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Abstract

In this article, we explore a new probability density function, called the power modified
Lindley distribution. Its main feature is to operate a simple trade-off among the general-
ized exponential, Weibull and gamma distributions, offering an alternative to these three
well-established distributions. The proposed model turns out to be quite flexible: its
probability density function can be right skewed and its associated hazard rate function
may be increasing, decreasing, unimodal and constant. First the model parameters of
the proposed distribution are obtained by the maximum likelihood method. Next, Bayes
estimators of the unknown parameters are obtained under different loss functions. In addi-
tion, bootstrap confidence intervals are provided to compare with Bayes credible intervals.
Besides, log power modified Lindley regression model for censored data is proposed. Two
real data sets are analyzed to illustrate the flexibility and importance of the proposed
model.

Keywords: Bayes estimate, bootstrap confidence intervals, loss functions, modified Lindley
distribution, maximum likelihood estimation, regression analysis.

1. Introduction

Recent studies show a spur in the efforts of constructing new univariate distributions and
these efforts are mostly guided by the theoretical considerations or practical applications or
both. It is essential that any probability distribution developed must reflect the data accu-
rately. Researchers often adopted different classical distributions for modeling and illustrating
real life data arising in different fields such as economics, finance, engineering, biology, in-
surance, medical sciences, etc. However, it has been very often observed that many of these
distributions are unable to fit some of the real data sets accurately. Hence, there is need to
identify distributions which can be applied for modeling the data accurately. The efficacy of
any statistical inference with respect to data sets mainly depends on the knowledge of appro-
priate distribution. Therefore, there is a need for extending existing classical distributions, so
as to enhance their flexibility, adaptability and goodness-of-fit in modeling data accurately.
In this paper, a new modified distribution with increased flexibility for fitting data has been
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proposed. In literature, we come across several approaches for extending and developing of
some well-known distributions into generalized classes of distributions. For greater details on
various approaches in generating distributions, one may refer to Abd-Elfattah (1987).

The one-parameter Lindley distribution (LD) introduced by Lindley (1958) in the context of
fiducial and Bayesian statistics is in fact an amalgamation of exponential and gamma distri-
butions. It became popular in statistical literature only after Ghitany, Atieh, and Nadarajah
(2008) studied some of its properties and application. Although this distribution is not suit-
able for non-monotone failure rate data but it is capable of modeling an increasing hazard rate
function. The statistical literature abounds in many extended forms of Lindley distribution
covering a wide range of shapes of hazard rate function including the unimodal ones. How-
ever, these extended forms usually involve two to five parameters and hence complexity arises
for statistical inference when the number of parameters involved in these extended distribu-
tion are more than two. Applying different formulation, several authors extended Lindley
distribution. Some of the extended work includes: Ghitany, Alqallaf, Al-Mutairi, and Hu-
sain (2011) proposed Weighted Lindley (WEL) distribution, generalized Lindley distribution
(GL) was proposed by Nadarajah, Bakouch, and Tahmasbi (2011), extended Lindley distri-
bution by exponentiation was proposed by Bakouch, Al-Zahrani, Al-Shomrani, Marchi, and
Louzada (2012), Barreto-Souza and Bakouch (2013) proposed exponential Poisson Lindley
(EPL) distribution. Ghitany, Al-Mutairi, Balakrishnan, and Al-Enezi (2013) proposed power
Lindley (PL) distribution. Asgharzadeh, Bakouch, Nadarajah, and Sharafi (2016) proposed
a new weighted Lindley distribution (WL). Joshi and Jose (2018) proposed Wrapped Lind-
ley distribution and so on. An interesting work with Lindley distribution was carried out
recently by Chesneau, Tomy, and Gillariose (2021) wherein a new modified Lindley distribu-
tion was developed without considering any special function or additional parameters in its
formulation. They showed that their proposed model provides better fit than exponential and
Lindley distributions and it was suitable for modeling increasing, reverse bathtub (unimodal)
and constant shaped hazard rate function.

The first objective of this paper is to introduce a new lifetime distribution called the power
modified Lindley (PML) distribution and derive some of its properties. Modified Lindley
distribution is a special case of the PML distribution when α = 1. The proposed distribution
provides better fits than some well known lifetime distributions. The importance of the new
distribution is the ability of describing decreasing, increasing and unimodal shaped hazard
rate functions which is extensively used in many real life data. Several authors have dis-
cussed the situations where the data shows decreasing, increasing and unimodal shape hazard
rates ( See, Proschan (1963), Bennette (1983), Efron (1988), Langlands, Pocock, Kerr, and
Gore (1997), Kus (2007), Woosley and Cossman (2007), Koutras (2011), Bhati, Sastry, and
Qadri (2015), Abdi, Asgharzadeh, Bakouch, and Alipour (2019)). Besides, PML is a suitable
model for fitting positively skewed data which may not be adequately modelled by many other
distributions. Thus, it can be used to fit data related to public health, biomedical studies,
industrial reliability, survival analysis and several other areas. Second objective is to estimate
the unknown parameters of the model from both frequentist and Bayesian points of view
for different sample sizes and different parameter values. In case of frequentist method, we
consider maximum likelihood method while for Bayesian approach, we consider independent
gamma priors for the model parametrs and five different loss functions (symmetric and asym-
metric loss functions), namely squared error loss function (SELF); weighted squared error loss
function (WSELF); modified squared error loss function (MSELF); precautionary loss func-
tion (PLF) and K-loss function (KLF). In addition, parametric and non-parametric bootstrap
confidence intervals using frequentist approaches are provided to compare with Bayes credible
intervals. To evaluate the performance of the estimators, a simulation study is carried out.
Finally, two real life data sets have been analyzed for illustrative purposes. Third objective is
to obtain the MLEs of the log power modified Lindley regression model for censored data to
show the flexibility of the log power modified Lindley regression model. Thus far we have not
come across any report on estimation of parameters and construction of two bootstrap confi-
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dence interval (CI) and highest posterior density (HPD) credible intervals for the considered
distribution along with regression model for censored and uncensored data.

The rest of the paper is organized as follows. In Section 2, we introduce the power modi-
fied Lindley distribution. In Section 3, we discuss some of its properties including a mixture
representation. In Section 4, the estimation of the model parameters and confidence inter-
vals/credible intervals by the method of maximum likelihood, parametric and non-parametric
bootstrap methods and Bayesian method are presented. In the same Section, we perform a
simulation study to evaluate the performance of the aforementioned estimation methods. In
Section 5, log power modified Lindley regression model for censored data is presented. Two
real data sets are analyzed and presented in Section 6. Finally, we conclude the paper in
Section 7.

