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Abstract

The work reported in present study deals with the development of a novel stochastic model

and estimation of parameters to assess reliability characteristics for a turbogenerator unit of

thermal power plant under classical and Bayesian frameworks. Turbogenerator unit consists

of five components namely turbine lubrication, turbine governing, generator oil system, gen-

erator gas system and generator excitation system. The concepts of cold standby redun-

dancy and Weibull distributed random variables are used in development of stochastic

model. The shape parameter for all the random variables is same while scale parameter is

different. Regenerative point technique and semi-Markov approach are used for evaluation

of reliability characteristics. Sufficient repair facility always remains available in plant as well

as repair done by the repairman is considered perfect. As the life testing experiments are

time consuming, so to highlight the importance of proposed model Monte Carlo simulation

study is carried out. A comparative analysis is done between true, classical and Bayesian

results of MTSF, availability and profit function.

1. Introduction

The increasing demand and technological advancements inclined the complexity of industrial

and mechanical systems. The products generated by these industries are extensively used in

day-to-day life of human being. The thermal power plant is also a such system which is promi-

nently contribute to energy generation sector in most of the countries. Availability, mean time

to system failure and performance of the thermal power plants attract the attention of system

designers to assess the effectiveness of plants during last few decades. Various subsystems of

these plants critically influence the performance. Turbogenerator is a prominent component

of thermal power plant that influences the performance of whole plant. So, reliability charac-

teristics evolution of these components become necessary to evaluate performance of the
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plant. Several methodologies like fault tree analysis, failure mode effect analysis, Markovian

approach and reliability block diagram approach are used in previous studies under various

kind of failure distributions. Such a distribution to investigate reliability of industrial systems

is proposed by Weibull [1]. Weibull distribution have wide applicability in life testing, reliabil-

ity modeling and estimation due to its flexible shapes of the failure rate functions.

Provision of spare component is also a reliability enhancement technique that can be used

in such systems. Masters et al. [2] developed a model for confidence interval estimation of

availability function for Weibull distributed operating system. Dhillon and Anuda [3] devel-

oped a stochastic model under arbitrary failure rates and common cause failures. Coit [4] opti-

mized the redundancy of components in non-repairable systems. Yadavalli et al. [5] used

concept of preparation time to develop asymptotic confidence limits for availability function

of parallel systems. Lim et al. [6] developed bootstrap confidence interval for steady state avail-

ability of systems. Yadavalli et al. [7] conducted a Bayesian study for two-unit system under

impact of common cause shock failures. Chien et al. [8] developed asymptotic confidence lim-

its for a repairable system having imperfect service facility. Ke et al. [9] performed the Bayesian

estimation of standby system under imperfect coverage. Hsu et al. [10] done Bayesian and

asymptotic estimation under reboot and imperfect coverage for repairable system. Gupta et al.

[11] done the cost analysis of non-identical unit’s system considering Weibull distribution for

failure and repair rates. Singh et al. [12] drawn some statistical inferences for a time dependent

dynamical system. Chaturvedi et al. [13] developed a robust model for Weibull distribution

under Bayesian framework.

Kishan and Jain [14] conducted the parameter estimation for a parallel unit system to evalu-

ate the reliability measures. It is considered that all time dependent random variables are Wei-

bull distributed having common shape parameter. Kumar and Saini [14] proposed a stochastic

model for single unit system to assess the impact of preventive maintenance under Weibull

distribution. Liu et al. [15]conducted the reliability evaluation of a system of non-identical

units under fuzzy environment. Kumar et al. [16] studied the effect of hot and cold standby

redundancy on availability of thermal power plants. Kumar and Garg [17] estimated parame-

ters of generalized inverted Rayleigh distribution under random censoring. Pariaman et al.

[18] discussed several methodologies for availability enhancement of thermal power plants.

Dongliang et al. [19] used phase time distribution for reliability estimation of non-identical

unit systems. Kumar et al. [20–22] investigated the impact of various kind of priorities and

preventive maintenance on systems of Weibull distributed random variables. Chopra and

Ram [23] proposed a stochastic model for parallel system with waiting time. Dey et al. [24]

provided an extension of generalized exponential distribution having application in Ozone

data. Gupta and Singh [25] conducted classical and Bayesian analysis of Weibull distribution

under outliers. Han et al. [26] explored the needs of Bayesian statistics in various studies.

Pundir et al. [27] developed a stochastic framework for parallel system of non-identical

units having priority in repair disciplines. Kumar and Kadyan [28, 29] proposed reliability

models for performance evaluation of industrial system using supplementary variable tech-

nique. Kumar and Kumar [30] estimate various statistical properties of inverse Weibull distri-

bution under random censoring. Saini and Kumar [31] developed a stochastic model for

single unit system under abnormal environmental conditions to assess impact of inspection

and degradation. Saini et al. [32] proposed a stochastic model to evaluate the profit of redun-

dant system under priority. Pundir et al. [33] analysed the impact of presence of prior on reli-

ability estimation of standby system. Patawa et al. [34] drawn various inferences for reliability

measures of non-identical system with standby redundancy and waiting time in Bayesian

framework. Rathi et al. [35] developed a model for reliability improvement using redundancies

and Markov process.
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Though, a lot of work has been carried out in the direction of reliability evaluation of indus-

trial system, but it is focused only on modelling, MTSF, steady state availability and perfor-

mance evaluation by considering constant failure and repair rates of components. The

estimation of the parameters is still not extensively explored for industrial system specially in

field of thermal power plants. The reliability modelling and classical & Bayesian estimation of

reliability measures of turbogenerator unit yet not discussed in literature so far. So, in the pres-

ent work a novel stochastic model for turbogenerator system comprises with five components

of thermal power plant is proposed by considering Weibull distribution for failure and repair

rates having different scale parameter and common shape parameter. As Weibull distribution

is the most popular in reliability modeling and estimation due to its flexible shapes of the fail-

ure rate functions. To extract concrete findings from stochastic model simulation study is con-

ducted. The following system reliability measures, which are useful for plant designers and

maintenance managers, are derived using semi-Markovian approach and regenerative point

technique:

• Steady state transition probabilities associated with various states of turbogenerator system

• Mean sojourn times associated with various regenerative states of turbogenerator system

• True and estimated values of mean time to system failure (MTSF)of turbogenerator system

• True and estimated values of steady state availability of turbogenerator system

• True and estimated values of profit of turbogenerator system

Due to random behaviour of lifetime of the components of turbogenerator the parameter of

associated distribution is estimated in classical and Bayesian framework. The posterior densi-

ties are not easy to simulate directly so Metropolis-Hastings algorithm of the MCMC proce-

dure is utilized to generate the random samples from this posterior density. The Monte Carlo

simulation technique is employed to derive the numerical values of reliability measures in clas-

sical and Bayesian framework. The mean square error (MSE), confidence interval length along

with MTSF, availability and profit are evaluated in classical framework while under Bayesian

framework posterior mean square error, width of highest posterior density are computed. To

highlight the importance of study, a comparative analysis is also made through numerical

results and graphs. The whole manuscript is organized into five sections including the current

introduction section. Section 2 includes the notations and system description. Tall the reliabil-

ity measures obtained in section 3 while section 4 devoted to the estimation of parameters in

classical and Bayesian framework. Concluding remarks are made in section 5.

