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Abstract

A new continuous four-parameter lifetime distribution is introduced by compounding
the distribution of the maximum of a sequence of an independently identically expo-
nentiated Lomax distributed random variables and zero truncated Poisson random vari-
able, defined as the complementary exponentiated Lomax Poisson (CELP) distribution.
The new distribution which exhibits decreasing and upside down bathtub shaped density
while the distribution has the ability to model lifetime data with decreasing, increasing
and upside-down bathtub shaped failure rates. The new distribution has a number of
well-known lifetime special sub-models, such as Lomax-zero truncated Poisson distribu-
tion, exponentiated Pareto-zero truncated Poisson distribution and Pareto- zero truncated
Poisson distribution. A comprehensive account of the mathematical and statistical prop-
erties of the new distribution is presented. The model parameters are obtained by the
methods of maximum likelihood, least squares, weighted least squares, percentiles, max-
imum product of spacing and Cramér-von-Mises and compared them using Monte Carlo
simulation study. We illustrate the performance of the proposed distribution by means of
two real data sets and both the data sets show the new distribution is more appropriate
as compared to the transmuted Lomax, beta exponentiated Lomax, McDonald Lomax,
Kumaraswamy Lomax, Weibull Lomax, Burr X Lomax and Lomax distributions.

Keywords: hazard rate function, maximum likelihood estimation, method of maximum prod-
uct spacing, exponentiated Lomax Poisson, moments, Lorenz and Benferroni curves, order
statistics.

1. Introduction

Over the last three decades or so, there has been an impetus in constructing new univariate
distributions either due to the theoretical considerations or practical applications or both
which are used widely in statistics and allied areas. Present trends and practices in defin-
ing probability distributions are different from those proposed before 1997. Now-a-days re-
searchers have shown greater interest in defining new generators or generalized classes of
univariate continuous distributions by adding one or more parameters or by compounding
to generate new distributions to a baseline distribution to make the generated distribution
more flexible, especially for studying tail behavior. Several authors have constructed dis-
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tributions by compounding the exponential with other discrete distributions. For example,
(Adamidis and Loukas 1998) constructed the exponential geometric distribution by com-
pounding the exponential distribution with a geometric distribution. (Kus 2007) proposed
the exponential Poisson distribution by mixing an exponential and zero truncated Poisson
distribution and discussed its various properties, (Barreto-Souza and Cribari-Neto 2009) dis-
cussed another generalized exponential-Poisson distribution by inserting a power parameter in
exponential-Poisson distribution, (Cancho, Louzada-Neto, and Barriga 2011) introduced the
two-parameter Poisson-exponential lifetime distribution with increasing failure rate, (Lu and
Shi 2012) presented the Weibull-Poisson distribution as generalization of exponential-Poisson
distribution, (Mahmoudi and Sepahdar 2013) introduced exponentiated Weibull-Poisson dis-
tribution and discussed its properties, (Louzada, Marchi, and Carpenter 2013) proposed
complementary exponentiated exponential geometric distribution and (Ristic and Nadara-
jah 2014) introduced exponentiated exponential Poisson distribution. Recently, (Tahir and
Cordeiro 2016) reviewed more than 20 already introduced distributions based on the zero
truncated Poisson distribution.

In this paper we introduce a new lifetime distribution by compounding exponentiated Lomax
distribution and zero truncated Poisson distribution, referred to as complementary expo-
nentiated Lomax Poisson (CELP) distribution. The proposed distribution encompasses the
behavior of some well known lifetime distributions and provides better fits than them, such
as Lomax (Lomax 1954), transmuted Lomax (Ashour and Eltehiwy 2013), McDonald Lomax
and Kumaraswamy Lomax (Lemonte and Cordeiro 2013), Weibull Lomax (Tahir, Cordeiro,
Mansoor, and Zubair 2015), beta exponentiated Lomax (Mead 2016) and Burr X Lomax
(Yousof, Afify, Hamedani, and Aryal 2017) distributions. We are motivated to introduce the
CELP distribution because (i) it is capable of modeling decreasing, increasing and upside-
down bathtub shaped hazard rates; (ii) it can be viewed as a suitable model for fitting the
skewed data which may not be properly fitted by other common distributions and can also
be used in a variety of problems in different areas such as industrial reliability and survival
analysis; and (iii) two real data applications show that it compares well with other competing
lifetime distributions in modeling survival and failure data. A simple interpretation of the
proposed model comes from a situation where failure (of a device for example) occurs due to
the presence of an unknown number, say Z, of initial defects of the same kind. Z follows a
Poisson variable. Their lifetimes, Y ′s, follow an exponentiated Lomax distribution. Then for
modeling the maximum failure X, the distribution leads to the complementary exponentiated
Lomax-Poisson distribution. This distribution is a suitable model in a complementary risk
problem (Basu and Klein 1982) in presence of latent risks, in a sense that there is no infor-
mation about which factor was responsible for the component failure and only the maximum
lifetime value among all risks is observed.

