Spread in Wildland Fuels. Intermountain Forest & Range Experiment Station,

Forest Service; U.S. Department of Agriculture: Washington, DC, USA, 1972.
61. Karki, S.; Pforte, B.; Karky, B.S.; Statz, J.; Dangi, R.B.; Khanal, D.R.; Windhorst, K. The development of REDD+ safeguards in the

Hindu Kush Himalaya: Recent experiences and processes. ICIMOD Work. Pap. 2017. Available online: https://www.cabdirect.
org/cabdirect/abstract/20183165027 (accessed on 19 August 2023).

62. Thakur, S.; Dhyani, R.; Negi, V.S.; Patley, M.; Rawal, R.; Bhatt, I.; Yadava, A. Spatial forest vulnerability profile of major forest
types in Indian Western Himalaya. For. Ecol. Manag. 2021, 497, 119527. [CrossRef]

63. Mandel, J.; Amram, S.; Beezley, J.D.; Kelman, G.; Kochanski, A.K.; Kondratenko, V.Y.; Vejmelka, M. Recent advances and
applications of WRF–SFIRE. Nat. Hazards Earth Syst. Sci. 2014, 14, 2829–2845. [CrossRef]

64. Negi, M.; Kumar, A. Assessment of increasing threat of forest fires in Uttarakhand, using remote sensing and GIS techniques.
Glob. J. Adv. Res. 2016, 3, 457–468.

65. Pimont, F.; Dupuy, J.-L.; Linn, R.R. Coupled slope and wind effects on fire spread with influences of fire size: A numerical study
using FIRETEC. Int. J. Wildland Fire 2012, 21, 828–842. [CrossRef]

66. E Calkin, D.; Thompson, M.P.; A Finney, M. Negative consequences of positive feedbacks in US wildfire management. For. Ecosyst.
2015, 2, 9. [CrossRef]

67. Oreski, D. Strategy development by using SWOT—AHP. Tem J. 2012, 1, 4.
68. Dey, P.K. Project risk management using multiple criteria decision-making technique and decision tree analysis: A case study of

Indian oil refinery. Prod. Plan. Control. 2011, 23, 903–921. [CrossRef]
69. Çoban, H.; Erdin, C. Forest fire risk assessment using GIS and AHP integration in Bucak forest enterprise, Turkey. Appl. Ecol.

Environ. Res. 2020, 18, 1567–1583. [CrossRef]
70. Fazlollahtabar, H.; Eslami, H.; Salmani, H. Designing a Fuzzy Expert System to Evaluate Alternatives in Fuzzy Analytic Hierarchy

Process. J. Softw. Eng. Appl. 2010, 3, 409–418. [CrossRef]
71. Mohammadi, F.; Shabanian, N.; Pourhashemi, M.; Fatehi, P. Risk zone mapping of forest fire using GIS and AHP in a part of

Paveh forests. Iran. J. For. Poplar Res. 2010, 18, 569–586. [CrossRef]
72. Buckley, J.J. Fuzzy hierarchical analysis. Fuzzy Sets Syst. 1985, 17, 233–247. [CrossRef]
73. Chang, D.-Y. Applications of the extent analysis method on fuzzy AHP. Eur. J. Oper. Res. 1996, 95, 649–655. [CrossRef]
74. Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [CrossRef]
75. Esmaeili, A.; Kahnali, R.A.; Rostamzadeh, R.; Kazimieras, E.; Sepahvand, A. The formulation of organizational strategies through

integration of freeman model, SWOT, and fuzzy MCDM methods: A case study of oil industry. Transform. Bus. Econ. 2014, 13,
602–627.

76. Chen, H.; Wood; Linstead, C.; Maltby, E. Uncertainty analysis in a GIS-based multi-criteria analysis tool for river catchment
management. Environ. Model. Softw. 2011, 26, 395–405. [CrossRef]

https://doi.org/10.5194/hess-8-1179-2004
https://doi.org/10.1029/2009JD013493
https://doi.org/10.1007/s00477-011-0462-z
https://doi.org/10.1016/j.earscirev.2020.103414
https://download.osgeo.org/qgis/doc/reference-docs/Terrain_Ruggedness_Index.pdf
https://download.osgeo.org/qgis/doc/reference-docs/Terrain_Ruggedness_Index.pdf
https://ntrs.nasa.gov/citations/19750020419
https://doi.org/10.1016/0034-4257(79)90013-0
https://doi.org/10.1093/jof/98.3.15
https://doi.org/10.1007/978-94-015-8737-2_2
https://www.cabdirect.org/cabdirect/abstract/20183165027
https://www.cabdirect.org/cabdirect/abstract/20183165027
https://doi.org/10.1016/j.foreco.2021.119527
https://doi.org/10.5194/nhess-14-2829-2014
https://doi.org/10.1071/WF11122
https://doi.org/10.1186/s40663-015-0033-8
https://doi.org/10.1080/09537287.2011.586379
https://doi.org/10.15666/aeer/1801_15671583
https://doi.org/10.4236/jsea.2010.34046
https://doi.org/10.5167/uzh-77274
https://doi.org/10.1016/0165-0114(85)90090-9
https://doi.org/10.1016/0377-2217(95)00300-2
https://doi.org/10.1016/S0019-9958(65)90241-X
https://doi.org/10.1016/j.envsoft.2010.09.005


