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Abstract: In the past decade, various types of wavelet-based algorithms were proposed, leading
to a key tool in the solution of a number of numerical problems. This work adopts the Chebyshev
wavelets for the numerical solution of several models. A Chebyshev operational matrix is developed,
for selected collocation points, using the fundamental properties. Moreover, the convergence of the
expansion coefficients and an upper estimate for the truncation error are included. The obtained
results for several case studies illustrate the accuracy and reliability of the proposed approach.

Keywords: differential equations; Chebyshev polynomials; wavelets; collocation method

1. Introduction

Several algorithms, such as the finite difference and finite element, as well as spectral
techniques, have been used in the approximation of mathematical models [1–4]. Nowadays,
considerable attention is being paid to distinct types of wavelet methods to improve the
formulation of mathematical models. Wavelets have relevant features such as orthog-
onality, capability of representing functions with different levels of resolution, and the
exact representation of polynomials, just to mention a few. Such properties stimulated
the development of efficient algorithms based on the Haar, Daubechies, and Legendre
wavelets [5,6] that lead to highly stable results [7,8].

The Galerkin and collocation approaches along with wavelets [9–12] were applied in
elasticity problems. For the case of the Haar wavelets, we can mention the work of Lepik et
al. [13]. Some special classes of boundary value problems (BVPs), such as the Lane–Emden
and Bratu’s type equations, were analyzed by Abd-Elhameed et al. [14] using a wavelet
collocation approach. Robertsson and Blanch [15] proposed the Galerkin wavelets as a
numerical tool for handling the solution of partial differential equations (PDEs). Heydari
et al. [16] addressed the telegraph and the second-order hyperbolic differential equations
using Chebyshev wavelets. Vivek and Mehra [17] advanced a wavelet finite difference
approach for solving self-adjoint singularly perturbed boundary value problems. Recently,
Dhawan et al. [18–20] developed a computational scheme based on these methods.

It has been observed from the literature survey that wavelets are basically localized
functions that are capable of producing accurate solutions [21,22]. Thus, the development
of wavelet-based techniques allows a fast and efficient evaluation of the problems under
consideration, while posing a low computational cost [23,24].

Having in mind the properties of wavelet methods, we propose a Chebyshev wavelet
algorithm for solving some types of differential equations. Therefore, the manuscript is
organized as follows: The fundamental definitions and the mathematical concepts required
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by the proposed algorithm are presented in Section 2. The application of the Chebyshev
wavelets for solving the problems under analysis and the corresponding results are dis-
cussed in Section 3. Finally, the main conclusions are summarized in Section 4.

2. Fundamental Definitions and Mathematical Concepts
2.1. Chebyshev and Shifted Chebyshev Polynomials

The Chebyshev polynomials are defined in the interval t ∈ [−1, 1] and are obtained
by expanding the formula [25–27]

Tn(t) = cos(n arccos(t)), n = 0, 1, . . . , t ∈ [−1, 1]. (1)

These polynomials follow recurrence relation

T0(t) = 1, T1(t) = t, Tm+1(t) = 2tTm(t)− Tm−1(t), m = 1, 2, . . . . (2)

The analytic form of a Chebyshev polynomial of degree n is given by

Tn(t) =
[n/2]

∑
i=0

(−1)2n−2i−1 n(n− i− 1)!
i!(n− 2i)!

tn−2i, (3)

and obeys the orthogonality condition

∫ 1

−1
Tn(t)Tm(t)

dt√
1− t2

=


π, n = m = 0,
π/2, n = m 6= 0,
0, n 6= m.

We construct the shifted Chebyshev polynomials through the change of variable
t = 2x− 1. Therefore, the shifted Chebyshev polynomials T̃m(x), x ∈ [0, 1], can be ob-
tained as T̃m(x) = Tm(2x − 1) and we have T̃0(x) = 1, T̃1(x) = 2x − 1, T̃m+1(x) =
2(2x− 1)T̃m(x)− Tm−1(x) for m = 1, 2, . . . . The analytic form of the shifted Chebyshev
polynomial of degree n can be expressed as: T̃n(t) = ∑n

i=0(−1)22n−2i n(2n−i−1)!
i!(2n−2i)! xn−i and

the orthogonality condition is formulated as

∫ 1

0

T̃m(x)T̃n(x)√
1− (2x− 1)2

dx =

{ παm
4 , m = n,

0, m 6= n,
(4)

where

αm =

{
2, m = 0,
1, m ≥ 1.