2. Notations and system description

In this section the system description of turbogenerator and notation used for model develop-

ment are appended.

2.1 Notations

Si: ith state of the turbogenerator

θi/βi (i = 1, 2, 3, 4, 5): Scale parameter of failure/repair time distribution for ith unit

η: Shape parameter of failure/repair time distribution of each unit

fi(t) : Failure rate of ith unit where fiðtÞ ¼ yiZtZ� 1e� yitZ ; yi > 0; t > 0

gi(t) : Repair rate of ith unit where giðtÞ ¼ biZtZ� 1e� bi tZ ; bi > 0; t > 0

qij(t)/Qij(t): Pdf and c.d.f. of one step or direct transition time from Si 2 E to Sj 2 E

pij(t): Steady state transition probability from state Si to Sj such that, pij ¼ limt!1 QijðtÞ
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pðkÞij ðtÞ: steady state transition probability from state Si to Sj via Sk such that,

pðkÞij ¼ limt!1 Q
ðkÞ
ij ðtÞ

Zi (t): Probability that system sojourns in state Si up to time t

μi : Mean sojourn time in state Si i.e., mi ¼
R1

0
PðTi > tÞ

Ri(t): Reliability of the system at time t when system starts from Si 2 E

Ai(t): Probability that the system will be operative in state Si 2 E at epoch t

Bi(t): Probability that the repairman will be busy in state Si 2 E at epoch t

Pi(t): Profit incurred by the system during interval (0, t)

**: Symbol for Laplace Transform of a function i.e., Q∗∗
ij ðsÞ ¼

R1
0
qijðtÞe� stdt

•: Regenerative point

X: Non-regenerative point

Ao: Turbine governing unit (A) is operative

Bo: Turbine lubrication unit (B) is operative

Co: generator oil system (C) is operative

Do: generator gas system (D) is operative

Eo: generator extinction system € is in normal mode and operative

Es Unit-E is in standby mode

ar/awr: Turbine governing unit (A) is either in repair/waiting for repair

br/bwr: Turbine lubrication unit (B) is either in repair/waiting for repair

cr/cwr: generator oil system (C) is either in repair/waiting for repair

dr/dwr: generator gas system (D) is either in repair/waiting for repair

ewr: Unit-E is in non-operative mode and under waiting for repair

er: Unit-E is in non-operative mode and under repair

2.2 System description

The turbogenerator is a critical component of thermal power plant and its availability influ-

ence the performance of whole plant in production of electricity. The considered turbogenera-

tor [36] in present study is installed in a thermal power plant in India that produce 500 MW

electricity. It consists of five subsystems (i) turbine governing “A” (ii) turbine lubrication “B”,

(iii) generator oil system “C” (iv) generator gas system “D” and (v) generator extinction system

“E”. There is no provision of standby component for turbine governing, turbine lubrication,

generator oil system, and generator gas system while provision of one cold standby component

is made for generator extinction system. The failure of single unit subsystems immediately

resulted as the complete system failure. The flow chart of system is shown in Fig 1. The system

works under a set of assumptions like failure and repair rates are statistically independent to

each other, no multiple failures, standby units worked in full capacity and after repair unit

worked as new one. Under this assumption, here the reliability characteristics of turbogenera-

tor is assessed using regenerative point technique and semi-Markovian approach. A stochastic

model is proposed and expressions for various reliability measures are derived. The failure and

repair rates are obtained from time to failure and time to repair data. Further, the parameter

estimation is done under classical and Bayesian inferential frameworks. The state transition

diagram of the proposed stochastic model is shown in Fig 2.

3. Reliability measures of turbogenerator system

3.1 Transition probabilities

The state space of the turbogenerator system is discrete in nature having states {S0, S1, S2, S3,

S4, S5, S6, S7, S8, S9, S10}. The probability of movement among these states is known as
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transition probability. Here, pij represent the transition from state ‘i’ to ‘j’. By simple probabi-

listic considerations value of pij is obtained by following expression for the non-zero elements

of transition probability matrix (TPM):

pij ¼ lim
t!1

QijðtÞ ¼
Z 1

0

qijðtÞdt ð1Þ

The associated transition probability matric of present system is defined as:

X ¼

p00 � � � p0;10

..

. . .
. ..

.

p10;0 � � � p10;10

2

6
6
6
4

3

7
7
7
5

So, Eq (1) gives the values of all the entries of TPM (X) as the probability of transition from

state S0 to state S1 with transition rate f5(t) without any transition to other states. The detailed

procedure is presented in [1]. Mathematically,

Q01ðtÞ ¼
Z 1

0

f5ðtÞ �F1ðtÞ �F2ðtÞ �F3ðtÞ �F4ðtÞdt

Fig 1. Flowchart of turbogenerator system.

https://doi.org/10.1371/journal.pone.0292154.g001
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taking Laplace transform from both side

Q∗∗
01
sð Þ ¼

Z 1

0

y5Zt
Z� 1e� ðy1þy2þy3þy4þy5þsÞtZdt ¼ lim

s!0

y5

ðy1 þ y2 þ y3 þ y4 þ y5 þ sÞ

) p01 ¼ lim
s!0

Q∗∗
01
sð Þ ¼

y5

ðy1 þ y2 þ y3 þ y4 þ y5Þ
:

Similarly; p02 ¼
y1

ðy1 þ y2 þ y3 þ y4 þ y5Þ
; p03 ¼

y2

ðy1 þ y2 þ y3 þ y4 þ y5Þ
; p04 ¼

y3

ðy1 þ y2 þ y3 þ y4 þ y5Þ
;

p05 ¼
y4

ðy1 þ y2 þ y3 þ y4 þ y5Þ
; p16 ¼

y1

ðy1 þ y2 þ y3 þ y4 þ y5 þ b5Þ
; p17 ¼

y2

ðy1 þ y2 þ y3 þ y4 þ y5 þ b5Þ
;

p18 ¼
y3

ðy1 þ y2 þ y3 þ y4 þ y5 þ b5Þ
; p19 ¼

y4

ðy1 þ y2 þ y3 þ y4 þ y5 þ b5Þ
; p1;10

¼
y5

ðy1 þ y2 þ y3 þ y4 þ y5 þ b5Þ
; p10 ¼

b5

ðy1 þ y2 þ y3 þ y4 þ y5 þ b5Þ
; p20 ¼ lim

s!0
Q∗∗

20
sð Þ

¼ 1; p30 ¼ lim
s!0

Q∗∗
30
sð Þ ¼ 1; p40 ¼ lim

s!0
Q∗∗

40
sð Þ ¼ 1; p50 ¼ lim

s!0
Q∗∗

50
sð Þ ¼ 1; p62 ¼ lim

s!0
Q∗∗

62
sð Þ

¼ 1; p73 ¼ lim
s!0

Q∗∗
73
sð Þ ¼ 1; p84 ¼ lim

s!0
Q∗∗

84
sð Þ ¼ 1; p95 ¼ lim

s!0
Q∗∗

95
sð Þ ¼ 1; p10;1 ¼ lim

s!0
Q∗∗

10;1
sð Þ

¼ 1:

It is easily verified that sum of all entries of each row is unity.

