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Abstract
COVID-19 is a global pandemic declared by WHO. This pandemic requires the execution of planned control strate-
gies, incorporating quarantine, self-isolation, and tracing of asymptomatic cases. Mathematical modeling is one of the
prominent techniques for predicting and controlling the spread of COVID-19. The predictions of earlier proposed
epidemiological models (e.g. SIR, SEIR, SIRD, SEIRD, etc.) are not much accurate due to lack of consideration for
transmission of the epidemic during the latent period. Moreover, it is important to classify infected individuals to
control this pandemic. Therefore, a new mathematical model is proposed to incorporate infected individuals based on
whether they have symptoms or not. This model forecasts the number of cases more accurately, which may help in
better planning of control strategies. The model consists of eight compartments: susceptible (S), exposed (E), infected
(I), asymptomatic (A), quarantined (Q), recovered (R), deaths (D), and insusceptible (T), accumulatively named as
SEIAQRDT. This model is employed to predict the pandemic results for India and its majorly affected states. The
estimated number of cases using the SEIAQRDT model is compared with SIRD, SEIR, and LSTM models. The
relative error square analysis is used to verify the accuracy of the proposed model. The simulation is done on real
datasets and results show the effectiveness of the proposed approach. These results may help the government and
individuals to make the planning in this pandemic situation.
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1 Introduction

Many times, in the past, human pandemics and epidemics
have destroyed humankind, usually, these pandemics have
made many changes in the living of humankind. Similarly,
due to the novel coronavirus, the whole world is again

facing the deadly experience which affects human lives
the most [1]. WHO declared the COVID-19 as an interna-
tional pandemic on March 11, 2020 [2]. According to
WHO, the continuing pandemic of novel coronavirus has
asserted 5,31,806 deaths and 11,301,850 confirmed cases
in the world, as of July 6, 2020 [2]. In India, 7,00,728
confirmed cases, and 19,721 deaths have been reported till
July 6, 2020 [3]. The government of India also accepted it
as pandemic and imposed a nation-wide lockdown on
March 23, 2020. Almost the entire nation has been locked
down and different preventative measures, like sanitization
of containment zones, identifying close contacts,
quarantining infected individuals, encouraging social con-
sensus on individual-protection such as wearing a face-
mask, using hand-sanitizer, and washing hands regularly,
etc. have been employed. Although, the cases of novel
coronavirus are continuing and the number of daily con-
firmed cases is making a new record.

COVID-19 has been showing unusual characteristics in
comparison to earlier coronavirus (i.e., the SARS-CoV and
MERS-CoV) epidemic [4]. A considerable number of
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transmissions of COVID-19 is observed via human-to-human
contact with individuals having no symptoms or the mild
symptom of the disease [5]. The Immense viral capacity of
SARS-Cov-2 was observed within the upper respiratory sys-
tem of patients with mild symptoms or without symptoms [6].
Therefore, the subclinical infectionmay play an important part
in maintaining the epidemic. Mathematical modeling is one of
the prominent techniques for predicting and controlling the
spread of coronavirus [7–10]. The popular SIR model [11]
characterized the spread of infection using susceptible, infect-
ed, and removed compartments. Generally, new factors are
incorporated in the SIR model to obtain more relevant infor-
mation is a common practice. Therefore, several mathematical
models have been introduced by improving the SIR model to
capture the dynamics of COVID-19. Lin et al. [12] developed
a conceptual SEIR model which includes factors like individ-
ual reaction and government activity. Giordano et al. [4] de-
veloped the SIDARTHE model which incorporates undetect-
ed and detected infected individuals. Prem et al. [13] studied
the impact of control strategies through the SEIR model. Peng
et al. [14] developed a generalized SEIR model that covered
the transmission of COVID-19 in the latent period. The novel
coronavirus tends to transmit from human-to-human within
the latent period [15]. Till today, no proper vaccine or treat-
ment is available for the disease. Hence, the best way to con-
trol the spread of the pandemic is the prediction of the number
of infected cases that benefit the authorities in better planning
of control strategies. Commonly used models like SIR
[16–18], SEIR [18], and SEIJR [19] are not appropriate to
predict the impact of the epidemic because they include a
limited number of factors and ignored some important factors
like asymptomatic cases, quarantined cases, etc. Moreover,
recurrent neural networks (RNN), such as long-short term
memory (LSTM), models are generally focused on the num-
ber of infectious. The main drawback of the LSTM based
models is that these models do not consider the effect of
quarantined cases, asymptomatic cases, protected population,
etc. Therefore, it motivates us to propose a model that in-
cludes the ignored factors to estimate the number of infect-
ed cases accurately. The high number of asymptomatic
cases have been reported in India. So, it is important to
incorporate asymptomatic cases in the mathematical model.
In this paper, we proposed a new mathematical model
(SEIAQRDT) by extending the generalized SEIR model
given by Peng et al. [14] for India and its highly affected
states. The proposed eight compartmental model incorpo-
rates factors such as susceptible, exposed, infected, asymp-
tomatic, quarantined, recovered, dead, and insusceptible. In
this model, asymptomatic and symptomatic patients are
treated differently. The nation-wide lockdown and compul-
sion on wearing of face-mask to get an accurate prediction
are also considered. The simulation results offered by the
proposed model are very close to the actual data as

compared to other models. This paper divided into 5 sec-
tions. Section 1 gives an introduction. A brief overview of
the related works is given in Section 2. In Section 3, we
discuss the newly proposed mathematical model and its
parameter values. In Section 4, the simulation results and
discussion for India and its majorly affected states are pre-
sented. The performance of the proposed model is com-
pared with three different models (SIRD, SEIR, and
LSTM models) for different countries. Section 5 gives the
conclusion and possible future works.