Remote Sens. 2023, 15, 4701 32 of 32

77. Kannan, D.; Khodaverdi, R.; Olfat, L.; Jafarian, A.; Diabat, A. Integrated fuzzy multi criteria decision making method and
multi-objective programming approach for supplier selection and order allocation in a green supply chain. J. Clean. Prod. 2013,
47, 355–367. [CrossRef]

78. Do, Q.H.; Chen, J.-F.; Hsieh, H.-N. Trapezoidal Fuzzy AHP and Fuzzy Comprehensive Evaluation Approaches for Evaluating
Academic Library Service. WSEAS Trans. Comput. 2015, 14, 607–619.

79. Carter, H.; Dubois, D.; Prade, H. Fuzzy Sets and Systems—Theory and Applications. J. Oper. Res. Soc. 1982, 33, 198. [CrossRef]
80. Hsu, H.-M.; Chen, C.-T. Aggregation of fuzzy opinions under group decision making. Fuzzy Sets Syst. 1996, 79, 279–285.

[CrossRef]
81. Xu, Z.S. A method based on the dynamic weighted geometric aggregation operator for dynamic hybrid multi-attribute group

decision making. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 2009, 17, 15–33. [CrossRef]
82. Herrera, F.; Herrera-Viedma, E.; Verdegay, J. Direct approach processes in group decision making using linguistic OWA operators.

Fuzzy Sets Syst. 1996, 79, 175–190. [CrossRef]
83. Kuo, M.-S.; Liang, G.-S. A novel hybrid decision-making model for selecting locations in a fuzzy environment. Math. Comput.

Model. 2011, 54, 88–104. [CrossRef]
84. Mallick, S.K.; Rudra, S.; Maity, B. Land suitability assessment for urban built-up development of a city in the Eastern Himalayan

foothills: A study towards urban sustainability. Environ. Dev. Sustain. 2022, 1–26. [CrossRef]
85. Abdo, H.G. Assessment of landslide susceptibility zonation using frequency ratio and statistical index: A case study of Al-Fawar

basin, Tartous, Syria. Int. J. Environ. Sci. Technol. 2021, 19, 2599–2618. [CrossRef]
86. Durante, P.; Martín-Alcón, S.; Gil-Tena, A.; Algeet, N.; Tomé, J.L.; Recuero, L.; Palacios-Orueta, A.; Oyonarte, C. Improving

Aboveground Forest Biomass Maps: From High-Resolution to National Scale. Remote Sens. 2019, 11, 795. [CrossRef]
87. Wang, Y.; Hou, L.; Li, M.; Zheng, R. A Novel Fire Risk Assessment Approach for Large-Scale Commercial and High-Rise Buildings

Based on Fuzzy Analytic Hierarchy Process (FAHP) and Coupling Revision. Int. J. Environ. Res. Public Health 2021, 18, 7187.
[CrossRef]

88. Thungngern, J.; Wijitkosum, S.; Sriburi, T.; Sukhsri, C. A Review of the Analytical Hierarchy Process (AHP): An Approach to
Water Resource Management in Thailand. Appl. Environ. Res. 2015, 37, 13–32. [CrossRef]

89. Wijitkosum, S.; Sriburi, T. Fuzzy AHP Integrated with GIS Analyses for Drought Risk Assessment: A Case Study from Upper
Phetchaburi River Basin, Thailand. Water 2019, 11, 939. [CrossRef]

90. Abbas, H.; Khan, A.A.; Hussain, D.; Khan, G.; Hassan, S.N.U.; Kulsoom, I.; Hussain, S.; Bazai, S.U. Landslide Inventory and
Landslide Susceptibility Mapping for China Pakistan Economic Corridor (CPEC)’s main route (Karakorum Highway). J. Appl.
Emerg. Sci. 2021, 11, 18. [CrossRef]

91. Odion, D.C.; Hanson, C.T.; Baker, W.L.; DellaSala, D.A.; Williams, M.A. Areas of Agreement and Disagreement Regarding
Ponderosa Pine and Mixed Conifer Forest Fire Regimes: A Dialogue with Stevens et al. PLoS ONE 2016, 11, e0154579. [CrossRef]

92. Abdi, O.; Kamkar, B.; Shirvani, Z.; da Silva, J.A.T.; Buchroithner, M.F. Spatial-statistical analysis of factors determining forest fires:
A case study from Golestan, Northeast Iran. Geomat. Nat. Hazards Risk 2016, 9, 267–280. [CrossRef]

93. Bar, S.; Parida, B.R.; Pandey, A.C.; Kumar, N. Pixel-Based Long-Term (2001–2020) Estimations of Forest Fire Emissions over the
Himalaya. Remote Sens. 2022, 14, 5302. [CrossRef]
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