3.2 Mean sojourn times

The average time spent by a system is known as mean sojourn time. The detailed procedure is

presented in [1]. If Ti represent the average sojourn/survival time of turbogenerator at a

Fig 2. State transition diagram of turbogenerator system.

https://doi.org/10.1371/journal.pone.0292154.g002
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particular state Si, then the mean sojourn time in the state Si is evaluated using mathematical

expressions:

mi ¼

Z 1

0

PrðTi > tÞ ¼
X

j
mij ð2Þ

where mij ¼ �
d
ds ½Q

∗∗
ij ðsÞ�s¼0

.

Using Eq (2), mean sojourn time at state S0 is evaluated as follows:

m0 ¼

Z 1

0

�F1ðtÞ �F2ðtÞ �F3ðtÞ �F4ðtÞ �F5ðtÞdt ð3Þ

Taking Laplace transform on Eq (3) both side, we get

m∗∗
0
ðsÞ ¼

Z 1

0

e� y1tZe� y2tZe� y3tZe� y4tZe� y5tZe� stdt

After solving it, we get

m∗∗
0
sð Þ ¼ lim

s!0

Gð1þ 1=ZÞ

ðy1 þ y2 þ y3 þ y4 þ y5 þ sÞ
1=Z
¼)m0 ¼

Gð1þ 1=ZÞ

ðy1 þ y2 þ y3 þ y4 þ y5Þ
1=Z

Similarly

m1 ¼
Gð1þ 1=ZÞ

ðy1 þ y2 þ y3 þ y4 þ y5 þ b5Þ
1=Z
; m2 ¼

Gð1þ 1=ZÞ

ðb1Þ
1=Z

; m3 ¼
Gð1þ 1=ZÞ

ðb2Þ
1=Z

; m4

¼
Gð1þ 1=ZÞ

ðb3Þ
1=Z

; m5 ¼
Gð1þ 1=ZÞ

ðb4Þ
1=Z

3.3 Mean time to system failure

To evaluate turbogenerator reliability Ri(t) at time “t” starting from regenerative state Si to a

failed state Sj, it represents the c.d.f of first passage time. The detailed methodology of mean

time of system failure evaluation is presented in [37]. By considering failed states as absorbing

state and using probabilistic arguments, following recursive relations for Ri(t) are derived

based on state transition diagram given in Fig 2:

R0ðtÞ ¼ Q01ðtÞ1R1ðtÞ þ Z0ðtÞ ð4Þ

R1ðtÞ ¼ Q10ðtÞ1R0ðtÞ þ Z1ðtÞ ð5Þ

Where,

Z0ðtÞ ¼ Q02ðtÞ þ Q03ðtÞ þ Q04ðtÞ þ Q05ðtÞ ð6Þ

Z1ðtÞ ¼ Q16ðtÞ þ Q17ðtÞ þ Q18ðtÞ þ Q19ðtÞ þ Q1;10ðtÞ ð7Þ

By taking Laplace transformation of Eqs (4–5) and solving for R∗∗
0
ðsÞ, we get

R∗∗
0
sð Þ ¼

N0

D0

¼
Z∗∗

0
ðsÞ þ Q∗∗

01
ðsÞZ∗∗

1
ðsÞ

1 � Q∗∗
01
ðsÞQ∗∗

10
ðsÞ

ð8Þ
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The inverse Laplace transformation of Eq (8) gives the reliability of turbogenerator. the

mean time to system failure is derived as follows:

MTSF ¼ lim
s!0

1 � R∗∗
0
ðsÞ

s
¼ lim

s!0

1 � Q∗∗
01
ðsÞQ∗∗

10
ðsÞ � Z∗∗

0
ðsÞ � Q∗∗

01
ðsÞZ∗∗

1
ðsÞ

sð1 � Q∗∗
01
ðsÞQ∗∗

10
ðsÞÞ

¼
m0 þ P01m1

1 � P01P10

¼
a½ð
P
yi þ y5Þð

P
yi þ y5 þ b5Þ þ y5ð

P
yi þ y5Þ

1=Z
ð
P
yi þ y5 þ b5Þ

1� 1=Z
�

½ð
P
yi þ y5Þ

1þ1=Z
ð
P
yi þ y5 þ b5Þ � y5b5ð

P
yi þ y5Þ

1=Z
�

ð9Þ

where a = Γ(1+1/η)

3.4 Availability analysis

Let Ai(t) be the probability of turbogenerator that it is in up-state at instant ‘t’ given that the

system entered regenerative state Si at t = 0. The recursive relations for Ai(t) are derived based

on state transition diagram given in Fig 2::

A0ðtÞ ¼ Z0ðtÞ þ Q01ðtÞ1A1ðtÞ þ Q02ðtÞ1A2ðtÞ þ Q03ðtÞ1A3ðtÞ þ Q04ðtÞ1A4ðtÞ
þ Q05ðtÞ1A5ðtÞ ð10Þ