2 Literature Review

In this section, currently available epidemiological models
for prediction of coronavirus (COVID-19) are briefly
discussed. These models help to estimate the number of
COVID-19 patients. Some of the popular mathematical
models (e.g. SIR, SEIR, SEIJR, SEIAR, and SEIRD) are
widely used to estimate the future outbreak of communi-
cable diseases.

Zareie et al. [20] applied the SIR model to the prediction
of coronavirus spread in Iran based on China parameters.
Zhang et al. [21] proposed the SEIR model which illus-
trates the relation among susceptible, exposed, infectious,
and recovered individuals. It is the widely used model that
predicted the outbreak of coronavirus in China as well as in
other countries. Fan et al. [22], Geng et al. [23] and Zhou
et al. [24] used this model for the prediction of the outbreak
of the coronavirus in China. This model accepts a limited
amount of actual data and offers a correct prediction for the
small period but the prediction for a long period is not
much accurate. Yang et al. [25] proposed the modified
SEIR model by introducing the two new parameters
move-in and move-out for the inflow and outflow of sus-
ceptible individuals respectively. The basic structure of the
different compartmental models for the prediction of in-
fected cases is shown in Fig. 1. Lin et al. [12] discussed
the conceptual SEIR model by incorporating the factors
government action and public perception. Read et al. [26]
proposed the extended version of the SEIR model.

It includes one more factor asymptomatic individual
during the incubation period in the SEIR model. It pre-
cisely segregates an isolated individual from the other
populations. However, it is difficult to collect precise data
for individuals which makes it difficult to get the best-fit
parameters. Hence, the long-term forecasting is distant
from the real data. The major difference between the
SEIJR and the SEIAR is that isolated individuals are re-
placed with asymptomatic individuals. Bai et al. [27] ap-
plied this model and show similar properties to the SEIJR
model. Additionally, this model deals with the zoonotic
force of pneumonia and daily new infected cases. This
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model is applied by Wu et al. [28] and its simulation is
very accurate to pandemic’s actual data at the starting
stage.

The models discussed above have their specific proper-
ties. However, no one is perfect for long-range forecasting
because of the number of parameters and model accuracy.
Therefore, one more parameter i.e. the dead individual has
been introduced by Huang et al. [29] in the SEIAR model
to improve the accuracy of the model for long-term pre-
diction. They also include two new factors, i.e., time of
isolation initiation and intensity of isolation that the gov-
ernment has taken. The accuracy of this model is also
better than the previously discussed models. Some artifi-
cial intelligence models are also applied to estimate the
number of infected cases of coronavirus [30, 31]. Pathan
et al. [32] applied the recurrent neural network-based
LSTM model to predict the time-series of COVID-19
through mutation rate analysis. Kirbas et al. [33] predicted
the total number of cases of Denmark, Belgium, Germany,
France, United Kingdom, Finland, Switzerland, and
Turkey with the help of the LSTM model. Jana et al.
[34] studied the COVID-19 dynamics transmission for
the USA and Italy with the help of the convolution
LSTM model. Arora et al. [35] applied deep LSTM,
convolutional LSTM, and Bi-directional LSTM to predict
the confirmed cases for India and performed the compar-
ative analysis for these models. LSTM models are gener-
ally focused on the number of infectious. The main draw-
back of the LSTM based models is that these models do
not consider the effect of quarantined cases, asymptomatic

cases, protected population, etc. These factors are essential
to study the impact of COVID-19.

3 Model Formulation

In this section, we present a new mathematical model for the
prediction of the number of coronavirus cases. In this model,
we consider asymptomatic and quarantine as a separate com-
partment. The basic reproduction number and stability analy-
sis is also discussed.

3.1 Generalized SEIR model with asymptomatic cases

To describe the pandemic of a novel coronavirus in India and
its states, eight compartmental mathematical model, namely
SEIAQRDT, is proposed. In this model, S(t) represents the
susceptible population at time t, E(t) represents the exposed
population (population those are infected but do not infect
others within the latent period), I(t) represents the infectious
(symptomatic) population (that have the scope to infect others
and still not quarantined), A(t) represents infectious
(asymptomatic) population (that have scope to infect others,
but have no symptoms of the disease), Q(t) represents the
quarantined population (the confirmed population that is in-
fectious), R(t) represents the recovered population,D(t) repre-
sents the death population, and T(t) represents the protected
population. The systematic compartmental diagram is shown
in Fig. 2.

Susceptible Exposed Infectious Recovered

SEIR Model

RecoveredSusceptible Exposed Infectious Isolated

SEIJR Model

Susceptible Exposed Infectious RecoveredAsymptomatic

SEIAR Model

Susceptible Exposed Infectious Recovered

Dead

SEIRD Model

Fig. 1 4 different compartmental models for the prediction of the total number of infected cases
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The system of differential equations which describe the
COVID-19 epidemic in India and its states are as follows:

dS tð Þ
dt

¼ −
βS tð Þ I tð Þ þ q A tð Þð Þð Þ

N
−αS tð Þ

dE tð Þ
dt

¼ βS tð Þ I tð Þ þ q A tð Þð Þð Þ
N

−ηE tð Þ
dI tð Þ
dt

¼ pηE tð Þ−γI tð Þ
dA tð Þ
dt

¼ 1−pð ÞηE tð Þ−γI tð Þ
dQ tð Þ
dt

¼ γ I tð Þ þ A tð Þð Þ−λ tð ÞQ tð Þ−κ tð ÞQ tð Þ
dR tð Þ
dt

¼ λ tð ÞQ tð Þ
dD tð Þ
dt

¼ κ tð ÞQ tð Þ
dT tð Þ
dt

¼ αS tð Þ

ð1Þ

with initial conditions S(0) > 0, E(0) ≥ 0, I(0) > 0, Q(0) ≥ 0,
R ≥ 0, D ≥ 0, T ≥ 0.