(5)

The function u(x), which is square Lebesgue integrable, can be written in terms of the
shifted Chebyshev polynomials as

u(x) =
∞

∑
i=0

ciT̃i(x), (6)

where the coefficients ci, i = 0, 1, 2, . . . , are given by

ci =
1
π

∫ 1

−1

u(x + 1)Ti(x)√
1− x2

dx.

2.2. The Chebyshev Wavelets

The wavelets represent a family of functions that are obtained by the means of dilation
and translation of the mother wavelet φ(x). When the dilation parameter and the transla-
tion parameters, s and t, respectively, vary, we obtain a family of continuous wavelets:

φs,t(x) = |s|−1/2φ

(
x− t

s

)
, s, t ∈ R, s 6= 0. (7)
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As a matter of fact, orthogonal functions and polynomials are useful tools, and the
Chebyshev wavelet technique has been successfully applied in several problems [7,8].
The key characteristic of this technique is that it reduces a given problem to a system of
algebraic equations by means of a truncated approximation series

u(x) ' uN(x) =
N−1

∑
i=0

liφi(x), (8)

where li are the unknown expansion coefficients. The elements φ0(x), φ1(x), ..., φN−1(x)
represent the orthonormal basis functions defined on a given interval [a, b]. Hereafter, we
choose φi(x) as Chebyshev wavelets on x ∈ [0, 1] given by

φn,m =

{
2

k
2 T̃m(2kx− 2n + 1), n−1

2k−1 ≤ x < n
2k−1 ,

0, otherwise,
(9)

so that

T̃m =


1√
π

, m = 0,√
2
π Tm(x), m ≥ 1,

(10)

where m = 0, 1, ..., M and n = 0, ..., 2k − 1. We also remark that the Chebyshev wavelets are
an orthonormal set with weight function

wk(x) =



w1,k(x), 0 ≤ x < 1
2k−1 ,

w2,k(x), 1
2k−1 ≤ x < 2

2k−1 ,
. .
. .
. .
w2k−1,k(x), 2k−1−1

2k−1 ≤ x < 1,

where wn,k(x) = w(2k+1x− 2n− 1).
By using the shifted Chebyshev polynomials in the interval n−1

2k−1 ≤ x < n
2k−1 , we have

φn,m =
2

k−1
2
√

π
Tm(2kx− 2n + 1)

φ′n,m(x) =


2

k−1
2√
π

2k2m ∑m−1
k=1 Tk(2kx− 2n + 1), when m is even

2
k−1

2√
π

2k[2m ∑m−1
k=1 Tk(2kx− 2n + 1) + mT0(2kx− 2n + 1)], when m is odd.

For calculating the operational matrix of derivative, if we take M = 2 and k = 2, then
we get

φ1,0 =

{ √
2√
π

, 0 ≤ x < 1/2,
0, otherwise,

,

φ1,1 =

{ √
2√
π
(4x− 1), 0 ≤ x < 1/2,

0, otherwise,
,

φ1,2 =

{ √
2√
π
(2(4x− 1)2 − 1), 0 ≤ x < 1/2,

0, otherwise
,

φ1,3 =

{ √
2√
π
(256x3 − 192x2 + 36x− 1), 0 ≤ x < 1/2,

0, otherwise,
,
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φ2,0 =

{ √
2√
π

, 1/2 ≤ x < 1,
0, otherwise,

,

φ2,1 =

{ √
2√
π
(4x− 3), 1/2 ≤ x < 1,

0, otherwise
,

φ2,2 =

{ √
2√
π
(2(4x− 3)2 − 1), 1/2 ≤ x < 1,

0, otherwise,
,

φ2,3 =

{ √
2√
π
(256x3 − 576x2 + 420x− 99), 1/2 ≤ x < 1,

0, otherwise.
,

Table 1 represents the calculated derivatives of φn,m when M = k = 2.