A1ðtÞ ¼ Z1ðtÞ þ Q10ðtÞ1A0ðtÞ þ Q
6

12
ðtÞ1A2ðtÞ þ Q

7

13
ðtÞ1A3ðtÞ þ Q

8

14
ðtÞ1A4ðtÞ þ Q

9

15
ðtÞ1A5ðtÞ

þ Q10

11
ðtÞ1A1ðtÞð11Þ

A2ðtÞ ¼ Q20ðtÞ1A0ðtÞ ð12Þ

A3ðtÞ ¼ Q30ðtÞ1A0ðtÞ ð13Þ

A4ðtÞ ¼ Q40ðtÞ1A0ðtÞ ð14Þ

A5ðtÞ ¼ Q50ðtÞ1A0ðtÞ ð15Þ

Taking Laplace transformation on Eqs (10–15) and solving for A∗∗
0
ðsÞ we get

A∗∗
0
sð Þ ¼

N1ðsÞ
D1ðsÞ

ð16Þ

Where,

D1 ¼ ½1 � Q
∗∗
1:10
ðsÞ�½Aþ CQ∗∗

02
ðsÞ þ DQ∗∗

03
ðsÞ þ EQ∗∗

04
ðsÞ þ FQ∗∗

05
ðsÞ� þ Q∗∗

01
ðsÞ½Bþ CQ∗∗

16
ðsÞ

þ DQ∗∗
17
ðsÞ þ EQ∗∗

18
ðsÞ þ FQ∗∗

19
ðsÞ�

N1 ¼ Z∗∗
0
ðsÞ½1 � Q∗∗

1;10
ðsÞ� þ Q∗∗

01
ðsÞZ∗∗

1
ðsÞ

A ¼ 1 � Q∗∗
01
ðsÞ � Q∗∗

02
ðsÞ � Q∗∗

03
ðsÞ � Q∗∗

04
ðsÞ � Q∗∗

05
ðsÞ

B ¼ 1 � Q10∗∗
11
ðsÞ � Q6∗∗

12
ðsÞ � Q7∗∗

13
ðsÞ � Q8∗∗

14
ðsÞ � Q9∗∗

15
ðsÞ � Q∗∗

10
ðsÞ

C ¼ 1 � Q∗∗
20
ðsÞ

D ¼ 1 � Q∗∗
30
ðsÞ
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E ¼ 1 � Q∗∗
40
ðsÞ

F ¼ 1 � Q∗∗
50
ðsÞ

After taking inverse Laplace transformation Eq (16), we get

Availability ¼ lim
s!0

A∗∗
0
sð Þ ¼ lim

s!0

N1 þ sN01
D01

¼
m0ð1 � P1;10Þ þ P01m1

½1 � P1;10�½m0 þ P02m20 þ P03m30 þ P04m40 þ P05m50� þ P01½m1 þ P16m20 þ P17m30 þ P18m40 þ P19m50�
ð17Þ

3.5 Busy period of server

Let Bi(t) be the probability that repairman is busy in repairing the failed unit at epoch “t‟ given

that the turbogenerator system entered state Si at t = 0. The recursive relations for Bi(t) are

derived based on state transition diagram given in Fig 2::

B0ðtÞ ¼ Q01ðtÞ1B1ðtÞ þ Q02ðtÞ1B2ðtÞ þ Q03ðtÞ1B3ðtÞ ð18Þ

B1ðtÞ ¼ Q10ðtÞ1B0ðtÞ þ Q
6

12
ðtÞ1B2ðtÞ þ Q

7

13
ðtÞ1B3ðtÞ þ Q

8

14
ðtÞ1B4ðtÞ þ Q

9

15
ðtÞ1B5ðtÞ

þ Q10

11
ðtÞ1B1ðtÞð19Þ

B2ðtÞ ¼ Z2ðtÞ þ Q20ðtÞ1B0ðtÞ ð20Þ

B3ðtÞ ¼ Z3ðtÞ þ Q30ðtÞ1B0ðtÞ ð21Þ

B4ðtÞ ¼ Z4ðtÞ þ Q40ðtÞ1B0ðtÞ ð22Þ

B5ðtÞ ¼ Z5ðtÞ þ Q50ðtÞ1B0ðtÞ ð23Þ

Taking Laplace transformation on both sides of Eqs (18–23) and solving for B∗∗
0
ðsÞ; we get

B∗∗
0
sð Þ ¼

N2ðsÞ
D1ðsÞ

Where,

N2 ¼ ½1 � Q
∗∗
1;10
ðsÞ�½Z∗∗

2
ðsÞQ∗∗

02
ðsÞ þ Z∗∗

3
ðsÞQ∗∗

03
ðsÞ þ Z∗∗

4
ðsÞQ∗∗

04
ðsÞ þ Z∗∗

5
ðsÞQ∗∗

05
ðsÞ� þ Q∗∗

01
ðsÞ

� ½Z∗∗
2
ðsÞQ∗∗

16
ðsÞ þ Z∗∗

3
ðsÞQ∗∗

17
ðsÞ þ Z∗∗

4
ðsÞQ∗∗

18
ðsÞ þ Z∗∗

5
ðsÞQ∗∗

19
ðsÞ�

The busy period in steady state is given by as follows:

Busy Period of server ¼ lim
s!0

B∗∗
0
sð Þ ¼ lim

s!0

N2 þ sN02
D02

¼
½1 � P1;10�½P02m2 þ P03m3 þ P04m4 þ P05m5� þ P01½P16m2 þ P17m3 þ P18m4 þ P19m5�

½1 � P1;10�½m0 þ P02m20 þ P03m30 þ P04m40 þ P05m50� þ P01½m1 þ P16m20 þ P17m30 þ P18m40 þ P19m50�
ð24Þ
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3.6 Profit function

The expected profit P incurred by the system in long run is

P ¼ k0 Availability � k1 Busy period of server ð25Þ

Where k0: revenue per unit time; k1: cost per unit time

4. Estimation of reliability measures under classical and Bayesian

setups

4.1 Classical estimation

Let us assume that the failure (fi(.); i = 1,2,3,4,5,6) and repair (gi(.); i = 1,2,3,4,5,6) rates of vari-

ous components of turbogenerator followed Weibull distribution having common shape and

different scale parameters. Where:

fiðtÞ ¼ yiZt
Z� 1; i ¼ 1; 2; 3; 4; 5; 6

giðtÞ ¼ biZt
Z� 1; i ¼ 1; 2; 3; 4; 5; 6

Here, θi&βi are scale parameters while common scale parameter is η. All these random vari-

ables are statistically independent. As the main aim of present study is to estimate the parame-

ters and reliability measures of turbogenerator in classical and Bayesian inferential setups. So,

here maximum likelihood (ML) estimation method is employed as a powerful tool of classical

estimation. The maximum likelihood estimators (MLE) of all the parameters are estimated for

all the parameters of random variables.

Suppose ten independent random samples of size ni (i = 1,2,3. . .. . ..,10) are drawn from

Weibull distribution with failure rates (fi(.); i = 1,2,3,4,5,6) and repair rates (gi(.);
i = 1,2,3,4,5,6) respectively.

Ŷ 1 ¼ ðy11; y12; . . . . . . :y1n1
ÞŶ 2 ¼ ðy21; y22; . . . . . . :y2n2

Þ

Ŷ 3 ¼ ðy31; y32; . . . . . . :y3n3
ÞŶ 4 ¼ ðy41; y42; . . . . . . :y4n4

Þ

Ŷ 5 ¼ ðy51; y52; . . . . . . :y5n5
ÞŶ 6 ¼ ðy61; y62; . . . . . . :y6n6

Þ

Ŷ 7 ¼ ðy71; y72; . . . . . . :y7n7
ÞŶ 8 ¼ ðy81; y82; . . . . . . :y8n8

Þ

Ŷ 9 ¼ ðy91; y92; . . . . . . :y9n9
ÞŶ 10 ¼ ðy10;1; y10;2; . . . . . . :y10;n10

Þ

The joint likelihood function based on above ten samples is given by

L ¼ LðŶ 1; Ŷ 2; Ŷ 3; Ŷ 4; Ŷ 5; Ŷ 6; Ŷ 7; Ŷ 8; Ŷ 9; Ŷ 10jy1; y2; y3; y4; y5; b1; b2; b3; b4; b5Þ