The total population of a particular region is assumed to be
constant, which is represented by N = S + E + I +Q + R +D +
T.

Fig. 2 Compartmental diagram for SEIAQRDT model

Parameters and their definition

Symbol Definition

α Protection rate

β Infection rate

N Total population

η Inverse of the average latent time

Probability of symptomatic infectious

γ Quarantine rate

λ(t) Recovery rate (time-dependent)

κ(t) Mortality rate (time-dependent)

Where β is the transmission rate for infectious
(symptomatic) individuals and qβ is transmission rate for
asymptomatic individuals (qβ < β, i. e. , q < 1). α is the protec-
tion rate (it includes the effect of control measures). (1 − p) is
the probability of asymptomatic infectious. To consider the dy-
namics of the proposed model, the recovery rate λ(t) and the
mortality rate κ(t) are considered as a time-dependent function.

3.2 Basic Reproduction Number

The reproduction number is one of the prominent states in the
investigation of contagious disease. It helps in deciding that
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the diseases disappear or it will continue with the time.
Generally, it is illustrated by R0, which provides the number
of secondary cases. The Original infectious person can trans-
mit disease in a population where each individual is suscepti-
ble. If R0 > 1 disease will remain in the population and if R0 <
1 disease is under control and it will die out. Therefore, in the
case of the COVID-19 pandemic, there is a need to plan an
effective strategy to make the reproduction number smaller
than one [1, 8, 36, 37].

For system (1), a disease-free equilibrium point exists
which is denoted by e0. Where S =N (1 −α) and E = I = A =
Q = R =D = 0. As α is the protection rate through which peo-
ple are protected and therefore the susceptible population is
calculated as S =N(1 −α). Thus, R0 is computed mathemati-
cally, and to calculate the reproduction number, we employ
the next generation matrix method [8]. The reproduction num-
ber for the proposed system is calculated using
equation R0 = ρ(FV−1), where ρ represents the spectral radius
of the matrix FV−1 [17]. With

Fje0 ¼
0 β 1−αð Þ βq 1−αð Þ
0 0 0
0 0 0

2
4

3
5

and

V je0 ¼
η 0 0
pη −γ 0

1−pð Þη 0 −γ

2
4

3
5

Hence, the reproduction number is

R0 ¼ ρ FV−1� � ¼ pβ 1−αð Þ
γ

þ βq γη−pγηð Þ 1−αð Þ
γ2η

¼ β pþ q−pqð Þ 1−αð Þ
γ

ð2Þ

Theorem 1. If R0 < 1, the disease-free equilibrium is local-
ly asymptotically stable, and if R0 > 1, then the disease-free
equilibrium is unstable and a pandemic exists in the
population [11].

3.3 Stability analysis of disease-free equilibrium

The Jacobian matrix for the model (1) at the disease-free equi-
librium point is

−α 0 −β 1−αð Þ −βq 1−αð Þ 0 0 0 0
0 −η 0 0 0 0 0 0
0 pη −γ 0 0 0 0 0
0 1−pð Þη 0 −γ 0 0 0 0
0 0 γ γ −λ tð Þ−κ tð Þ 0 0 0
0 0 0 λ tð Þ λ tð Þ 0 0 0
0 0 0 κ tð Þ κ tð Þ 0 0 0
α 0 0 0 0 0 0 0

2
66666666664

3
77777777775

The characteristic equation for the matrix J is:

Ch Jð Þ ¼ a0x8 þ a1x7 þ a2x6 þ a3x5 þ a4x4 þ a5x3

þ a6x2 þ a7xþ a8 ð3Þ

Fig. 3 Prediction and comparison
in India till July 12, 2020
Cumulative (confirmed cases,
recovered, deaths, quarantined
and asymptomatic infectious with
real data)

Table 1 Best-fitted Parameter values for India

α β p q γ η λ(1) λ(2) κ(1) κ(2)

0.0043 1.4007 0.4 0.05 0.5393 0.8115 0.0217 0.0101 0.0029 0.0013
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Fig. 4 Prediction and comparison
in India for long-term Cumulative
(confirmed cases, recovered,
deaths, quarantined and asymp-
tomatic infectious with real-data)

Fig. 5 Prediction in India (a)
Cumulative cases in India in the
first week of October (b) Bar
diagram for daily new cases in
India

SEIAQRDT model for the spread of novel coronavirus (COVID-19): A case study in India 2823



where

a0 ¼ 1; a1 ¼ αþ γ þ 2δ þ κþ λ

a2 ¼ αγ þ 2αδ þ 2γδþ δ2 þ ακþ γκþ 2δκ

þ…αλþ γλþ 2δλ

a3 ¼ 2αγδ þ αδ2 þ γδ2 þ αγκþ 2αδκþ 2γδκ

þ δ2κþ αγλþ 2αδλþ 2γδλþ δ2λ

a4 ¼ αγδ2 þ 2αγδκþ αδ2κþ γδ2κþ 2αγδλ

þ αδ2λþ γδ2λ

a5 ¼ αγδ2κþ αγδ2λ; a6 ¼ 0; a7 ¼ 0; a8 ¼ 0

Since one of the eigenvalues of the matrix J is zero. Hence,
the system is singular. Due to this, the stability of the system
(1) near the disease-free equilibrium cannot be concluded
using eigenvalues. However, from theorem 1, the system (1)
is unstable. We obtained R0 > 1 for India and its states.