2. Model description

The one parameter modified Lindley (ML) distribution proposed by Chesneau et al. (2021)
with cumulative distribution function (cdf)

F (x) = 1−
(

1 +
θx

1 + θ
e−θx

)
e−θx, x > 0, θ > 0.

Now, we introduce a skewness parameter to the modified Lindley distribution using a similar
idea to Ghitany et al. (2013) i.e., Y = Xα, α > 0 and to obtain a power modified Lindley
(PML) distribution. The cdf of the two parameter power modified Lindley distribution is
given by

F (x) = 1−
(

1 +
θxα

1 + θ
e−θx

α

)
e−θx

α
, x > 0, θ > 0, α > 0, (1)

and the corresponding probability density function (pdf) and hazard functions (hrf) are given,
respectively, by

f(x) =
αθ

1 + θ

[
(1 + θ)xα−1eθx

α
+ 2θx2α−1 − xα−1

]
e−2θxα , x > 0, θ > 0, α > 0, (2)

and

h(x) =
e−θx

α
αθ
[
(1 + θ)xα−1eθx

α
+ 2θx2α−1 − xα−1

]
1 + θ + θxαe−θxα

, x > 0, θ > 0, α > 0. (3)

When α = 1, the PML distribution reduces to ML distribution Chesneau et al. (2021).

Plots of the pdf and hrf of X, respectively, of the PML distribution for selected parameter
values of α and θ are shown in Figure 1. Figure 1 shows that the PML density can be
unimodal, positively skewed and approximately symmetric, whereas the hazard rate function
of the PML distribution can be decreasing, increasing, unimodal and constant shapes.
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Figure 1: Plots of the pdf and hrf of the PML distribution for some selected values of param-
eters α and θ
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An advantage of the definition of f(x) is that we can write it as a linear combination of
Weibull distribution and generalized gamma distribution as

g(t) = g1(t) + p(g2(t)− g3(t)), (4)

where

p =
1

2(1 + θ)
,

g1(x) = α θ xα−1 e−θx
α
, x > 0,

g2(x) = α (2θ)2 x2α−1 e−2θxα , x > 0,

g3(x) = 2α θ xα−1 e−2θxα , x > 0.

From (4), we see that the PML distribution is a linear combination of Weibull distribution
(with shape parameter α and scale parameter θ), a generalized gamma distribution (with
shape parameters 2, α and scale parameter 2θ) and a Weibull distribution (with shape pa-
rameter α and scale parameter 2θ), with p = 1

2(1+θ) . This representation will be useful to
determine the mathematical properties of the PML distribution.

3. Statistical and mathematical properties

Some mathematical properties of the PML distribution are presented in this section.

3.1. Asymptotics

In this section, we study the asymptotics of the pdf and hrf of the PML model. The behavior
of f(x) at x = 0 and x =∞, respectively, are given by

f(0) =


∞, if α < 1
θ2

1+θ , if α = 1, f(∞) = 0.

0, if α > 1.

The behavior of h(x) at x = 0 and x =∞, respectively, are given by

h(0) = f(0) =


∞, if α < 1
θ2

1+θ , if α = 1,

0, if α > 1.

and

h(∞) =


0, if α < 1

θ, if α = 1,

∞, if α > 1.

3.2. Moments and moment generating function

Let X be a random variable from PML distribution with pdf given in (2), then its moments
is given by the following

µ′r = E(Xr) =

∫ ∞
0

xrf(x)dx

=
α θ

1 + θ

∫ ∞
0

xr
[
(1 + θ)xα−1eθx

α
+ 2θx2α−1 − xα−1

]
e−2θxαdx

= α θ

∫ ∞
0

xr+α−1 e−θx
α
dx+

2α θ2

1 + θ

∫ ∞
0

xr+2α−1 e−2θxαdx

+
α θ

1 + θ

∫ ∞
0

xr+α−1 e−2θxαdx.
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By using well known properties of the gamma function, for any positive integer r,

µ′r =
1

θr/α

[{
1 +

( r
α

)( 1

2
r
α

+1(1 + θ)

)}
Γ

(
r

α
+ 1

)]
. (5)

For any t < θ, the moment generating function of PML distribution can be computed as

MX(t) = E(etx) =

∞∑
p=0

tp

p!
E(Xp) =

∞∑
p=0

tp

p!

∫ ∞
0

xpf(x)dx

=
∞∑
p=0

tp

p!

1

θp/α
Γ
( p
α

+ 1
)[

1 +
1

2
p
α

+1(1 + θ)

( p
α

)]
.

The characteristic function of PML distribution, φX(t) = E(eitx), and the cumulant generat-
ing function of X, K(t) = log φX(t), are given by

φX(t) =
∞∑
p=0

(it)p

p!

1

θp/α
Γ
( p
α

+ 1
)[

1 +
1

2
p
α

+1(1 + θ)

( p
α

)]
,

and

K(t) = log

 ∞∑
p=0

(it)p

p!

1

θp/α

+ log

(
Γ
( p
α

+ 1
)(

1 +
1

2
p
α

+1(1 + θ)

( p
α

)))
.

The central moments µr and cumulants kr of X can be determined from equation (5) as

µr = E(X − µ)r =
r∑

k=0

(−1)k
(
r
k

)
µ′r1 µ

′
r−k,

and

kr = µ′r −
r−1∑
k=1

(
r − 1
k − 1

)
krµ
′
r−k.

where k1 = µ′1. Thus k2 = µ′2 − µ′
2

1 , k3 = µ3′ − 3µ2′µ
′
1 + 2µ′

3

1 , k4 = µ′4 − 4µ′3µ
′
1 − 3µ′

2

2 +

12µ′2µ
′2
1 − 6µ′

4

1 , etc. The skewness γ1 = k3/k
3/2
2 and kurtosis γ2 = k4/k

2
2 can be calculated

from the second, third and fourth standardized cumulants.