Table 1. The calculated derivatives of φn,m when M = k = 2.

φ′1,0 φ′1,1 φ′1,2 φ′1,3 φ′2,0 φ′2,1 φ′2,2 φ′2,3

0 4
√

2φ1,0 16φ1,1 12
√

2 + 24φ1,2φ1,0 0 4
√

2φ2,0 16φ2,1 12
√

2φ2,0 + 24φ2,3

The function φi(x) is zero outside the interval n−1
2k−1 ≤ x < n

2k−1 , so that

φ′i(x) = Pφi(x) , i = 1, 2, ..., 2k−1,

where

P = 2k



0
√

2 0 3
√

2 0 5
√

2 . . . 0
0 0 4 0 8 0 . . . 0
0 0 0 6 0 10 . . . 2(M− 1)
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
0 0 0 0 0 0 0 0 0 2(M− 1)
0 0 0 0 0 0 0 0 0 0


M×M

. (11)

The Chebyshev wavelet operational matrix of derivative is such that dφ(x)
dx = Dφ(x),

where the operational matrix D is the Kronecker product of P with the identity matrix.
Proceeding in a similar way, the operational matrix of the nth derivative can be derived

as dnψ(x)
dxn = Dnψ(x), n = 1, 2, 3, . . . , with Dn standing for the nth power of matrix D.

2.3. Function Approximation

We take the approximation function u(x) with domain [0, 1] as follows [28]:

u(x) =
∞

∑
n=1

∞

∑
m=0

An,mφn,m(x).

We rewrite the solution u(x) in matrix form in the follow-up. If we truncate this
infinite series, then we can write

u(x) '
2k−1

∑
n=1

M−1

∑
m=0

An,mφn,m(x) = ATφ(x), (12)
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where A and φ(x) are given by

A = [a1,0, c1,1, ..., a1,(M−1), a2,0, a2,1, ..., a2,(M−1), ..., a2k−1,0, a2k−1,1, ..., a2k−1,(M−1)]

= [a1, c2, ..., a2k−1 M],
(13)

φ = [φ1,0(x), ..., φ1,(M−1)(x), φ2,0(x), ..., φ2,(M−1)(x), ..., φ2k−1,0(x), ..., φ2k−1,(M−1)(x)]
= [φ1(x), φ2(x), ..., φ2k−1 M(x)].

(14)

For more details, see [28].

2.4. Estimation of the Truncated Series

Herein, we discuss some convergence properties and the error bound for the Cheby-
shev wavelet expansion.

Theorem 1. A given continuous function f (x), defined in [0, 1) and with a bounded second
derivative | f ′′(x)| ≤ B, can be expanded as a series of Chebyshev wavelets:

f (x) =
∞

∑
n=1

∞

∑
m=0

Cn,mφk
n,m(x), (15)

where Cn,m is the inner product between f (x) and φk
n,m(x) which is defined in [29]. For the proof,

see [29].

Now, we introduce Theorem 2, which gives an upper estimate for the truncation
error [16]

Theorem 2. Given a continuous function f (x), defined in [0, 1) and with a second derivative
| f ′′(x)| bounded by B, we have the accuracy estimation σk,M:

σk,M =

√
πB
8

( ∞

∑
n=2k+1

1
n5

∞

∑
m=M

1
(m− 1)4

)1/2

,

σk,M =

( ∫ 1

0

[
f (x)−

2k−1

∑
n=1

M−1

∑
m=0

cnmφk
n,m(x)

]2

wn(x)dx
)1/2

.

For the proof, see [16].