L ¼ yn1

1
y
n2

2
y
n3

3
y
n4

4
y
n5

5
b
n6

1
b
n7

2
b
n8

3
b
n9

4
b
n10

5
Zn1þn2þn3þn4þn5þn6þn7þn8þn9þn10S1S2S3S4S5S6S7S8S9S10:e

� ðy1T1þy2T2þy3T3þy4T4þy5T5þb1T6þb2T7þb3T8þb4T9þb5T10Þð26Þ

where

Si ¼
Qni

j¼1
yZ� 1
ij and Ti ¼

Pni
j¼1
yZij i = 1, 2,. . .. . ..,10
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Taking log on both side of Eq (26), we get

logL ¼ n1logy1 þ � � � . . . :þ n10logb5 þ
X

nilogZþ logS1 þ � � � . . . :þ logS10 � ðy1T1

þ . . . . . . :þ b5T10Þ ð27Þ

The ML estimates (say ŷ1; ŷ2; ŷ3; ŷ4; ŷ5; b̂1; b̂2; b̂3; b̂4; b̂5;) of the shape and scale parameters

θ1, θ2, θ3, θ4, θ5, β1, β2, β3, β4, β5.

ŷ1 ¼
n1Pn1

j¼1
yZij

; ŷ2 ¼
n2Pn2

j¼1
yZij

; ŷ3 ¼
n3Pn3

j¼1
yZij

; ŷ4 ¼
n4Pn4

j¼1
yZij

; ŷ5 ¼
n5Pn5

j¼1
yZij

; b̂1

¼
n6Pn6

j¼1
yZij

; b̂2 ¼
n7Pn7

j¼1
yZij

;

b̂3 ¼
n8Pn8

j¼1
yZij

; b̂4 ¼
n9Pn9

j¼1
yZij

; b̂5 ¼
n10Pn10

j¼1
yZij

ð28Þ

By using invariance property of invariance property of MLE, the expressions for MLE of

MTSF, availability and profit function can be easily derived. Here ^MTSF; ÂV and P̂ repre-

sented the MLE of MTSF, availability and profit function respectively. The asymptotic distri-

bution of

ðŷ1 � y1; ŷ2 � y2; ŷ3 � y3; ŷ4 � y4; . . . . . . . . . ::; b̂5 � b5; Þ
0
� N10ð0; I

� 1Þ

Here, I-1 represented the Fisher information matrix having diagonal elements

I11 ¼
n1

y
2

1

; I22 ¼
n2

y
2

2

; I33 ¼
n3

y
2

3

; I44 ¼
n4

y
2

4

; I55 ¼
n5

y
2

5

; I66 ¼
n6

b
2

1

; I77 ¼
n7

b
2

2

; I88 ¼
n8

b
2

3

; I99 ¼
n9

b
2

4

; I10;10

¼
n10

b
2

5

And rest of the elements are equal to zero.

The asymptotic distribution of MTSF, availability and profit are as follows:

ð ^MTSF � MTSFÞ � N10ð0;A
0I� 1AÞ; ðÂv � AvÞ � N10ð0;B

0I� 1BÞ; ðP̂ � PÞ � N10ð0;C
0I� 1CÞ

Where, A0 ¼ @MTSF
@y1

; @MTSF
@y2

; @MTSF
@y3

; @MTSF
@y4

; @MTSF
@y5

; @MTSF
@b1

; @MTSF
@b2

; @MTSF
@b3

; @MTSF
@b4

; @MTSF
@b5

� �0

B0 ¼
@AV
@y1

;
@AV
@y2

;
@AV
@y3

;
@AV
@y4

;
@AV
@y5

;
@AV
@b1

;
@AV
@b2

;
@AV
@b3

;
@AV
@b4

;
@AV
@b5

� �0

C0 ¼
@P
@y1

;
@P
@y2

;
@P
@y3

;
@P
@y4

;
@P
@y5

;
@P
@b1

;
@P
@b2

;
@P
@b3

;
@P
@b4

;
@P
@b5

� �0

Few of the expressions are shown in Appendix A (S1 Appendix).

4.2 Bayesian estimation

Bayesian estimation of parameters as well as reliability measures of turbogenerator is per-

formed as it is considered that all parameters associated with failure and repair rates followed

some distribution. In present study, all random variables followed two parameter Weibull dis-

tribution having known shape parameter (η). The family of gamma distributions is amply flex-

ible as it can model a variety of prior information. Moreso, non-informative priors are
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particular cases of gamma priors. Also, the parameters of the gamma priors can be merged

with model parameters, so that mathematical computations become easy. The scale parameter

(θ1, θ2, θ3, θ4, θ5, β1, β2, β3, β4, β5) of distribution associate with random variables followed the

Gamma distribution having parameters (termed as hyper parameters) (αi, δi; i = 1,2,3,. . .,10)

and described as given below:

y1 � GAMMAða1; d1Þ

y2 � GAMMAða2; d2Þ

y3 � GAMMAða3; d3Þ

y4 � GAMMAða4; d4Þ

y5 � GAMMAða5; d5Þ

b1 � GAMMAða6; d6Þ

b2 � GAMMAða7; d7Þ

b3 � GAMMAða8; d8Þ

b4 � GAMMAða9; d9Þ

b5 � GAMMAða10; d10Þ

The values of hyperparameters in the case of informative priors are taken in such a way that

the mean of the prior distribution comes out equal to the true value of the parameter. The pos-

terior distributions are derived using likelihood function (26) and prior distributions of θ1, θ2,

θ3, θ4, θ5, β1, β2, β3, β4, β5 as follows:

y1jY 1 � GAMMAðn1 þ a1; d1 þ
Xn1

j¼1
yZ

1jÞ ð29Þ

y2jY 2 � GAMMAðn2 þ a2; d2 þ
Xn2

j¼1
yZ

2jÞ ð30Þ

y3jY 3 � GAMMAðn3 þ a3; d3 þ
Xn3

j¼1
yZ

3jÞ ð31Þ

y4jY 4 � GAMMAðn4 þ a4; d4 þ
Xn4

j¼1
yZ

4jÞ ð32Þ

y5jY 5 � GAMMAðn5 þ a5; d5 þ
Xn5

j¼1
yZ

5jÞ ð33Þ

b1jY 6 � GAMMAðn6 þ a6; d6 þ
Xn6

j¼1
yZ

6jÞ ð34Þ

b2jY 7 � GAMMAðn7 þ a7; d7 þ
Xn7

j¼1
yZ

7jÞ ð35Þ
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b3jY 8 � GAMMAðn8 þ a8; d8 þ
Xn8

j¼1
yZ

9jÞ ð36Þ

b4jY 9 � GAMMAðn9 þ a9; d9 þ
Xn9

j¼1
yZ

9jÞ ð37Þ

b10jY 10 � GAMMAðn10 þ a10; d10 þ
Xn10

j¼1
yZ

10jÞ ð38Þ

The Bayes estimator of the scale parameters θ1, θ2, θ3, θ4, θ5, β1, β2, β3, β4, β5 under squared

error loss function are the means of posterior distribution given in Eqs (29)–(38) and as fol-

lows:

ŷ1 ¼
d1 þ

Pn1

j¼1
yZ1j

n1 þ y1

ŷ2 ¼
d2 þ

Pn2

j¼1
yZ2j

n2 þ y2

ŷ3 ¼
d3 þ

Pn3

j¼1
yZ3j

n3 þ y3

ŷ4 ¼
d4 þ

Pn4

j¼1
yZ4j

n4 þ y4

ŷ5 ¼
d5 þ

Pn5

j¼1
yZ5j

n5 þ y5

b̂1 ¼
d6 þ

Pn6

j¼1
yZ6j

n6 þ b1

b̂2 ¼
d7 þ

Pn7

j¼1
yZ7j

n7 þ b2

b̂3 ¼
d8 þ

Pn8

j¼1
yZ8j

n8 þ b3

; b̂5 ¼
d10 þ

Pn10

j¼1
yZ10j

n10 þ b5

b̂4 ¼
d9 þ

Pn9

j¼1
yZ9j

n9 þ b4

5. Simulation study

In this section, MLE and Bayes estimates for parameters of Weibull distribution associated

with failure and repair rates of turbogenerator are obtained. The MLE and Bayes estimates of

scale parameters θ1, θ2, θ3, θ4, θ5, β1, β2, β3, β4, β5 and hence, by invariance property, for MTSF,

availability and profit function are estimated under the assumption of known scale parameter.

The theoretical results are validated through a simulation study. The comparison is made by

using mean square error of estimates and width of confidence intervals. As the hazard rate of

Weibull distribution is increasing, decreasing and constant according to the shape value of the

parameter so investigation is also made for different values of shape parameters. Random sam-

ple of size 50 has been generated from Weibull distribution having various values of the

parameters. The samples are generated for following set of values:

For η = 0.50, 1, and 2

• n = 50, θ1 = 0.01, θ2 = 0.05, θ3 = 0.06, θ4 = 0.065, θ5 = 0.045, β1 = 0.3, β2 = 0.4, β3 = 0.5,

β4 = 0.6, β5 = 0.7

• n = 50, θ1 = 0.02, θ2 = 0.05, θ3 = 0.06, θ4 = 0.065, θ5 = 0.045, β1 = 0.3, β2 = 0.4, β3 = 0.5,

β4 = 0.6, β5 = 0.7

• n = 50, θ1 = 0.03, θ2 = 0.05, θ3 = 0.06, θ4 = 0.065, θ5 = 0.045, β1 = 0.3, β2 = 0.4, β3 = 0.5,

β4 = 0.6, β5 = 0.7

• n = 50, θ1 = 0.04, θ2 = 0.05, θ3 = 0.06, θ4 = 0.065, θ5 = 0.045, β1 = 0.3, β2 = 0.4, β3 = 0.5,

β4 = 0.6, β5 = 0.7

• n = 50, θ1 = 0.05, θ2 = 0.05, θ3 = 0.06, θ4 = 0.065, θ5 = 0.045, β1 = 0.3, β2 = 0.4, β3 = 0.5,

β4 = 0.6, β5 = 0.7

• n = 50, θ1 = 0.06, θ2 = 0.05, θ3 = 0.06, θ4 = 0.065, θ5 = 0.045, β1 = 0.3, β2 = 0.4, β3 = 0.5,

β4 = 0.6, β5 = 0.7
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• n = 50, θ1 = 0.07, θ2 = 0.05, θ3 = 0.06, θ4 = 0.065, θ5 = 0.045, β1 = 0.3, β2 = 0.4, β3 = 0.5,

β4 = 0.6, β5 = 0.7

• n = 50, θ1 = 0.08, θ2 = 0.05, θ3 = 0.06, θ4 = 0.065, θ5 = 0.045, β1 = 0.3, β2 = 0.4, β3 = 0.5,

β4 = 0.6, β5 = 0.7

• n = 50, θ1 = 0.09, θ2 = 0.05, θ3 = 0.06, θ4 = 0.065, θ5 = 0.045, β1 = 0.3, β2 = 0.4, β3 = 0.5,

β4 = 0.6, β5 = 0.7

• n = 50, θ1 = 0.1, θ2 = 0.05, θ3 = 0.06, θ4 = 0.065, θ5 = 0.045, β1 = 0.3, β2 = 0.4, β3 = 0.5,

β4 = 0.6, β5 = 0.7

By using above values of parameters fifty random samples generated and MLE and Bayes

estimated (for non-informative prior) of parameters, MTSF, availability and profit function is

obtained. For Bayesian investigation 10000 realization by using non-informative prior and

posterior densities. The values of the Gamma hyper parameters are obtained by setting

a=bi ¼
bi
ai

. All the estimates along with true value, mean square errors, and length of intervals/

HPD are summarized in Tables 1–7 and shown graphically in Figs 3–11. The profit function is

Table 1. Values of MTSF for fixed η = 0.5 and varying θ1.

Estimates θ1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

True MTSF 44.8669 40.8505 37.3531 34.2887 31.5884 29.1965 27.0677 25.1645 23.4561 21.9167

MTSF_MLE_MSE 42.2584 30.5923 26.0558 20.6032 17.1161 15.2012 12.5612 10.2235 10.8187 9.1544

MTSF_MLE 43.549 39.8395 36.551 33.408 30.7116 28.2843 26.2396 24.5585 22.7489 21.3127

MTSF_Bayes 43.6571 39.9295 36.651 33.5432 30.8731 28.4728 26.4473 24.7617 22.9735 21.534

MTSF_Bayes_MSE 33.0806 24.1934 20.5569 16.3265 13.4604 11.8243 9.6613 7.7434 8.0673 6.7001

MTSF.length.MLE 24.6241 21.761 19.5038 17.5681 16.0427 14.7706 13.7609 12.9778 12.1461 11.5105

MTSF.length.Bayes 26.2679 23.2484 20.8689 18.8203 17.1967 15.8354 14.7239 13.8438 12.9215 12.1935

https://doi.org/10.1371/journal.pone.0292154.t001

Table 2. Values of availability for fixed η = 0.5 and varying θ1.