3.3. Conditional moment, mean deviation, mean residual life and Bonferroni
and Lorenz curves

For the PML distribution, it can be easily seen that the conditional moments E[Xn|X > t],
can be written as E[Xn|X > t] = 1

[1−F (x)]µ
′
n(t), where

µ′n(t) =

∫ ∞
t

ynf(y)dy

=
αθ

1 + θ

∫ ∞
t

yn
[
(1 + θ)yα−1eθy

α
+ 2θy2α−1 − yα−1

]
e−2θyαdy

=

[
1

θn/α
Γ

(
θtα,

n

α
+ 1

)
+

θ

(1 + θ)(2θ)
n
α

+1
Γ

(
2θtα,

n

α
+ 2

)
− 1

2(1 + θ)(2θ)n/α
Γ

(
2θtα,

n

α
+ 1

)]
. (6)

An application of the conditional moment is the mean residual life (MRL). Thus, the MRL
function in terms of the first conditional moment is given by

η1(t) = E[X|x > t] =
1

[1− F (x)]
µ′1(t),
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where µ′1(t) can be obtained from (6) when n = 1.

Another application of the conditional moment is the mean deviations about the mean and
the median. Let us denote the mean (µ) and median by M , then the mean deviations from
the mean and the median can be obtained as

δµ =

∫ ∞
0
|x− µ| f(x)dx = 2µF (µ)− 2µ+ 2µ′1(µ)

and

δM =

∫ ∞
0
|x−M | f(x)dx = 2µ′1(M)− µ,

respectively. Where µ′1(µ) and µ′1(M) can obtained from (6). Also, F (µ) and F (M) are easily
calculated from (1).

The Bonferroni and Lorenz curves are proposed by Bonferroni (1930), these curves are used
in several field like economics to study income and poverty, reliability, demography, insurance
and medicine. These curves are defined by

B(P ) =
1

Pµ

∫ Q

0
xf(x)dx

and

L(P ) =
1

µ

∫ Q

0
xf(x)dx,

respectively, where Q = F−1(P ). The Bonferroni and Gini indices are defined by

B = 1−
∫ 1

0
B(P )dP

and

G = 1− 2

∫ 1

0
L(P )dP,

respectively. If X has the pdf in (2), then one can obtain Bonferroni curve of the PML
distribution as

B(P ) =
1

Pµ

1

θ1/α
Γ

(
θ(q)α,

(
1

α
+ 1

))
+

θ

(1 + θ)(2θ)
1
α

+1
Γ

(
2θ(q)α,

(
1

α
+ 2

))
− 1

2(1 + θ)(2θ)1/α
Γ

(
2θ(q)α,

(
1

α
+ 1

))
and the Lorenz curves L(p) = pB(p).

3.4. Entropy and stress-strength reliability

Entropy is useful in gathering information about the uncertainty of the random experiment.
Thus, the Renyi entropy of the PML distribution is given by

Rγ =
1

1− γ
log

[
αγθγ

(1 + θ)γ

γ∑
i=0

i∑
j=0

(−1)i
(
γ

i

)
(2θ)i−j(1 + θ)γ−i

× 1

α[θ(1 + γ)]i−j+γ+ 1−γ
α

Γ

(
i− j +

1− γ
α

)]
(7)

The γ−entropy, say Iγ(x), is defined by

Iγ(x) =
1

γ − 1
log

[
1−

∫ 1

0
fγ(x)dx

]
, γ > 0, γ 6= 1,
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and then it follows from equation (7).

The stress-strength reliability has been widely used in reliability analysis as the measure
of the system performance under stress. If X ∼ PML(α1, θ1) and Y ∼ PML(α2, θ2), then
stress-strength reliability R is given by

R = 1−

[ ∞∑
i=0

(−1)i

i!

(
θ2

(θ1)α2/α1

)i
Γ

(
iα2

α1
+ 1

)
+

1

2(1 + θ1)

∞∑
i=0

(−1)i

i!

(
θ2

(2θ1)
α2
α1

)i

× Γ

(
iα2

α1
+ 2

)
− 1

2(1 + θ1)

∞∑
i=0

(−1)i

i!

(
θ2

(2θ1)α2/α1

)i
Γ

(
iα2

α1
+ 1

)

+

(
θ2

1 + θ2

)(
1

θ
α2/α1

1

) ∞∑
i=0

(−1)i

i!

(
2θ2

(θ1)α2/α1

)i
Γ

(
(i+ 1)α2

α1
+ 1

)

+

(
θ1θ2

(1 + θ1)(1 + θ2)

)
1

(2θ1)
α2
α1

+1

∞∑
i=0

(−1)i

i!

(
2θ2

(2θ1)α2/α1

)i
Γ

(
(i+ 1)α2

α1
+ 2

)

−
(

θ2

2(1 + θ1)(1 + θ2)

)
1

(2θ1)α2/α1

∞∑
i=0

(−1)i

i!

(
2θ2

(2θ1)α2/α1

)i
Γ

(
(i+ 1)α2

α1
+ 1

)]
.

3.5. Order statistics

LetX1, X2, · · · , Xn be a random sample of size n from the PML distribution andX(1), X(2), · · · , X(n)

be the corresponding order statistics. The probability density function of the rth order statis-
tics is obtained as follow:

fr:n(x) =
n!

(r − 1)!(n− r)!
[F (x)]r−1[1− F (x)]n−rf(x).

For the PML distribution, the pdf of rth order statistic is obtained as

fr:n(x) =
n!

(r − 1)!(n− r)!

r−1∑
i=0

n−r+i∑
j=0

(−1)i
(
r − 1

i

)(
n− r + i

j

)
α

(
θ

1 + θ

)j+1

(xα)j

× e−(n−r+i+j+2)θxα
[
(1 + θ)xα−1eθx

α
+ 2θx2α−1 − xα−1

]
.

The rth ordered moment is obtained as

µr:n = α
n!

(r − 1)!(n− r)!

r−1∑
i=0

n−r+i∑
j=0

(−1)i
(
r − 1

i

)(
n− r + i

j

)(
θ

1 + θ

)j+1

×

[(
1 + θ

αθ
αj+1
α

+1

)(
1

(n− r + i+ j + 1)
αj+1
α

+1

)
Γ

(
αj + 1

α
+ 1

)

+

(
2θ

αθ
αj+α+1

α
+1

)(
1

(n− r + i+ j + 2)
αj+α+1

α
+1

)
Γ

(
αj + α+ 1

α
+ 1

)

−
(

1

αθ
αj+1
α

+1

)(
1

(n− r + i+ j + 2)
αj+1
α

+1

)
Γ

(
αj + 1

α
+ 1

)]
.

4. Methods of estimation

4.1. Maximum likelihood estimation

Let x1, x2, · · · , xn be a random sample of size n from the PML distribution. Then, the
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likelihood function is given by

L =
n∏
i=1

f(xi) =
n∏
i=1

αθ

1 + θ
e−2θxα

[
(1 + θ)xα−1eθx

α
+ 2θx2α−1 − xα−1

]
,

=
αnθn

(1 + θ)n
e

−2θ

n∑
i=1

xαi n∏
i=1

[
(1 + θ)xα−1

i eθx
α
i + 2θx2α−1

i − xα−1
i

]
.