2.5. Product Operation Matrix

Due to the support of φn,m, we have φi(x)φ′j(x) = OM×M, i 6= j. Interested readers
can find further details in [28]. Thus, we have

φ(x)φT(x) = diag(φ1(x)φT
1 (x), φ2(x)φT

2 (x), ..., φ2k−1(x)φT
2k−1(x)), (16)

or

φ(x)φT(x) = Aφ(x), (17)

where A is the matrix given in (13).
We obtain the entries of the symmetric matrices φi(x)φT

i (x), i = 1, 2, ..., 2k−1, as a
linear combination of entries of the vector φi(x):
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φi,0φi,l =
2k/2
√

π
φi,l , l = 0, 1, ..., M− 1,

φi,lφi,r =
2k/2
√

π
φi,0 +

2k/2−1/2
√

π
φi,l+r, r = l 6= 0, (18)

φi,lφi,r =
2k/2−1/2
√

π
(φi,|l−r| + φi,l+r), r 6= l, r, l 6= 0, l + r ≤ M− 1.

For l + r > M− 1, the second term in (18b) and (18c) must be deleted. Therefore, we
can calculate the matrix entries for different choices of M and k as follows:

For M = 2 and k = 2, we obtain the matrix φ(x)φT(x) as

φ(x)φT(x) =
2√
π


φ1,0 φ1,1 0 0
φ1,1 φ1,0 0 0

0 0 φ2,0 φ2,1
0 0 φ2,1 φ2,0

. (19)

For M = 3 and k = 2, we obtain the matrix φ(x)φT(x) as

φ(x)φT(x) = 2√
π



φ1,0 φ1,1 φ1,2 0 0 0
φ1,1 φ1,0 +

1√
2

φ1,2
1√
2

φ1,1 0 0

φ1,2
1√
2

φ1,1 φ1,0 0 0
0 0 0 φ2,0 φ2,1 φ2,2
0 0 0 φ2,1 φ2,0 +

1√
2

φ2,2
1√
2

φ2,1

0 0 0 1√
2

φ2,2
1√
2

φ2,1 φ2,0


. (20)

For M = 4 and k = 2, the matrix φ(x)φT(x) is given by:

φ(x)φT(x) =
2√
π



φ1,0 φ1,1 φ1,2 φ1,3 0 0 0 0
φ1,1 φ1,0 +

1√
2

φ1,2
1√
2
(φ1,1 + φ1,3)

1√
2

φ1,2 0 0 0 0

φ1,2
1√
2
(φ1,1 + φ1,3)

1√
2

φ1,0
1√
2

φ1,1 0 0 0 0

φ1,3
1√
2

φ1,2
1√
2

φ1,1 φ1,0 0 0 0 0

0 0 0 0 φ2,0 φ2,1 φ2,2 φ2,3
0 0 0 0 φ2,1 φ2,0 +

1√
2

φ2,2
1√
2
(φ2,1 + φ2,3)

1√
2

φ2,2

0 0 0 0 φ2,2
1√
2
(φ2,1 + φ2,3)

1√
2

φ2,0
1√
2

φ2,1

0 0 0 0 φ2,3
1√
2

φ2,2
1√
2

φ2,1 φ2,0


. (21)

In this case, the matrix A in (17) can be obtained as

A =

(
A1 0
0 A2

)
, (22)

where A1 and A2 are given by

A1 =
2√
π


A1,0 A1,1 A1,2 A1,3
A1,1 A1,0 +

1√
2

A1,2
1√
2
(A1,1 + A1,3)

1√
2

A1,2

A1,2
1√
2
(A1,1 + A1,3)

1√
2

A1,0
1√
2

A1,1

A1,3
1√
2

A1,2
1√
2

A1,1 A1,0

,

A2 =
2√
π


A2,0 A2,1 A2,2 A2,3
A2,1 A2,0 +

1√
2

A2,2
1√
2
(A2,1 + A2,3)

1√
2

A2,2

A2,2
1√
2
(A2,1 + A2,3)

1√
2

A2,0
1√
2

A2,1

A2,3
1√
2

A2,2
1√
2

A2,1 A2,0

. (23)

In general, A is a 2k−1M× 2k−1M matrix of the form
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A =



A1 0 . . . 0
0 A2 . . . 0
. . . .
. . . .
. . . .
0 0 . . . A2k−1 M

. (24)

2.6. Implementation of the Proposed Method

Consider the 1-dimensional multi-term FDE [30]

Dα1 u(t) +
N

∑
i=2

εi(t) Dαi u(t) = f (t, u(t)), t ∈ [0, 1], (25)

subject to the initial conditions

u(i)(0) = βi, i = 0, 1, 2, . . . , n1 − 1, (26)

where ni − 1 < αi ≤ ni, n1 > n2 > · · · > nN , n1, n2, . . . , nN ∈ N, βi ∈ R, with εi : [0, 1]→
R, i = 2, 3, . . . , N, and f : [0, 1]×R→ R is a continuous function.