4 Numerical simulations & discussion

In this section, we present the numerical simulations for India
and its most affected states. The comparison of simulation

results with real data is also made from March 14, 2020 to
July 03, 2020. The real data of India, Maharashtra, Tamil
Nadu, Gujarat, and Delhi [3] is used for comparison. We also
compare the results of the proposed model with other state-of-
the-art works reported by different authors [25, 31, 38, 39].

4.1 India

The model fitting of cumulative cases in India reported till
July 03, 2020 shows a satisfactory estimation. The model also
shows the fitting of recovered and death cases. The number of
quarantined cases is also considered as active cases. The total
active cases are the sum-up of quarantined, hospitalized, and
self-isolation cases which are also fitted in our model. In ad-
dition to quarantined cases, asymptomatic cases are also in-
corporated. The data for fitting is examined from the second
week of March. The evolution of the total number of cases,
deaths, recovered and quarantined cases have been tracked
very closely with the data up to July 03, 2020. The model
predicts the peak of the daily number of cases in the first or
second week of September with an estimation error may be
less than 5%. The recent situation includes protective mea-
sures like nation-wide lockdown, wearing of face-mask, and
identification of containment zones. Hence, it is observed that
the number of cases is much higher if these restrictions were
not imposed. Around 2.4 million cumulative cases are

Fig. 6 Prediction and comparison
in Maharashtra till July 12, 2020
Cumulative (confirmed cases,
recovered, deaths, quarantined
and asymptomatic infectious with
real data)

Table 2 Best-fitted Parameter values for Maharashtra (India)

α β p q γ η λ(1) λ(2) κ(1) κ(2)

0.0081 1.556 0.4 0.05 0.4832 0.7277 0.022 0.0066 0.0032 0.00013
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approximated till the second last week of August whereas 1.85
million people will be recovered from COVID-19 and around

0.06 million deaths are estimated in India by the second last
week of August. The number of asymptomatic cases is

Fig. 7 Prediction and comparison
in Maharashtra for long-term
Cumulative (confirmed cases, re-
covered, deaths, quarantined and
asymptomatic infectious with real
data)

Fig. 8 Prediction in Maharashtra
(a) Cumulative cases in
Maharashtra in the first week of
October (b) Bar diagram for daily
new cases in Maharashtra
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approximated around 0.09 million based on the assumption
that the probability of transmission of asymptomatic infec-
tious is lower than symptomatic patients, whereas the recov-
ery rate is assumed the same for both the cases. In the pro-
posed model, recovery rate and mortality rate for India and its
states are given as follows.

κ tð Þ ¼ κ 1ð Þ*e −κ 2ð Þtf g

λ tð Þ ¼ λ 1ð Þ*eλ 2ð Þt

All the parameters are fi t ted with the help of
LSQCURVEFIT function in MATLAB. The error is mini-
mized using minsum(FUN(X, XDATA) − YDATA). ^ 2 formu-
la. The function FUN takes X and XDATA as inputs and
returns a vector (or matrix) of function values FUN(X,
XDATA) where FUN and YDATA (observed output) are of
the same size. The function X = LSQCURVEFIT(FUN, X0,

XDATA, YDATA, LB, UB, OPTIONS) is used to optimize
the parameters [40]. The function X starts at X0 = [tpop −
Q(1) − R(1) − D(1) − E0 − I0 − A0, E0, I0, Q(1), R(1), D(1)]
where tpop represents the total population. The terms Q(1),
R(1), D(1), Io, and A0 represent the number of active, recov-
ered, death, confirmed, and asymptomatic cases reported on
March 14, 2020, respectively. It is assumed that initially there
are no asymptomatic patients i.e. A0 = 0 and the number of
exposed cases is equal to the number of infected cases. For
the simulation results of the proposed model, options are con-
sidered as follows:

• p. addoptional(‘tolX’, 1e−5) is option for optimset. It sets
the tolerance for X to 10−5.

• p. addoptional(‘tolFUN’, 1e−5) is option for optimset. It
also sets the tolerance for FUN to 10−5.

• p. addoptional(′dt′, 0.1) is option for optimset. It sets the
time step for fitting to 0.1.

options ¼ optimset 0TolX
0
; tolX ;

0
TolFun

0
; tolFun; :::

0
MaxFunEvals

0
; 1200;

0
Display

0
;Display

� �
:

The fitted parameters for India are given in Table 1.
In Fig. 3, C represents the total number of cases, Q rep-

resents the total quarantined cases, R represents the total
recovered, D represents the total deaths, and A represents

estimated total asymptomatic cases from the SEIAQRDT
model. The total number of cases in India initiating from
March 14, 2020 to July 12, 2020 is shown in Fig. 3. The
total number of cases observed in the second week of July is

Fig. 9 Prediction and comparison
in Tamil Nadu till July 12,2020
Cumulative (confirmed cases,
recovered, deaths, quarantined
and asymptomatic infectious with
real data)

Table 3 Best-fitted Parameter values for Tamil Nadu (India)

α β p q γ η λ(1) λ(2) κ(1) κ(2)

0.0058 1.6761 0.4 0.05 0.5264 0.9999 0.0601 2.377*10−14 0.0026 0.0099
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around 0.86 million whereas 0.57 million recovered.
Asymptomatic cases are observed at around 0.045 million.
In the current situation R0 =1.1121 which is greater than
one. It indicates that the epidemic exists and will remain

in the population. The long-term prediction in India is
shown in Fig. 4. With the help of the fitted parameters,
the cumulative number of confirmed cases, quarantined
cases, recovered and death cases are estimated.