The corresponding log-likelihood function is

lnL = n ln(α) + n ln (θ)− n ln (1 + θ)− 2θ
n∑
i=1

xαi +
n∑
i=1

ln
[
(1 + θ)xα−1

i eθx
α
i + 2θx2α−1

i − xα−1
i

]
,

The maximum likelihood estimates of θ and α can be obtained by solving the following non-
linear equations:

∂ lnL

∂θ
=

n

θ(1 + θ)
− 2

n∑
i=1

xαi +
n∑
i=1

xα−1
i eθx

α
i [xαi (1 + θ) + 1] + 2x2α−1

i

(1 + θ)xα−1
i eθx

α
i + 2θx2α−1

i − xα−1
i

= 0,

∂lnL

∂α
=
n

α
− 2θ

n∑
i=1

xαi ln (xi) +
n∑
i=1

xα−1
i ln (xi)

[
θ(1 + θ)xαi e

θxαi + (1 + θ)eθx
α
i + 4θxαi − 1

]
(1 + θ)xα−1

i eθx
α
i + 2θx2α−1

i − xα−1
i

= 0.

It is seen from the above non-linear equations that there are no closed form for the MLEs α̂
and θ̂. Numerical procedures may be used to solve these nonlinear equations.

4.2. Bootstrap estimation

Here, we introduce two types of bootstrap estimation procedures. (see Efron and Tibshirani
(1994)):
Parametric type:

• Assessment ψ vector, say ψ̂, employing the MLE conduct by means of a given sample.

• Extract sample {Y ∗1 , . . . , Y ∗k } making use ψ̂ and getting the bootstrap estimate of ψ,

say ψ̂∗, from the current bootstrap sample based on MLE method.

• Renew step 2, N frequency.

• Rearrange ψ̂∗1, . . . , ψ̂
∗
N as ψ̂∗(1), . . . , ψ̂

∗
(N). Next, calculate η-quantiles and 100(1−η)%

confidence intervals for the parameters.

Nonparametric type

• Extract a bootstrap sample {y∗1, . . . , y∗k} with replacement strategy from the initial data.

• Calculate the bootstrap approximation of ψ from the MLE method, say ψ̂∗, making use
the bootstrap sample.

• Renew step 2, N frequency.

• Rearrange ψ̂∗1, . . . , ψ̂
∗
N as ψ̂∗(1), . . . , ψ̂

∗
(N). Next, calculate η-quantiles and 100(1−η)%

confidence intervals for the parameters.
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4.3. Bayesian estimation

As a powerful and valid alternative to classical estimation, the Bayesian approach suggests
a procedure to combine the observed information with the prior knowledge. Here, for the
purpose of framing the Bayesian analysis, we set assumptions as:

α ∼ Gamma(α0, α1), θ ∼ Gamma(θ0, θ1).

We now consider several (symmetric and asymmetric) loss functions (LS), namely, SELF,
WSELF, MSELF, PLF and KLF. These loss functions with corresponding Bayesian estimators
(BS) and posterior risks (PR) are provided in Table 1.

Table 1: Five loss functions with corresponding BS and PR

LS: L(ψ, δ) BS of parameter ψB PR of parameter ρψ

SELF = (ψ − d)2 E(ψ|x) V ar(ψ|x)

WSELF = (ψ−d)2

ψ (E(ψ−1|x))−1 E(ψ|x)− (E(ψ−1|x))−1

MSELF =
(

1− d
ψ

)2
E(ψ−1|x)
E(ψ−2|x)

1− E(ψ−1|x)2

E(ψ−2|x)

PLF = (ψ−d)2

d

√
E(ψ2|x) 2

(√
E(ψ2|x)− E(ψ|x)

)
KLF =

(√
d
ψ −

√
ψ
d

) √
E(ψ|x)
E(ψ−1|x)

2
(√

E(ψ|x)E(ψ−1|x)− 1
)

For more details see Kharazmi, Saadatinik, and Jahangard (2019), Dey, Ali, and Park (2015),
Dey, Zhang, Asgharzadeh, and Ghorbannezhad (2017), and Ahmad, Mahmoudi, Hamedani,
and Kharazmi (2020).

4.4. Posterior distributions

The joint prior distribution of parameters α and θ under the independent prior distributions

α ∼ Gamma(α0, α1), θ ∼ Gamma(θ0, θ1),

is given as

π(α, θ) =
αα0

1 θθ01

Γ(α0)Γ(θ0)
αα0−1θθ0−1e−(α1α+θ1θ), (8)

where all the hyper-parameters α0, α1, θ0 and θ1 are positive. Now, let ζ be

ζ(α, θ) = αα0−1θθ0−1e−(α1α+θ1θ), α > 0, θ > 0,

then, the joint posterior distribution is proportional to the joint prior distribution π(α, θ) and
a given likelihood function L(data) as

π∗(α, θ|data) ∝ π(α, θ)L(data). (9)

In the case of PML distribution, the exact joint posterior PDF of parameters α and θ, is given
by

π∗(α, θ|x) = CL(x,Υ)ζ(α, θ) (10)

where

L(x; Υ) =

(
αθ

1 + θ

)n n∏
i=1

[
(1 + θ)xα−1eθx

α
i + 2θx2α−1

i − xα−1
i

]
e−2θxαi , (11)
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Υ = (α, θ) and K is normalizing constant and is given by

C−1 =

∫ ∞
0

∫ ∞
0

L(x,Υ)ζ(α, θ)∂θ∂α.

Consequently, the marginal posterior PDF for the elements of vector Υ with Υ = (Υ1,Υ2) =
(α, θ), is given by

π(Υi|x) =

∫ ∞
0

π∗(Υ|x)∂Υj , (12)

where i, j = 1, 2, i 6= j and Υi is the ith element of vector parameter Υ.

4.5. Point estimation in Bayesian framework

The Bayesian point estimation of parameter vector Υ, is provided in regard to the framework
of the formulation in the previous subsection. Due to intractable integral form in (12), we
use Gibbs sampler technique (Geman and Geman (1984)) to extract posterior samples. This
will be argued in details in subsection 4.8.