Let us assume that u(t) is a square Lebesgue integrable function. Then, the function
Dα1 u(t) can be approximated by means of the Chebyshev wavelets as

Dα1 u(t) ≈ UTΦ(t). (27)

Based on the Chebyshev wavelets integration matrices, we have the
following approximations:

Dαj u(t) ≈ UT P
α1−αj
m′×m′Φ(t) +

m′−nj−1

∑
i=0

u(i)(0+)
ti

i!
, j = 2, 3, . . . , N, (28)

u(t) ≈ UT Pα1
m′×m′Φ(t) +

m′−1

∑
i=0

u(i)(0+)
ti

i!
. (29)

Consequently, the residual of Equation (25) takes the form

R(t) = UTΦ(t) +
N

∑
j=2

εj(t)UT P
α1−αj
m′×m′Φ(t) +

N

∑
j=2

εj(t)

m′−nj−1

∑
i=0

u(i)(0+)
ti

i!


− f

(
t, UT Pα

m′×m′Φ(t) +
m′−1

∑
i=0

u(i)(0+)
ti

i!

)
,

(30)

where the fractional operational matrix is given in [31]. If Equation (30) is satisfied exactly
at the points tj, j = 1, 2, . . . , m′ − n1, chosen to be the first (m′ − n1) roots of Tm′+1(t), then
we have

R(tj) = 0, j = 1, 2, . . . , m′ − n1. (31)

In addition, the use of the initial conditions (26) yields

dr

dtr

(
UT Pα

m′×m′Φ(t) +
m′−1

∑
i=0

u(i)(0+)
ti

i!

)
t=0

= βr, r = 0, 1, 2, . . . , n1 − 1. (32)
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Equations (31) and (32) represent a system of m′ nonlinear equations in the expan-
sion coefficients, cnm, that can be solved by means of Newton’s iterative technique at
t = 0 [30,31].

3. Examples of Application

We apply the Chebyshev wavelet collocation method (CWCM) for solving seven
differential problems. Let E represent the maximum absolute difference between the
truncated series and the numerical solution.

Example 1. Consider the linear singular perturbed boundary value problem

−ε
d2y
dt2 +

dy
dt

= 1, t ∈ [0, 1],

y(0) = y(1) = 0, (33)

where ε > 0 is a small parameter and the analytical solution is given by

y = 1− e
1−t√

ε + e
t√
ε

e
1√
ε + 1

. (34)

Table 2 lists the maximum absolute error E in Example 1 when k = {1, 2, 3}, M =
{15, 7, 3}, and ε = {10−1, 10−2, 10−3}.

Figure 1 depicts the effect of increasing M when the value of k is fixed. On the other
hand, Figure 2 shows the effect of increasing ε when k is fixed.

Table 2. Maximum absolute error E for Example 1 when k = {1, 2, 3} and M = {15, 7, 3}.

k M ε = 10−1 ε = 10−2 ε = 10−3

1 15 8.83× 10−16 5.63× 10−12 3.73× 10−9

2 7 2.47× 10−15 5.27× 10−11 7.21× 10−7

3 3 1.37× 10−11 2.94× 10−7 3.28× 10−4

0.0 0.2 0.4 0.6 0.8 1.0

0

5. × 10-17

1. × 10-16

1.5 × 10-16

2. × 10-16

2.5 × 10-16

3. × 10-16

t

E M=15

M=12

M=9

Figure 1. Absolute error E versus t for Example 1 when k = 1, ε = 0.1, and M = {9, 12, 15}.
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Figure 2. Plot of E1 = Log(E) versus M for Example 1 when k = 1 and ε = {10−1, 10−2, 10−3}.