Estimates θ1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

True Availability 0.8386 0.8142 0.7897 0.7653 0.7411 0.7173 0.6938 0.6709 0.6484 0.6266

Avail_MLE_MSE 0.0009 0.0011 0.0012 0.0015 0.0018 0.002 0.0025 0.0026 0.0031 0.0032

Avail _MLE 0.8312 0.8064 0.7815 0.7546 0.7326 0.7075 0.6829 0.6594 0.6392 0.6161

Avail _Bayes 0.5945 0.564 0.5331 0.5027 0.4783 0.4521 0.4282 0.4069 0.3871 0.3677

Avail _Bayes_MSE 0.0611 0.064 0.0673 0.0704 0.0705 0.0717 0.072 0.071 0.0698 0.0684

Avail.length.MLE 0.1176 0.1258 0.1368 0.1504 0.1624 0.1758 0.1889 0.2017 0.2112 0.2218

Avail.length.Bayes 0.2162 0.2121 0.2114 0.2124 0.2138 0.2152 0.2163 0.2177 0.217 0.2167

https://doi.org/10.1371/journal.pone.0292154.t002

Table 3. Values of profit for fixed η = 0.5 and varying θ1.

Estimates θ1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

True Profit 4091.79 3954.65 3817.42 3680.82 3545.50 3411.99 3280.75 3152.17 3026.56 2904.16

Profit_MLE_MSE 28003.6 34026.4 38853.2 46939.5 55096.9 64020.4 77202.6 82288.9 96314.4 101361

Profit _MLE 4049.92 3910.75 3771.59 3620.97 3497.73 3356.58 3219.23 3087.30 2974.50 2844.87

Profit _Bayes 2717.86 2546.31 2373.97 2204.32 2067.07 1920.46 1787.27 1668.21 1557.02 1448.93

Profit_Bayes_MSE 1935187 2026877 2128307 2225109 2230367 2266927 2275512 2243309 2204649 2160122

Profit.length.MLE 656.17 702.42 764.47 840.24 907.55 983.04 1055.79 1127.93 1180.64 1240.44

Profit.length.Bayes 1204.97 1182.48 1178.83 1184.22 1192.25 1200.32 1206.22 1213.67 1209.74 1208.04

https://doi.org/10.1371/journal.pone.0292154.t003
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Table 4. Values of MTSF for fixed η = 1 and varying θ1.

Estimates θ1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

True MTSF 5.3454 5.0747 4.8301 4.608 4.4054 4.2198 4.0493 3.892 3.7464 3.6114

MTSF_MLE_MSE 0.1703 0.1537 0.1307 0.114 0.0962 0.0906 0.0838 0.0831 0.0725 0.0657

MTSF_MLE 5.2575 4.9898 4.7724 4.5297 4.338 4.1662 3.9914 3.8367 3.6827 3.5676

MTSF_Bayes 5.2629 4.9958 4.7774 4.5379 4.3472 4.1749 4.0027 3.8493 3.698 3.5808

MTSF_Bayes_MSE 0.1331 0.1207 0.1028 0.0897 0.0755 0.0706 0.0643 0.0629 0.0536 0.0475

MTSF.length.MLE 1.6001 1.463 1.3632 1.2724 1.2091 1.1581 1.1136 1.0781 1.0457 1.023

MTSF.length.Bayes 1.7055 1.562 1.4571 1.361 1.293 1.2368 1.1875 1.1463 1.1076 1.0779

https://doi.org/10.1371/journal.pone.0292154.t004

Table 5. Values of availability for fixed η = 1 and varying θ1.

Estimates θ1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

True Availability 0.7312 0.7138 0.6972 0.6814 0.6663 0.6518 0.6379 0.6246 0.6119 0.5997

Avail_MLE_MSE 0.00060 0.00060 0.00060 0.00060 0.00060 0.00060 0.00070 0.00080 0.00090 0.00080

Avail _MLE 0.7282 0.7097 0.6947 0.6772 0.6643 0.6484 0.6358 0.622 0.6076 0.5968

Avail _Bayes 0.5901 0.5724 0.5577 0.5406 0.5277 0.5129 0.5005 0.488 0.4749 0.4647

Avail _Bayes_MSE 0.0205 0.0205 0.02 0.0203 0.0197 0.0198 0.0194 0.0192 0.0193 0.0187

Avail.length.MLE 0.0949 0.0937 0.0936 0.0956 0.0976 0.1006 0.1037 0.1071 0.1108 0.1134

Avail.length.Bayes 0.1241 0.12 0.1174 0.1167 0.1163 0.1168 0.1177 0.1188 0.12 0.121

https://doi.org/10.1371/journal.pone.0292154.t005

Table 6. Values of profit for fixed η = 1 and varying θ1.

Estimates θ1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

True Profit 3486.31 3389.11 3296.43 3207.95 3123.40 3042.53 2965.1 2890.87 2819.69 2751.34

Profit_MLE_MSE 17888.00 18296.53 18522.70 17716.20 18821.06 19629.77 21114.60 23305.48 26621.10 24743.46

Profit _MLE 3469.34 3365.84 3282.13 3184.82 3111.92 3023.25 2952.8 2875.63 2795.10 2734.93

Profit _Bayes 2692.22 2593.12 2511.06 2416.18 2343.16 2261.28 2191.9 2121.85 2049.03 1992.62

Profit_Bayes_MSE 646672.04 649351.23 632477.23 640665.58 622381.62 624522.96 612048.05 606316.80 608988.44 589007.17

Profit.length.MLE 517.32 511.25 511.86 523.69 535.72 553.25 571.4 591.11 612.53 627.50

Profit.length.Bayes 675.04 653.18 639.98 636.35 636.04 639.27 645.7 652.38 660.10 666.37

https://doi.org/10.1371/journal.pone.0292154.t006

Table 7. Values of MTSF for fixed η = 2 and varying θ1.

Estimates θ1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

True MTSF 2.3779 2.3018 2.2322 2.1682 2.1092 2.0545 2.0037 1.9564 1.9121 1.8706

MTSF_MLE_MSE 0.015 0.0125 0.0108 0.0106 0.0093 0.0085 0.0085 0.0083 0.0075 0.0072

MTSF_MLE 2.3658 2.2938 2.2213 2.1529 2.0945 2.0398 1.9896 1.9412 1.8968 1.8562

MTSF_Bayes 2.3461 2.2745 2.2036 2.137 2.0796 2.0261 1.9768 1.9295 1.8862 1.8462

MTSF_Bayes_MSE 0.012 0.0099 0.0089 0.0087 0.0077 0.007 0.0069 0.0066 0.0059 0.0056

MTSF.length.MLE 0.4751 0.4415 0.4134 0.3908 0.3745 0.3609 0.3507 0.342 0.3347 0.3296

MTSF.length.Bayes 0.4943 0.4598 0.4312 0.4083 0.3914 0.377 0.3658 0.3559 0.3473 0.3405

https://doi.org/10.1371/journal.pone.0292154.t007
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Fig 3. Behaviour of MTSF with varying failure rate (θ1) for η = 0.5.

https://doi.org/10.1371/journal.pone.0292154.g003

Fig 4. Behaviour of availability with varying failure rate (θ1) for η = 0.5.