4.6. Credible interval

We provide the credible interval estimation of the parameter vector Υ = (Υ1,Υ2) = (α, θ)
of the PML distribution via Bayesian framework with the formulation of the subsection 4.4 .
The (1− ε)100% credible interval, CI(LΥj , UΥj ), for a given value of ε ∈ (0, 1), is given by∫ ∞

LΥj

π(Υj |x)∂Υj = 1− ε

2
,

∫ ∞
UΥj

π(Υj |x)∂Υi =
ε

2
, (13)

where π(Υj |x) is the marginal posterior PDF of Υj ; (j = 1, 2).

It is evident from (10) that it is difficult to get the explicit form of the marginal PDFs.
Therefore, we make use of the Gibbs sampler strategy in order to extract posterior samples.
For a given posterior sample with size T , S = (Υ1, ...,ΥT ) (where Υi = (Υi

1,Υ
i
2)), from the

joint posterior PDF in (10), the marginal posterior PDFs of Υj given x is

1

T

T∑
i=1

π∗(Υj ,Υ
i
−j |x); j = 1, 2, (14)

where the Υi
−j is a vector of posterior sample that jth observation is removed. Inserting (14)

in (13), it gives us the possibility to compute the credible intervals for Υj , j = 1, 2 as follows

1

T

T∑
i=1

∫ ∞
LΥj

π∗
(
Υj ,Υ

i
−j |x

)
∂Υj = 1− ε

2
,

1

T

T∑
i=1

∫ ∞
UΥj

π∗
(
Υj ,Υ

i
−j |x

)
∂Υj =

ε

2
. (15)

4.7. Highest posterior density interval

A (1 − ε)100% highest posterior density (HPD) interval for Υj , j = 1, 2, can be obtained
from the simultaneous solutions of the following equations

1

T

T∑
i=1

∫ UΥj

LΥj

π∗
(
Υj ,Υ

i
−j |x

)
∂Υj = 1− ε,

T∑
i=1

π∗
(
LΥj ,Υ

i
−j |x

)
=

T∑
i=1

π∗
(
UΥj ,Υ

i
−j |x

)
.
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4.8. Generating posterior samples

Due to the intractable integral forms of the joint posterior and marginal posterior PDFs, we
use Markov Chain Monte Carlo (MCMC) algorithm with the Gibbs sampling (GS) strategy
(as a special case of the Metropolis-Hastings algorithm) to generate posterior samples. The
GS strategy makes use the full set of conditional distributions and Markov chain process to
generate posterior samples. For a general model with p dimensional parameter vector, the
GS algorithm is presented as follows:

Let f(x|υ) be a general PDF that is labeled with parameter vector υ = (υ1, υ2, ..., υp). Based

on a given sample x and initial parameter vector υ0 = (υ
(0)
1 , υ

(0)
2 , ..., υ

(0)
p ), the Gibbs sampler

gives the values for each iteration with p steps by extracting a new value for each parameter
from its full conditional PDF. In symbols, the steps for each iteration (iteration l), are as
follows:

• Set an initial parameter vector (υ
(0)
1 , υ

(0)
2 , ..., υ

(0)
p )

• Extract υl1 from π
(
υ1|υl−1

2 , υl−1
3 , ..., υl−1

p , x
)

• Extract υl2 from π
(
υ2|υl1, υ

l−1
3 , ..., υl−1

p , x
)
; and so on down to

• Extract υlp from π
(
υp|υl1, υl2, ..., υlp−1, x

)
.

Making use the above GS algorithm, the posterior samples of the parameters α and θ of PML
distribution are generated from the full conditional posterior PDFs

π
(
α|θk−1, x

)
∝ αα0+n−1e−α1α

n∏
i=1

[
(1 + θ)xα−1eθx

α
i + 2θx2α−1

i − xα−1
i

]
e−2θxαi

and

π
(
θ|αk−1, x

)
∝ θθ0+n+1 e−θ1θ(

1 + θ
)n n∏

i=1

[
(1 + θ)xα−1eθx

α
i + 2θx2α−1

i − xα−1
i

]
e−2θxαi ,

respectively.

There are some special software tools for the implementation of Bayesian analysis. Here, we
use the specialized OpenBUGS software to extract posterior samples from the above compli-
cated and unexplicit full conditional PDFs. This software and its earlier version, WinBUGS,
have been designed based on the Gibbs sampling algorithm to generate posterior samples from
complicated posterior distributions. Here, we use the idea of Congdon (2001) to set the initial
values for the hyper-parameters and their values are conducted as θ0 = θ1 = α0 = α1 = 0.0001.

4.9. Monte Carlo simulation

This section presents Monte Carlo simulation results to assess the performance of MLE men-
tioned in the previous section. First, we generate different samples with size n from (1) based
upon the inversion method which implies to find the root of

(1− u)(1 + θ)eθx
α

=
(
1 + θ + θxαe−θx

α)
,

where u ∼ U(0, 1). We compute the mean square errors (MSEs) and biases of the MLEs of
the parameters based on N = 10, 000 iterations. The results are summed up in Table 2 for
some selected parameter values and several sample sizes, n. The results in Table 2 indicate
that the MSEs and biases of the MLEs decrease when the sample size n increases. So, the
MLEs of the parameters are consistent.
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Table 2: MSEs and biases (in parentheses) of the parameters of the model

α = 1 θ = 2

n 30 0.0493 (0.0298) 0.1097 (0.1731)
50 0.0318 (0.0168) 0.0556 (0.0803)
100 0.0208 (0.0107) 0.0363 (0.0531)
200 0.0086 (0.0033) 0.0147 (0.0161)

α = 1 θ = 3

n 30 0.0524 (0.0315) 0.2745 (0.6457)
50 0.0289 (0.0154) 0.1365 (0.2742)
100 0.0230 (0.0106) 0.0898 (0.1657)
200 0.0124 (0.0040) 0.0403 (0.0567)

α = 2 θ = 0.5

n 30 0.0797 (0.0922) -0.0072 (0.0096)
50 0.0478 (0.0516) 0.0005 (0.0059)
100 0.0384 (0.0327) -0.0025 (0.0040)
200 0.0079 (0.0121) 0.0027 (0.0016)

α = 0.9 θ = 0.5

n 30 0.0411 (0.0201) -0.0072 (0.0104)
50 0.0244 (0.0105) 0.0005 (0.0061)
100 0.0137 (0.0068) -0.0015 (0.0041)
200 0.0056 (0.0021) -0.0013 (0.0014)