Example 2. Consider the initial value problem

d2y
dx2 = −30 sin(30x), 0 ≤ x ≤ 10,

y(0) = 0, y′(0) = 1,
(35)

with analytical solution given by

y =
1

30
sin(30x). (36)

We use the dilation x = 10t to obtain the new initial value problem

d2y
dt2 = −300 sin(300t), 0 ≤ t ≤ 1,

y(0) = 0, y′(0) = 1,
(37)

with exact solution
y =

1
300

sin(300t). (38)

Table 3 lists the maximum absolute error E for Example 2 when k = 3 and M =
{5, 10, 15, 20}.

Figure 3 illustrates the exact and approximate solutions for different values of M when
the value of k is fixed.

0.0 0.2 0.4 0.6 0.8 1.0

-0.02

0.00

0.02

0.04

0.06

x

y
k
,M

(x
) Exact

M=5

M=10

M=15

Figure 3. The exact and approximate solutions versus x for Example 2 when k = 3 and M =

{5, 10, 15}.
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Table 3. Maximum absolute error E for Example 2 when k = 3 and M = {5, 10, 15, 20}.

M 5 10 15 20

E 2.24× 10−1 5.28× 10−3 3.29× 10−4 5.27× 10−5

Example 3. Let us consider the differential equation

d3y
dx3 = x y + (x3 − 2x2 − 5x− 3)ex, 0 ≤ x ≤ 1,

y(0) = y(1) = 0, y′(0) = 1.
(39)

The analytical solution of this initial value problem is given by y(x) = x(1− x)ex. Ta-
ble 4 lists the maximum absolute error E of Example 3 when k = 2 and M = {8, 10, 12, 14}.

Figure 4 portraits the exact and approximate solutions for different values of M when
the value of k is fixed.

Table 4. Maximum absolute error E for Example 3 when k = 2 and M = {8, 10, 12, 14}.

M 8 10 12 14

E 1.58× 10−7 2.39× 10−11 9.38× 10−14 2.22× 10−16

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.1

0.2

0.3

0.4

x

y
k
,M

(x
) Exact

M=2

M=4

M=6

Figure 4. The exact and approximate solutions versus x for Example 3 when k = 2 and M = {2, 4, 6}.

Example 4. Deformation of an Elastica. The transverse deformation of a thin elastic extensional
rod subjected to an axial loading and clamped at its ends is governed by the nonlinear equation [32]

d2y
ds2 + sin y = 0, 0 < s < 1,
y(0) = y(1) = 1.

(40)

Due to the nonavailability of the analytical solution of this nonlinear problem, we
compare the results for the proposed method with those of the Runge–Kutta sixth-order
method (RK6) obtained using Mathematica. Table 5 shows the maximum absolute error E
when s = {0, 0.2, 0.4, 0.6, 0.8, 1}, k = 1, and M = {4, 6, 8}.
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Table 5. Maximum absolute error E for Example 4 when s = {0, 0.2, 0.4, 0.6, 0.8, 1}, k = 1, and
M = {4, 6, 8}.

s RK6 M = 4 M = 6 M = 8

0 1 1 1 1
0.2 1.0707773 1.0707685 1.0707724 1.070777
0.4 1.10651554 1.1065354 1.1065142 1.1065155
0.6 1.106542707 1.10654257 1.10654217 1.10654270
0.8 1.07084925 1.0708984 1.0708487 1.0708492
1 1 1 1 1

Example 5. Let us consider the fractional IVP [33]

D0.5y(t) + y(t) = t0.9 +
Γ(1.9)
Γ(1.4)

t0.4, y(0) = 0, t ∈ (0, 1), (41)

with the nonsmooth analytical solution y(t) = t0.9. By adopting the transformation y = u0.9,
Equation (41) is converted into the nonlinear fractional initial value problem

D0.5u0.9(t) + u0.9(t) = t0.9 +
Γ(1.9)
Γ(1.4)

t0.4, u(0) = 0, t ∈ (0, 1), (42)

with solution u(t) = t.