Fig. 10 Prediction and
comparison in Tamil Nadu for
long-term Cumulative (confirmed
cases, recovered, deaths,
quarantined and asymptomatic
infectious with real data)

Fig. 11 Prediction in Tamil Nadu
(a) Cumulative cases in Tamil
Nadu in the first week of October
(b) Bar diagram for daily new
cases in Tamil Nadu
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In Fig. 5(a), it is observed that the curve for cumulative
cases starts to flatten at the end of October. In Fig. 5(b),
daily-reported cases in India are shown in the bar dia-
gram. The peak of the number of cases in India is ob-
served in the first or second week of September. It is also
noticed in Fig. 5(b) that around 23% of cases will be
removed from the population in the second or third week
of October.

4.2 Maharashtra

Maharashtra is the most affected state from COVID-19 in
India from the beginning. Hence, it is very important to dis-
cuss the scenario of the state. The estimation of the cumulative
number of cases, deaths, recovered, and quarantined cases are
forecasted with data up to July 03, 2020. The model predicts
the peak of the daily number of cases in the last week of July
or the first week of August. Around 0.496 million cumulative
cases are approximated at the second last August whereas 0.36
million people will be recovered from COVID-19 in the sec-
ond last week of August and around 0.024 million deaths are
estimated by the second last week of August in the recent
circumstances. The number of asymptomatic cases is approx-
imately 0.015 million. In this case, R0 = 1.3733which is larger

than one. It indicates that the epidemic exists and will remain
in the population. The fitted parameters for Maharashtra are
shown in Table 2. The recovery and mortality rates are time-
dependent functions which are the same as λ(t) and κ(t),
respectively.

In Fig. 6, the total number of cases inMaharashtra initiating
from March 14, 2020 to July 12, 2020 is shown. The total
number of cases observed at the end of the second week of
July is around 0.24 million whereas 0.14 million recovered.
Asymptomatic cases are observed at around 0.0105 million.
Figure 7 shows the long-term forecast. With the help of the
fitted parameter, the cumulative number of confirmed infec-
tious cases, quarantined cases, recovered and death cases are
estimated.

In Fig. 8(a), it is observed that the curve for cumulative
cases starts to flatten at the end of October or the starting of
November. In Fig. 8(b), daily-reported cases in Maharashtra
are shown in the bar diagram. The model predicts the peak of
the daily number of cases in the last week of July or the initial
week of August. Around 90% of cases will be removed from
the total population at the end of October.

4.3 Tamil Nadu

In the initial stage of COVID-19 in India, the number of cases
was less in Tamil Nadu, but presently it is the second most
affected state. Nowadays, the daily count has reached near to
7000. Due to this, it is important to consider cases in Tamil
Nadu separately. The estimation of the cumulative number of
cases, deaths, recovered, and quarantined cases are forecasted
with data up to July 03, 2020. The model predicts the peak of
the daily number of cases in the first or second week of
August. Around 0.42 million cumulative cases are observed

Fig. 12 Prediction and
Comparison in Gujarat till July 12
Cumulative (confirmed cases,
recovered, deaths, quarantined
and asymptomatic infectious with
real data)

Table 4 Best-fitted Parameter values for Gujarat (India)

α β η p q γ

0.0731 1.4676 0.1916 0.09 0.508 0.5649

λ(1) λ(2) λ(3) κ(1) κ(2) κ(3)

0.4946 0.0588 86.4685 0.0054 0.3109 1.9229*10−4

Kumari et al.2828



in the second last week of August whereas 0.296 million peo-
ple will be recovered from COVID-19 in the second last week
of August and around 0.0038 million deaths may be reported

till the second last week of August in the current scenario. The
number of asymptomatic cases is approximately 0.017 mil-
lion. R0 = 1.361 is calculated for Tamil Nadu which is more

Fig. 13 Prediction and
Comparison in Gujarat for long-
term Cumulative (confirmed
cases, recovered, deaths,
quarantined and asymptomatic
infectious with real data)

Fig. 14 Prediction in Gujarat (a)
Cumulative cases in Gujarat till
the first week of October (b) Bar
diagram for daily new cases in
Gujarat
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than one. Therefore, the epidemic will exist in the population
for a smaller period. The fitted parameters for simulation are
taken from Table 3.

The total number of cases in Tamil Nadu starting from
March 14, 2020 to July 03, 2020 is shown in Fig. 9. The total
number of cases observed in the secondweek of July is around
0.142 mil l ion whereas 0.087 mil l ion recovered.
Asymptomatic cases are observed at around 0.0085 million.
In Fig. 10, long-term prediction in Tamil Nadu is shown.With
the help of the fitted parameter, the cumulative number of
confirmed infectious cases, quarantined cases, recovered and
death cases are estimated.

In Fig. 11(a), it is observed that the curve for cumulative
cases starts to flatten in the last week of October or the first
week of November. In Fig. 11(b), daily-reported cases in
Tamil Nadu are shown in the bar diagram. The model predicts
the peak of the daily number of cases in the second or third
week of August. Around 90% of cases will be removed from
the total population at the end of October.

4.4 Gujarat

In the initial stage of COVID-19 in India, the number of cases
is less in Gujarat. Gujarat reaches the third position in the list
of most affected states which crosses the 0.01 million number
of cases. The estimation of the cumulative number of cases,
deaths, recovered, and quarantined cases are predicted with
data up to July 03, 2020. The model predicts that the daily
number of cases reported gets constant from the second week

of July. Around 0.062 million cumulative cases are observed
at the second last week of August whereas 0.053 million peo-
ple will be recovered from COVID-19 s last week of August
and around 0.0048 million deaths are estimated in Gujarat by
the second last week of August in the current scenario includ-
ing all the preventive measures that are imposed. The number
of asymptomatic cases is approximately 0.0028 million. The
fitted parameters for the model are given in Table 4. The
recovery and mortality rate for Gujarat is different from other
states. The time-dependent recovery and death rate are taken
from Eq. (2).