α = 4 θ = 5

n 30 0.2038 (0.4963) 0.6140 (3.4590)
50 0.1175 (0.2656) 0.3565 (1.5220)
100 0.0893 (0.1782) 0.2620 (0.8992)
200 0.0272 (0.0570) 0.0795 (0.2605)

4.10. Simulation study for Bayesian method

This section is devoted to calculate posterior risk values of Bayes estimators under different
loss functions based on Monte Carlo simulation. We generated samples of different sizes
n = {30, 50, 75, 100} from the PML distribution for true value of parameters (i) (α, θ) =
(2, 0.5) and (ii) (α, θ) = (1, 2). Table 3 reports the posterior risk values of Bayes estimators
under prior distributions defined in (8) and the aforementioned five loss functions as shown
in Table 1. These results provided by considering hyper parameters values as (α0, α1) =
(2, 1), (θ0, θ1) = (4, 2) for case (i) and (α0, α1) = (10, 1), (θ0, θ1) = (1, 2) and for case (ii)
based on 10000 replicates with 1000 burn-in of MCMC procedure in OpenBUGS software.

It is evident from Table 3 that with increasing sample size n, the posterior risk decreases and
this confirms the consistency property. We also observe that as n increases, Bayes estimate of
α based on KL loss function provide superior performance than other Bayes estimates whereas
Bayes estimate of θ based on PL loss function perform better than other loss functions as θ
decreases.
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Table 3: Posterior risk values of Bayesian estimators under different loss functions based on
simulation data set for different sample sizes

n = 30 (α, θ) = (2, 0.5) (α, θ) = (1, 2)

Loss function rα̂ r
θ̂

rα̂ r
θ̂

SE 0.1064 0.0076 0.0145 0.1709

WSE 0.0421 0.0183 0.0166 0.0682

MSE 0.0169 0.0458 0.0194 0.0280

PL 0.0408 0.0184 0.0167 0.0689

KL 0.0164 0.0465 0.0196 0.0283

n = 50 (α, θ) = (2, 0.5) (α, θ) = (1, 2)

Loss function rα̂ r
θ̂

rα̂ r
θ̂

SE 0.0245 0.0071 0.0124 0.0706

WSE 0.0154 0.0104 0.0125 0.0335

MSE 0.0098 0.0156 0.0127 0.0161

PL 0.0152 0.0104 0.0125 0.0342

KL 0.0096 0.0155 0.0128 0.0165

n = 75 (α, θ) = (2, 0.5) (α, θ) = (1, 2)

Loss function rα̂ r
θ̂

rα̂ r
θ̂

SE 0.0299 0.0042 0.0071 0.0414

WSE 0.0155 0.0084 0.0079 0.0202

MSE 0.0081 0.0170 0.0088 0.0099

PL 0.0152 0.0084 0.0078 0.0206

KL 0.0079 0.0171 0.0088 0.0101

n = 100 (α, θ) = (2, 0.5) (α, θ) = (1, 2)

Loss function rα̂ r
θ̂

rα̂ r
θ̂

SE 0.0202 0.0034 0.0050 0.0257

WSE 0.0103 0.0062 0.0051 0.0137

MSE 0.0053 0.0114 0.0052 0.0073

PL 0.0103 0.0062 0.0051 0.0135

KL 0.0053 0.0114 0.0052 0.0072

5. The PML regression model

Here, we present a new survival regression based on PML distribution. Assume that the
random variable X follows PML distribution, given in (2). We obtain the log-PML (LPML)
distribution by applying Y = log(X) transformation and considering the re-parametrization,
α = 1

σ and θ = e−
µ
σ . The PDF of the transformed variable Y is

h (y;σ, µ) =
1

σ
(
1 + e−

µ
σ

)e

{
−2e

y−µ
σ + y−µ

σ

}{
(1 + e−

µ
σ )ee

y−µ
σ + 2e

y−µ
σ − 1

}
(16)

where µ ∈ < and σ > 0 are location and scale parameters, respectively. We refer to equation
(16) as the LPML distribution, say Y ∼ LPML(α, σ, µ). The survival function of (16) is

S (y;σ, µ) = ee
y−µ
σ

{
1 +

1

1 + e−
µ
σ

e

{
−2e

y−µ
σ + y−µ

σ

}}
, (17)
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Let Z = (Y − µ)/σ, then the PDF of the standardized random variable is

h (z;σ, µ) =
1

1 + e−
µ
σ

e

{
−2ez+z

}{
(1 + e−

µ
σ )eez + 2ez − 1

}
The LPML regression is defined by

yi = vᵀi τ + σzi, i = 1, . . . , n, (18)

and vᵀi is the covariate variable vector and zi is the random error with density h (z;σ, µ). The
regression parameters are represented by τ = (τ1, . . . , τp)

ᵀ.

Let yi be a dependent variable defined as yi = min{log(xi), log(di)}, where log(xi) follows
(16) and log(di) represent the log-lifetime and log-censoring times. Let M0 and M1 be the
sets of individuals with log-lifetime and log-censoring, respectively. Under these definitions,
the log-likelihood function for ψ = (α, σ, τᵀ)ᵀ is

` (ψ) = r log
(
σ
(
1 + e−

vᵀτ
σ
)) ∑

i∈M0

(zi − 2ui) +
∑
i∈M0

log

{(
1 + e−

vᵀτ
σ
)
eui + 2ui − 1

}
+
∑
i∈M1

log
(
eui
)

+
∑
i∈M1

log

{
1 +

(
1 + e−

vᵀτ
σ
)
uie
−2ui

}
(19)

where ui = ezi , zi = (yi − vᵀi τ)/σ and r denotes the number of uncensored events. The MLE
of ψ can be obtained by maximizing (19) using the optim function of R software.

5.1. Residual analysis

To decide the accuracy of fitted regression model, we analyze the departure from error distri-
bution by means of residual analysis. Here, two residuals are used. These are martingale and
modified deviance residuals. Residual analysis is an important step of any regression analysis
to check the adequacy of fitted model. The martingale residuals of the LPML regression
model are

rMi =


1 + ln

(
eui
)

+ ln

{
1 +

(
1 + e−

vᵀτ
σ

)
uie
−2ui

}
, if i ∈M0

ln
(
eui
)

+ ln

{
1 +

(
1 + e−

vᵀτ
σ

)
uie
−2ui

}
, if i ∈M1

(20)

where ui = e
yi−v>i τ

σ . Using the martingale residuals, the modified deviance residuals of the
LPML regression are

rDi =

{
sign (rMi) { −2 [rMi + log (1− rMi)]}

1/2, if i ∈M0

sign (rMi) { −2rMi}
1/2, if i ∈M1,

(21)

where rMi is the martingale residual. The modified deviance residuals are more acceptable
and usable than martingale residuals. The reason is that the modified deviance residuals are
normally distributed with zero mean and unit variance once the fitted regression model is
suitable and accurate for the data used.