Let us start with u(t) ≈ u1(t) =
√

2
π a0 +

√
2
π a1(2t− 1) and apply the proposed method

for k = M = 1. We get c1,0 = 0.6266570686577501 and a1,1 = 0.5427009409187007. Therefore,
we have

u1(t) =

√
2
π
(0.6266570686577501)+

√
2
π
(0.5427009409187007)(2t− 1) = t+ 5.55 × 10−17,

which is very close to the exact solution.

Table 6 lists the relative error Er of Example 5 when k = M = 1.

Table 6. Relative error Er for Example 5 when k = M = 1.

t 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Er 4.4094× 10−16 2.3629× 10−16 1.6404× 10−16 1.2662× 10−16 0.0000 0.0000 0.0000 0.0000 0.0000

Example 6. Let us consider the fractional oscillator problem [33]

Dµy(t) + y(t) = 0, y(0) = 1, y′(0) = 0, t ∈ (0, L), (43)

where 1 < µ ≤ 2. The analytic solution of Equation (43) is given by

y(t) =
∞

∑
k=0

(−tµ)k

Γ(k µ + 1)
= Ẽµ(−tµ),

where Ẽµ(t) is the one-parameter Mittag-Leffler function [33]. For µ = 2, the solution reduces to
y(t) = cos(t). Let us solve Equation (43) when L = 1 and assume that the approximate solution

can be expressed as y(t) ≈ yN(t) =
N

∑
i=0

ai Ci(t). We compare the numerical results of the proposed

algorithm with those produced by using the truncated series

ỹ(t) =
10

∑
k=0

(−tµ)k

Γ(k µ + 1)
,
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for the case of k = 1, M = 16, and different values of µ.

Table 7 demonstrates that the new method yields good results in the domain [0, 1].

Table 7. Maximum absolute error E of Example 6 when k = 1 and M = 16.

µ 2 1.95 1.9 1.85 1.8 1.75

E 3.25× 10−16 4.71× 10−14 5.26× 10−13 7.48× 10−12 3.25× 10−11 5.26× 10−11

Example 7. Let us consider the nonlinear fractional IVP [33,34]

D
1
2 y(t) + ey(t) = f (t), t ∈ (0, 1), (44)

with
y(0) = ln(9), (45)

where
f (t) = 9 + t +

2√
π(9 + t)

sinh−1(
√

t/3).

The analytic solution of (44) is given by y(t) = ln(9 + t). We apply the proposed
algorithm for k = 2 and M = {1, 3, 5, 7, 9, 11, 13}. Table 8 lists the maximum absolute error
E of problem (44)–(45) versus M.

Table 8. Maximum absolute error E of Example 7 for k = 2.

M 1 3 5 7 9 11 13

E 2.36× 10−1 4.29× 10−4 8.36× 10−7 2.37× 10−10 5.37× 10−14 4.38× 10−15 2.43× 10−16

Note. The best absolute maximum errors obtained in [33,34] are E = 2.73 × 10−15 and E = 1.00 × 10−15,
respectively, while here we obtained a smaller error with an inferior number of retained modes.

In synthesis, we started by considering a simple boundary value problem in Example 1.
Since the technique is not restricted to boundary value problems, we applied the proposed
strategy to initial value problems in Examples 2 and 3. To demonstrate the efficiency of
the technique on mathematical models, we tackled Example 4, representing the nonlinear
deformation of a thin elastic rod. Moreover, fractional-order models were considered in
Examples 5–7, which were studied as fractional oscillator problems. It was verified in all
cases that the proposed strategy leads to good results.

4. Conclusions

This paper presents a new technique for obtaining the numerical spectral solutions for
multi-term fractional-order initial value problems. The derivation of the method is based
on the construction of the Chebyshev wavelet operational matrix. One of the advantages
of the proposed strategy is its availability both for linear and nonlinear fractional-order
initial value problems. A second relevant characteristic of the proposed approach is its
high accuracy while adopting a limited number of Chebyshev wavelets. In future work,
we will address the applicability of the current technique for stochastic PDEs.
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