λ tð Þ ¼ λ 1ð Þ= 1þ exp −λ 2ð Þ* t−λ 3ð Þð Þð Þð Þ

κ tð Þ ¼ λ 1ð Þ þ exp −λ 2ð Þ* t þ λ 3ð Þð Þð Þ ð4Þ
where λ(1), λ (2), λ (3), κ(1), κ(2) and κ(3) are fitted
coefficient.

In Fig. 12, the total number of cases in Gujarat starting
from March 21, 2020 to July 12, 2020 is shown. The total
number of cases in the second week of July is estimated at
around 0.039 million whereas 0.031 million will be recovered
in the second week of July. Asymptomatic cases are observed
at around 0.0023 million. In Fig. 13, long-term prediction is
shown. With the help of the fitted parameter, the cumulative
number of confirmed infectious, quarantined, recovered, and
death cases are estimated.

In Fig. 14(a), it is observed that the curve for cumulative
cases does not start to flatten at the first end of October. In
Fig. 14(b) daily-reported cases are shown in the bar diagram.

Fig. 15 Prediction and
comparison in Delhi till July 12
Cumulative (confirmed cases,
recovered, deaths, quarantined
and asymptomatic infectious with
real data)

Table 5 Best-fitted Parameter values for Delhi (India)

α β p q γ η λ(1) λ(2) κ(1) κ(2)

0.0071 1.0013 0.4 0.05 0.1805 0.2193 0.0027 0.0355 0.0035 9.549
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It is observed that the daily new cases in Gujarat get constant
from the second week of July.

4.5 Delhi

In the initial stage of COVID-19 in India, the number of
cases is quite high in Delhi. The model predicts the peak
of the daily number of cases at the end of September.
Around 0.46 million cumulative cases are observed at
the second last week of August whereas 0.44 million peo-
ple will be recovered from COVID-19 at the second last
week of August and around 0.007 million deaths are es-
timated by the second last week of August in the current
scenario including all the preventive measures that are

imposed. The number of asymptomatic cases is approxi-
mated to 0.05 million. In this case, R0 = 2.3678 which is
greater than one. Hence, the cases for novel coronavirus
will remain in the population. The fitted parameters for
the model are shown in Table 5.

In Fig. 15, the total number of cases in Delhi starting
from March 14, 2020 to July 12, 2020 is shown. The total
number of cases is recorded at the end of July is around
0.145 million whereas 0.115 million will be recovered.
Asymptomatic cases are observed at around 0.024 mil-
lion. In Fig. 16, long-term prediction in Delhi is shown.
With the help of the fitted parameter, the cumulative num-
ber of confirmed infectious, quarantined, recovered and
death cases are estimated.

Fig. 16 Prediction and
Comparison in Delhi for long-
term Cumulative (confirmed
cases, recovered, deaths,
quarantined and asymptomatic
infectious with real data)

Table 6 Relative error between real and estimated cases of India, Maharashtra, Tamil Nadu, Gujarat, and Delhi

India Date Mar 21 Apr 04 Apr 18 May 02 May 16 May 30 June 13 June 27 July 11
Total cases (predicated) 338 3648 15,652 40,545 90,668 181,910 321,710 529,592 841,029
Total cases (Real -data) [3] 334 3684 15,725 39,826 90,648 181,860 321,638 529,590 850,361
Relative Error (%) 1.2 0.98 0.47 1.81 0.03 0.022 0.0002 0.0004 1.097

MH Total cases (predicated) 64 638 3663 12,381 30,752 65,172 105,821 161,850 243,083

Total cases (Real -data) [3] 64 635 3648 12,296 30,706 65,168 104,568 159,133 246,600

Relative Error (%) 0 0.48 0.42 0.7 0.15 0.006 1.198 1.71 1.44

TN Total cases (predicated) 6 474 1354 2801 10,695 21,190 43,472 80,266 136,663

Total cases (Real -data) [3] 6 485 1372 2757 10,585 21,184 42,687 78,835 134,226

Relative Error (%) 0 2.27 1.32 1.6 1.04 0.028 1.84 1.82 1.82

GJ Total cases (predicated) 14 107 1368 4818 10,567 16,130 22,852 30,553 39,951

Total cases (Real -data) [3] 14 108 1376 4824 10,759 16,126 22,849 30,543 41,027

Relative Error (%) 0 0.93 0.59 0.13 1.79 0.025 0.013 0.033 2.62

DL Total cases (predicated) 27 439 1863 4202 9303 18,552 39,000 80,208 113,068

Total cases (Real -data) [3] 27 445 1893 4122 9333 18,549 38,958 80,188 110,921

Relative Error (%) 0 1.35 1.59 1.95 0.33 0.016 0.11 0.025 1.94
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Fig. 17 Prediction in Delhi (a)
Cumulative cases in Delhi in the
first week of October (b) Bar
diagram for daily new cases in
Delhi

Table 7 Relative error between the estimated cases using SIRD model [39] and the real data of China [42]

Date Real Infected
(China)

SIRD Model
(China)

Relative error
percentage (SIRD)

SEIAQRDT Model
(China)

Relative error
percentage (SEIAQRDT)