6. Application

In order to show the flexibility and potential of the proposed model, we consider two real data
sets based on univariate and covariate observations. In order to achieve this goal. First we
consider the exact times of failure of fatigue fracture of Kevlar 373/epoxy data set and the
parameter estimations are done by means of three methods (maximum likelihood, Bayesian
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and bootstrap) which are discussed in Section 4. Second we show the performance of survival
regression model of PML distribution via maximum likelihood method by analyzing heart
transplant data set which is associated with covariate variables.

6.1. Univariate data modeling

We consider exact times of failure of fatigue fracture of Kevlar 373/epoxy which were formerly
studied by Andrews and Herzberg (2012).The current data are given as below:
1.2985 1.3211 1.3503 1.3551 1.4595 1.4880 1.5728 1.5733 1.7083 1.7263 1.7460 1.7630 1.7746
1.8275 0.0251 0.0886 0.0891 0.2501 0.3113 0.3451 0.4763 0.5650 0.5671 0.6566 0.6748 0.6751
0.6753 0.7696 0.8375 0.8391 0.8425 0.8645 0.8851 0.9113 0.9120 0.9836 1.0483 1.0596 1.0773
1.1733 1.2570 2.2100 3.7455 3.9143 4.8073 5.4005 5.4435 5.5295 6.5541 9.0960 2.2460 2.2878
2.3203 2.3470 2.3513 2.4951 2.5260 2.9911 3.0256 3.2678 3.4045 3.4846 3.7433 1.2766 1.8375
1.8503 1.8808 1.8878 1.8881 1.9316 1.9558 2.0048 2.0408 2.0903 2.1093 2.1330.

Next, we plot the total time of test (TTT) for these data set; for more details about TTT plot,
see Abd-Elfattah (1987). This is the primary step in graphical inspection to prove whether
this data can be applied to the PML distribution or not. The corresponding TTT plot for
this data is displayed in Figure 1 and indicates that the empirical hazard function of the data
is increasing. Hence, the PML density is adequate to model these data set.
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Figure 2: Scaled-TTT plot of the failure of fatigue fracture data set

Bootstrap inference for PML parameters

We obtain the point and 95% confidence interval (CI) estimation for the two parameters of
the PML distribution via parametric and non-parametric bootstrap methods. We provide
bootstrap estimation results in Table 4 for the failure of fatigue fracture data set. We plot
the joint distribution of the bootstrap values in a scatter plot to see the potential correlation
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structure between the parameters, . The corresponding plots of the bootstrap estimations are
shown in Figure 3.

Table 4: Point and interval estimation of the parameters based on bootstrap procedure for
the failure of fatigue fracture data set

parametric bootstrap non-parametric bootstrap
point estimation CIp point estimation CInp

α 1.118 (0.966, 1.345) 1.134 (0.945, 1.408)
θ 0.532 (0.410, 0.657) 0.523 (0.418, 0.652)
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Figure 3: Parametric (left) and non-parametric (right) bootstrap values of the parameters of
the PML distribution for the failure of fatigue fracture data set

MLEs and comparison with other models

We compare the proposed PML distribution with some other distributions, such as Lindley,
Weibull, gamma, generalized exponential (GE) and power Lindley (PL) distributions. The
values of the Kolmogorov-Smirnov (K-S) statistics along with p-values, Akaike Information
Criteria (AIC) and Baysian Information Criteria (BIC), MLEs with their standard errors are
listed in Table 5. The densities of Lindley, Weibull, gamma, generalized exponential (GE)
and power Lindley (PL) distributions are:

f(x;α, β) =
α

β
(
x

β
)α−1 e

−( x
β

)α
; x > 0,

f(x;α, θ) =
1

θα Γ(α)
xα−1 e−(x/θ); x > 0,

f(x;α, λ) = αλ e−λx(1− e−λx)α−1; x > 0.

f(x; θ) =
θ2

1 + θ
(1 + x) e−θx; x > 0,

and

f(x; θ, α) =
α θ2

θ + 1
(1 + xα)xα−1e−θx

α
; x > 0.

From Table 5, we observe that the PML distribution gives the best fit for the current data set
as it shows the highest p-value as well as lowest AIC and BIC values than the other models.
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Table 5: Parameter estimates (standard errors) and goodness of fit measures for some fitted
models

Model MLEs of parameters (s.e) AIC BIC KS (P)

PML α̂ = 1.118 (0.094), θ̂ = 0.532 (0.064) 246.435 251.096 0.096 (0.451)

GE α̂ = 1.709 (0.282), λ̂ = 0.702 (0.092) 248.487 253.149 0.097 (0.440)

gamma α̂ = 1.641 (0.244), θ̂ = 0.838 (0.145) 248.499 253.160 0.098 (0.431)

Weibull α̂ = 1.326(0.114), β̂ = 2.133 (0.194) 249.049 253.711 0.110 (0.296)

Lindley θ̂ = 0.795 (0.068) 249.350 251.681 0.116 (0.242)

PL α̂ = 1.142(0.091), θ̂ = 0.705 (0.082) 248.800 253.462 0.112 (0.273)

The histogram, fitted PML, Weibull, gamma and generalized exponential (GE) PDFs for
the current data set are shown in Figure 3. Both empirical and fitted CDFs functions, P-P
and Q-Q plots for the competitor models, namely, PML, Weibull, gamma and generalized
exponential (GE) distributions are displayed in Figure 4, respectively. These plots prove the
reported results in Table 5.

Next, we provide graphical and numerical results for the Bayesian analysis of the current
data set. Making use of the MCMC procedure with 10, 000 replicates, we obtain Bayesian
estimation of the parameters of the PML distribution based on considered loss functions in
Table 1. Bayes point estimates and their corresponding posterior risk are provided in Table
6. The credible and HPD intervals at nominal level 95% are reported in Table 7. In order to
examine the performance of the Gibbs sampling process and its convergence, we provide the
associated plots of posterior samples in Figures 6, 7 and 8. It is evident that these plots also
confirm the good performance of Gibbs sampling process in generating posterior samples.