https://doi.org/10.1371/journal.pone.0292154.g004

Fig 5. Behaviour of profit with varying failure rate (θ1) for η = 0.5.

https://doi.org/10.1371/journal.pone.0292154.g005
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Fig 8. Behaviour of profit with varying failure rate (θ1) for η = 1.

https://doi.org/10.1371/journal.pone.0292154.g008

Fig 6. Behaviour of MTSF with varying failure rate (θ1) for η = 1.

https://doi.org/10.1371/journal.pone.0292154.g006

Fig 7. Behaviour of availability with varying failure rate (θ1) for η = 1.

https://doi.org/10.1371/journal.pone.0292154.g007
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Fig 9. Behaviour of MTSF with varying failure rate (θ1) for η = 2.

https://doi.org/10.1371/journal.pone.0292154.g009

Fig 10. Behaviour of availability with varying failure rate (θ1) for η = 2.

https://doi.org/10.1371/journal.pone.0292154.g010

Fig 11. Behaviour of profit with varying failure rate (θ1) for η = 2.

https://doi.org/10.1371/journal.pone.0292154.g011
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evaluated by taking 5000 and 600, respectively. For all the numerical computations, the pro-

grams are developed in R-environment.

It is observed from numerical values given in Tables 1–3 that mean time to system failure,

availability and profit incurred by turbogenerator decreases with the increase of failure rate θ1.

The MLE and Bayes estimates of MTSF, availability and profit of turbogenerator also exhibit

the same pattern with respect to failure rate θ1. The mean square error of MLE and Bayes esti-

mators derived and found that it is less in maximum likelihood estimation along with confi-

dence intervals length at η = 0.5. The same pattern is also shown graphically as mean time to

system failure (Fig 3), availability (Fig 6) and profit (Fig 9).

For the shape parameter η = 1, it is revealed from numerical values given in Tables 4–6 that

mean time to system failure, availability and profit incurred by turbogenerator decreases with

the increase of failure rate θ1. It is observed that true value, MLE and Bayes estimates of MTSF

at θ1 = 0.1 attained the values 5.3454, 5.2575 and 5.2629 respectively. The MLE and Bayes esti-

mates of availability and profit of turbogenerator also exhibit the same pattern with respect to

failure rate θ1. The mean square error of MLE and Bayes estimators derived and found that it

is less in maximum likelihood estimation along with confidence intervals length for η = 1. The

same pattern is also shown graphically as mean time to system failure (Fig 4), availability (Fig

8) and profit (Fig 10).

For the shape parameter η = 2, it is revealed from numerical values given in Tables 7–9 that

mean time to system failure, availability and profit incurred by turbogenerator decreases with

the increase of failure rate θ1. It is observed that true value, MLE and Bayes estimates of MTSF

at θ1 = 0.1 attained the values 2.3779, 2.3658 and 2.3461 respectively. The MLE and Bayes esti-

mates of availability and profit of turbogenerator also exhibit the same pattern with respect to

failure rate θ1. The mean square error of MLE and Bayes estimators derived and found that it

is less in maximum likelihood estimation along with confidence intervals length for η = 2. The

same pattern is also shown graphically as mean time to system failure (Fig 5), availability (Fig

8) and profit (Fig 11). The numerical results exhibit that the numerical values of estimators

declined with respect to the increase in shape parameter η = 0.5, 1 & 2 respectively.

Table 8. Values of availability for fixed η = 2 and varying θ1.

Estimates θ1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

True Availability 0.6657 0.6544 0.6438 0.6338 0.6243 0.6154 0.607 0.5989 0.5913 0.584

Avail_MLE_MSE 0.00040 0.00040 0.00030 0.00030 0.00030 0.00030 0.00030 0.00030 0.00030 0.00030

Avail _MLE 0.6655 0.6546 0.6424 0.6329 0.6236 0.6142 0.6054 0.5974 0.5899 0.5826

Avail _Bayes 0.5914 0.5812 0.5698 0.5605 0.552 0.5431 0.5347 0.5274 0.5203 0.5137

Avail _Bayes_MSE 0.0058 0.0057 0.0057 0.0056 0.0055 0.0055 0.0055 0.0053 0.0053 0.0052

Avail.length.MLE 0.076 0.0729 0.0711 0.0697 0.0689 0.0688 0.0688 0.069 0.0694 0.0698

Avail.length.Bayes 0.0871 0.0833 0.0807 0.0786 0.0773 0.0764 0.0757 0.0754 0.0751 0.0749

https://doi.org/10.1371/journal.pone.0292154.t008

Table 9. Values of profit for fixed η = 2 and varying θ1.

Estimates θ1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

True Profit 3117.19 3054.22 2995.12 2939.50 2887.01 2837.36 2790.29 2745.57 2703.01 2662.42

Profit_MLE_MSE 10224.52 9689.77 8972.54 8979.80 8435.52 8396.81 9543.60 9188.36 9700.55 9297.67

Profit _MLE 3115.94 3054.99 2988.03 2933.98 2882.78 2829.86 2781.76 2737.15 2695.05 2654.65

Profit _Bayes 2698.68 2641.74 2579.43 2526.97 2479.77 2430.35 2384.26 2343.27 2303.30 2267.07

Profit_Bayes_MSE 183164.99 178114.87 179840.58 177046.83 171950.35 171708.86 171642.92 168017.89 166012.92 162168.78

Profit.length.MLE 397.14 381.54 372.61 366.02 363.55 363.68 365.17 367.91 371.11 374.82

Profit.length.Bayes 454.09 434.44 421.51 411.24 405.39 401.68 399.58 399.00 398.75 399.19

https://doi.org/10.1371/journal.pone.0292154.t009
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6. Conclusion

In present study, the classical and Bayesian estimation of the reliability characteristics is per-

formed of a turbogenerator system. For a particular set of parametric values true MTSF, steady

state availability and profit function are evaluated. Tables 1–9 reflected that MTSF, availability

and profit decrease with the failure rate (θ1) of turbine governing unit. The values of mean

time to system failure, availability and profit sharply declined with the increase of the shape

parameter η = 0.5, 1 and 2. From the simulation results as shown in Tables 1–9, it is observed

that for the shape parameter η = 0.5, 1 and 2 the true value of MTSF, availability, profit, MLE

and Bayes estimates of MTSF, MLE and Bayes estimates of availability and MLE and Bayes

estimates of profit decreases with respect to failure rate (θ1) of turbine governing unit. The

mean square error (MSE) of maximum likelihood estimators and width of confidence intervals

of MTSF, availability and profit are less in comparison of the Bayes MSE and HPD for η = 0.5,

1 and 2. Hence, it is recommended that to use ML estimated over Bayes estimation for estima-

tion of reliability characteristics of turbogenerator. The work may be further extended by con-

sidering other informative priors for the distribution. Further, the proposed methodology may

be opted for the reliability evaluation of other similar kind of mechanical systems as well as in

process industries.
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