Feb 16, 20 57,992 53,955 6.97 56,084 3.36

Feb 17, 20 58,108 54,388 6.41 56,206 3.28

Feb 18, 20 58,002 54,040 6.84 56,037 3.39

Feb 19, 20 56,541 53,813 4.83 55,996 0.97

Feb 20, 20 54,825 52,785 3.73 54,792 0.07

Feb 21, 20 54,608 52,186 4.44 54,459 0.28

Feb 22, 20 51,859 50,686 2.27 51,856 0.01

Feb 23, 20 51,390 50,044 2.62 51,334 0.11

Feb 24, 20 49,631 48,966 1.34 49,445 0.38

Feb 25, 20 47,413 47,041 0.79 47,366 0.1

Feb 26, 20 45,365 44,045 2.91 45,371 0.02

Feb 27, 20 42,924 41,594 3.1 42,822 0.24

Feb 28, 20 39,809 39,956 0.37 39,721 0.23

Feb 29, 20 37,199 38,489 3.47 37,077 0.33

Mar 1, 20 34,898 38,311 9.78 34,929 0.09

Average Relative Error 3.99 0.86
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In Fig. 17(a), it is observed that the curve for cumula-
tive cases starts to flatten at the end of October. In
Fig. 17(b), daily-reported cases in Delhi are shown in
the bar diagram. The peak of the number of cases in
Delhi will be observed at the end of August. Around
63% of cases will be removed from the total population
at the end of October. Table 6 shows the relative error
between the actual data and the data obtained from the
proposed model. The relative error (%) for India varies
from 0.02 to 1.81 and the average relative error is only
0.699%. Moreover, the state’s relative error varies from 0
to 2.45 and the average relative error for states is 0.869%.
Hence, the average relative error for the SEIAQRDT
model is less than 1% for India and its states.

The simulation results of the proposed (SEIAQRDT) mod-
el and the SIRD model are compared with the real data of
China. The estimated values of infected cases for China using
SIRD are taken from [39] for comparison purposes. The data
thief software [41] is used to extract the data from the figure.
Table 7 shows China’s real infected cases (reported), infected
cases estimated using the SIRD model with relative error, and
infected cases estimated using SEIAQRDT model with rela-
tive error for the period from Feb 16 to March 1. The relative
error for the proposed model varies from 0.01 to 3.39 and the
average relative error is 0.86%, whereas the relative error for
the SIRD model varies from 0.37 to 9.78 and the average
relative error is 3.99%.

Figure 18 shows the comparison between the real in-
fected cases, estimated infected cases with SEIAQRDT

Fig. 18 Comparison between the
real infected cases [42], estimated
infected cases with SEIAQRDT
model and estimated infected
cases with the SIRD model [39]
for China

Table 8 Relative error between the estimated cases using LSTM model [38] and the real data of Canada [43]

Date Real Infected
(Canada)

LSTM
(Canada)

Relative error percentage
(LSTM)

SEIAQRDT
(Canada)

Relative error percentage
(SEIAQRDT)

Apr 14, 20 27,063 26,475 2.1727 26,696 1.356

Apr 15, 20 28,379 27,954 1.4975 28,023 1.2544

Apr 16, 20 30,106 29,342 2.5377 29,754 1.1692

Apr 17, 20 31,927 30,976 2.9786 31,600 1.0242

Apr 18, 20 33,383 32,499 2.648 33,057 0.9765

Apr 19, 20 35,056 34,008 2.9895 34,744 0.89

Apr 20, 20 36,829 35,545 3.4863 36,514 0.8553

Apr 21, 20 38,422 37,079 3.4953 38,111 0.8094

Apr 22, 20 40,190 38,592 3.9761 39,894 0.7365

Apr 23, 20 42,110 40,127 4.709 41,827 0.672

Apr 24, 20 43,888 41,670 5.0537 43,666 0.5058

Apr 25, 20 45,354 43,200 4.7493 45,127 0.5005

Apr 26, 20 46,895 44,716 4.6465 46,729 0.3539

Apr 27, 20 48,500 46,342 4.4494 48,342 0.3257

Apr 28, 20 50,026 47,814 4.4217 49,897 0.2578

Average Relative Error 3.5874 0.7791
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model, and estimated infected cases with SIRD model for
China. In this figure, it can be seen that the estimated
infected cases with SEIAQRDT model are either touching
the real infected cases or very close to real infected cases.
However, the estimated infected cases with SIRD are
away (distant) from the real data points except starting
and ending points. Table 8 shows Canada’s real infected
cases (reported), infected cases est imated using
SEIAQRDT model with relative error, and the infected
cases estimated using LSTM model with relative error
from April 14 to April 28. The relative error for the
SEIAQRDT simulation model varies from 0.2578 to
1.356 and the average relative error is 0.78%, whereas

relative error for the LSTM model varies from 1.4975 to
5.05 and the average relative error is 3.58%.

Figure 19 shows the comparison between SEIAQRDT
model and the LSTM model with real infected cases of
Canada. The real data is represented by the red dots and
the predicted number of total infected cases by LSTMmod-
el is shown by the blue line. The red line represents the total
number of infected cases estimated by the SEIAQRDT
model. In this case, the prediction with SEIAQRDT model
is very close to real data. The average relative error is higher
for the LSTM model as compared to SEIAQRDT. Results
show that the SEIAQRDT model fits the data better than
LSTM model.

Fig. 19 Comparison between the
real infected cases [43], estimated
infected cases with SEIAQRDT
model and estimated infected
cases with LSTM model [38] for
Canada

Table 9 Relative error between the estimated cases using SEIR simulation model [25] and the real data of China [42]

Date Real Infected (China) SEIR (China) Relative error
percentage (SEIR)

SEIAQRDT (China) Relative error
percentage (SEIAQRDT)