Table 6: Numerical results (point estimation and posterior risk) for the parameters of PML
distribution based on Bayesian framework

Data failure of fatigue fracture data

Bayesian estimation

Loss function α̂ (rα̂) θ̂ (r
θ̂
)

SELF 1.12496 (0.0085) 0.5301 (0.0038)

WSELF 1.1174 (0.0076) 0.5228 (0.0071)

MSELF 1.10981 (0.0070) 0.5157 (0.0136)

PLF 1.12872 (0.0075) 0.5336 (0.0073)

KLF 1.12117 (0.0068) 0.5264 (0.0136)
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Figure 4: Left panel: Histogram and fitted densities; Right panel: empirical and fitted CDFs
for the failure of fatigue fracture data
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Figure 5: Q-Q plots and P-P plots for the failure of fatigue fracture data

Table 7: Credible and HPD intervals

Credible interval HPD interval
α (1.062, 1.186 ) (0.418, 0.951)
θ (0.487, 0.569) (0.653, 1.311)
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Figure 6: Trace plots for the performance of Gibbs sampling in the analysis of failure of
fatigue fracture data set
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Figure 7: Autocorrelation plots for the performance of Gibbs sampling in the analysis of
failure of fatigue fracture data set
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Figure 8: Histogram plots for the performance of Gibbs sampling in the analysis of failure
of fatigue fracture data set

In order to evaluate the performance the MCMC procedure and Gibbs sampling convergence
in generating posterior samples, we compute some diagnostics measures such as Gelman-
Rubin, Geweke and Raftery-Lewis (see Lee, Kim, and Lee (2014)) in Table 8. The Gelman-
Rubin diagnostic for both parameters α and θ is equal to 1. The Geweke’s test statistics
for these parameters are −0.181 and −0.934, respectively. Moreover, the reported diagnostic
statistics for parameters α and θ based on the Raftery-Lewis method doesn’t show significant
correlations between estimates. The corresponding plots for diagnostics measures Gelman-
Rubin and Geweke’s test statistics are displayed in Figures 9 and 10, respectively. These plots
show that the chain is acceptable and the estimated values have good mixing.

Table 8: Diagnostics measures

Parameter Gelman-Rubin Geweke (Z0.025 = ±1.96) Raftery-Lewis
α 1 -0.181 2.931
θ 1 -0.934 2.810
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Figure 9: Gelman plot diagnostic for the each parameter of PML distribution based on
failure of fatigue fracture data set



Austrian Journal of Statistics 91

1000 1500 2000 2500 3000 3500

−
2

−
1

0
1

2

First iteration in segment

Z
−

s
c
o

re

alpha (chain1)

1000 1500 2000 2500 3000 3500

−
2

−
1

0
1

2

First iteration in segment

Z
−

s
c
o

re

deviance (chain1)

1000 1500 2000 2500 3000 3500

−
2

−
1

0
1

2

Z
−

s
c
o

re

theta (chain1)

1000 1500 2000 2500 3000 3500

−
2

−
1

0
1

2

Z
−

s
c
o

re

alpha (chain2)

Figure 10: Geweke plot diagnostic (chain1 and chain2) for the each parameter of PML dis-
tribution based on the failure of fatigue fracture data set

6.2. Data modeling with covariate variables: heart transplant data set

In this application, we assess the performance of LPML regression model using heart trans-
plant data set which is available in survival package of R software. Next, we present results
by fitting the regression model

yi = τ0 + τ1xi1 + τ2xi2 + τ2xi3 + σzi

where yi is distributed as LPML distribution and the covariate variables xi1, xi2 and xi3 are
associated to the heart transplant data and described as:

• xi1 = age at acceptance;

• xi2 = previous surgery (surgery coded as 1 = yes; 0 = no);

• xi3 = transplant (coded as 1 = yes; 0 = no).

Parameter estimation

Here, we fit the LPML regression model to the current data by MLE method and compare the
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results with log-Weibull and log-exponential Pareto distributions. The estimated parameters,
standard errors (SEs), confidence intervals (CIs) as well as corresponding p-values are listed
in Table 9. From this results, we conclude that the estimated regression parameters are
statistically significant at 5% level.

Table 9: Numerical results for the fitted regression model to the heart transplant data with
corresponding SEs (given in parentheses), P-values in [.] and the statistics AIC and BIC

Model τ0 τ1 τ2 τ3 σ λ

LPML 6.812 -0.078 1.628 2.61828 1.996 –
(0.884) (0.019) (0.640) (0.370) (0.168) –
[0.0411] [0.0363] [0.0358] [0.047]

AIC=349.626 BIC= 362.870

Log-Weibull 7.972 -0.092 1.214 2.537 1.465 –
(0.934) (0.020) (0.647) (0.373) (0.131) –

[< 0.001] [< 0.001] [0.063] [< 0.001]

AIC = 353.4 BIC = 366.6

Log-exponential 5.132 -0.090 1.210 2.538 1.466 0.1439
Pareto (11.3276) (0.0210) (0.647) (0.373) (0.131) (1.1088)

[0.6505] [< 0.001] [0.061] [< 0.001]

AIC = 355.42 BIC = 371.22

Results of residual analysis

The suitability of the fitted LPML regression model is evaluated by residual analysis. The
plot of the modified deviance residuals and its quantile-quantile (Q-Q) plot are displayed in
11 which reveal that the fitted LPML regression model provides good fit to the data used.
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Figure 11: Plots of residual analysis including: (a) Index plot and (b) Q-Q plot
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7. Concluding remarks

In this work, we introduce an extended form of ML distribution called the power modified
Lindley (PML) distribution for which the hazard rate function accommodates the four types
of forms, i.e. constant, increasing, decreasing and unimodal. We obtain some of its math-
ematical/statistical properties including moments, moment generating function, conditional
moment, mean deviation, mean residual life, Bonferroni and Lorenz curves, entropy, stress-
stregth reliability and order statistics. Model parameters are obtained by using maximum
likelihood method and Bayesian approach. In Bayesian approach, we consider independent
gamma priors for the model parameters and five different loss functions (symmetric and asym-
metric loss functions). We also obtained parametric and non-parametric bootstrap confidence
intervals using frequentist approach and compared with Bayes credible intervals. Further, we
propose the new log power modified Lindley regression model and model parameters are es-
timated using maximum likelihood method. One important aspect of this new model is that
it provides better fits than some well-known models using two real data sets. Simulation
results show that Bayes estimate of α based on KLF performs better than their counterparts,
while Bayes estimate of θ based on PLF produces better estimate as compared to other loss
functions. Real data analysis shows the similar trend of results.
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