Feb 13, 20 52,309 52,850.07 4.5963 52,128 0.3460

Feb 14, 20 56,860 53,912.21 3.7939 54,165 4.7397

Feb 15, 20 57,452 54,811.33 1.0343 55,584 3.2514

Feb 16, 20 57,992 55,791.83 5.1842 56,048 3.3522

Feb 17, 20 58,108 56,283.34 3.1401 56,206 3.2732

Feb 18, 20 58,002 56,856.36 1.9751 56,037 3.3878

Feb 19, 20 56,541 57,510.89 1.7153 55,996 0.9639

Feb 20, 20 54,825 57,676.43 5.2009 54,792 0.0601

Feb 21, 20 54,608 57,698.51 5.6594 54,459 0.2728

Feb 22, 20 51,859 55,714.92 7.4353 51,856 0.0057

Feb 23, 20 51,390 56,371.04 9.6926 51,334 0.1089

Feb 24, 20 49,631 55,068.97 10.9568 49,445 0.3747

Feb 25, 20 47,413 53,821.96 13.5173 47,366 0.0991

Feb 26, 20 45,365 52,610.07 15.9706 45,371 0.0132

Feb 27, 20 42,924 50,398.4 17.4131 42,822 0.2376

Average Relative Error 7.1523 1.3657
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Table 9 shows China’s real infected cases (reported), in-
fected cases estimated using SEIAQRDT model with relative
error, and the infected cases estimated using SEIR model with
relative error for the period from Feb 13 to Feb 27. The rela-
tive error for the SEIAQRDT model varies from 0.0057 to
4.7397, whereas relative error for SEIR model varies from
1.0343 to 17.4131. Figure 20 shows the comparison between
the proposed model and the SEIR model with real infected
cases of China. The average relative error of SEIR model is
7.1523% which is very high as compared to the average error
of the proposed model i.e. 1.3657%. Figure 20 shows that the
SEIAQRDTmodel predicts the total number of infected cases
better than the SEIR model.

Table 10 shows India’s real infected cases (reported),
infected cases estimated using SEIAQRDT model with rel-
ative error, and the infected cases estimated using LSTM

model with relative error for the period from March 26 to
April 09. The relative error for the SEIAQRDT model
varies from 0.2787 to 1.084 and the average relative error
is 0.6915%, whereas the relative error for LSTM model
varies from 0.7733 to 8.62.

Figure 21 shows the comparison between SEIAQRDT
model and the SEIR model with real infected cases of India.
In this case, the average relative error of the LSTM model is
4.4182%, which is higher than the average relative error of the
proposedmodel i.e. 0.6915%. The SEIAQRDTmodel is com-
pared with SIRD, SEIR, and LSTM models for different
country’s data. The LSTM models are mainly focused on
the number of infectious. The main drawback of the LSTM
based models is that these models do not consider the effect of
quarantined cases and asymptomatic cases. In all the cases,
simulation results show that the SEIAQRDT model fits the

Fig. 20 Comparison between the
real infected cases [42], estimated
infected cases with SEIAQRDT
model, and estimated infected
cases with SEIR model [25] for
China

Table 10 Relative error between the estimated cases using LSTM model [31] and the real data of India [3]

Date Real Infected (India) LSTM (India) Relative error
percentage (LSTM)

SEIAQRDT (India) Relative error
percentage (SEIAQRDT)

Mar 26, 20 730 682.9332 6.4475 738 1.084

Mar 27, 20 883 827.8121 6.25 889 0.6749

Mar 28, 20 1019 982.6909 3.5632 1030 1.0679

Mar 29, 20 1139 1147.809 0.7733 1150 0.9565

Mar 30, 20 1326 1347.226 1.6007 1340 1.0447

Mar 31, 20 1635 1587.665 2.8950 1647 0.7285

Apr 01, 20 2059 1918.252 6.8357 2079 0.962

Apr 02, 20 2545 2383.895 6.3302 2570 0.9727

Apr 03, 20 3105 2958.819 4.7079 3120 0.4807

Apr 04, 20 3684 3637.915 1.2509 3700 0.4324

Apr 05, 20 4293 4012 6.5455 4305 0.2787

Apr 06, 20 4777 4676 2.1142 4795 0.3753

Apr 07, 20 5350 5438 1.644 5359 0.1679

Apr 08, 20 5915 6311 6.6948 5948 0.5548

Apr 09, 20 6728 7308 8.62 6768 0.591

Average Relative Error 4.4182 0.6915
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data better than the other models. The reason for this superi-
ority is that the SEIAQRDT model takes suspected, infected
with and without symptoms, recovered, quarantined, death,
and exposed cases, whereas SIRD and SEIR model consid-
ered only four factors.

5 Conclusion

The COVID-19 epidemic is exerting an unusual weight on
social life in many countries, including India. Although
nation-wide lockdown and other preventive majors are im-
posed in India still the number of cases is getting increased.
In this study, we proposed the SEIAQRDT model including
asymptomatic cases for the prediction of COVID-19 disease.
The real data for total cumulative cases, daily infected cases,
total recovered, total deaths, and total quarantined individuals
have been incorporated. The numerical simulations are pre-
sented for India and four major states (Maharashtra, Tamil
Nadu, Gujarat, and Delhi). The estimated number of cases
using the SEIAQRDT model has been compared with SIRD,
SEIR, and LSTM models. The estimated data with
SEIARQDT model is very near to actual data. The relative
error square analysis is used to verify the accuracy of the
proposed model. The proposed model has average relative
error of 0.86% (3.99% with SIRD) and 1.36% (7.15% with
SEIR) for China, 0.69% (3.59% with LSTM) for India and
0.77% (4.42% with LSTM) for Canada. The average relative
error for SEIAQRDTmodel with a higher number of factors is
very less in comparison to the average relative error for the
other models. These results may help to recognize the impact
of coronavirus and to prevent the spread of the virus on a large
scale. In the future, the proposed model can be extended by
introducing additional factors like environmental transmis-
sion, effect of vaccines, treatment strategies, effect of delay,

impact of unlocking, etc. Moreover, the fractional-order de-
rivative can also be applied in the present model.
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