The motivation of the paper is two fold: first is to study the properties of the CELP distri-
bution, and second is to estimate the parameters of the model using six frequentist methods
of estimation, namely, methods of maximum likelihood, least squares, weighted least squares,
percentiles, maximum product of spacing and Cramér-von-Mises for different sample sizes and
different parameter values and to develop a guideline for choosing the best estimation method
that gives better estimates for the CELP distribution, which we think would be of deep inter-
est to applied statisticians. Comparisons of different estimation methods were compared for
generalized Rayleigh distributions by (Kundu and Raqab 2005); for generalized logistic dis-
tributions by (Alkasasbeh and Raqab 2009); for weighted Lindley distribution by (Mazucheli,
Louzada, and Ghitany 2013); for transmuted extended exponential distribution by (Kumar
and Kumar 2019); for the two-parameter Rayleigh, weighted exponential, two-parameter
Maxwell, exponentiated-Chen, two parameter exponentiated-Gumbel, new extension of gen-
eralized exponential and Nadarajah-Haghighi distributions by (Dey, Dey, and D. 2014), (Dey,
Ali, and Park 2015), (Dey, Dey, Ali, and Mulekar 2016), (Dey, Alzaatreh, Zhang, and Ku-
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mar 2017a), (Dey, Kumar, Ramos, and Louzada 2017b), (Dey, Raheem, Mukherjee, and Ng
2017c), (Dey, Zhang, Asgharzadeh, and Ghorbannezhad 2017d), and for alpha logarithmic
transformed Weibull, quasi xgamma-geometric, Weibull Marshall–Olkin Lindley, extended
odd Weibull exponential, alpha power exponential distributions by (Nassar, Afify, Dey, and
Kumar 2018a), (Sen, Afify, Al-Mofleh, and Ahsanullah 2019), (Afify, Nassar, Cordeiro, and
Kumar 2020), (Afify and Mohamed 2020) and (Nassar, Afify, and Shakhatreh 2020).

The article is organized as follows. In the next section, we introduce the CELP distribution.
Some mathematical and statistical properties of the CELP distribution are presented in Sec-
tion 3. In Section 4, different frequentist methods of estimation are discussed. Monte Carlo
simulation study is carried out to compare the different methods of estimation in Section 5.
The potentiality of the new model is illustrated by means of application to real data in Section
6. Finally, some concluding remarks are addressed in Section 7.

2. The CELP distribution

(Lomax 1954) introduced a lifetime distribution, called Lomax (Pareto II) distribution. It is
quite useful to analyze data related to business failure, income distribution and several other
fields. The Lomax distribution with parameters α > 0 and β > 0, say Lomax(α, β), is given
by the cumulative distribution function (cdf)

G(x;α, β) = 1− (1 + βx)−α, x > 0, (1)

where α > 0 and β > 0 are the shape and scale parameters, respectively. The corresponding
probability density function (pdf) is given by

g(x;α, β) = αβ(1 + βx)−(α+1), x > 0. (2)

The rth moment of Lomax distribution is given by

E(Xr) = αβ−rB(α− r, 1 + r), (3)

where B(.,.) denotes the beta function defined by B(a, b) =
∫∞

0
xa−1

(1+x)a+b
dx.

The Lomax distribution has been explored by several authors. Introducing new parameters
such as location, scale, shape and inequality in the existing distributions in order to add more
flexibility has been adopted by several authors in the last 30 years or so. (Abdul-Moniem and
Abdel-Hameed 2012) introduced the exponentiated Lomax (EL) distribution and studied few
of its properties. The cdf of the EL distribution with parameters α, β, and θ, say EL(α, β, θ),
is given by

G(x;α, β, θ) = (1− (1 + βx)−α)θ, x > 0, α, β, θ > 0, (4)

and the corresponding pdf is given by

g(x;α, β, θ) = αβθ(1 + βx)−(α+1) (1− (1 + βx)−α)θ−1, x > 0, α, β, θ > 0. (5)

(Al-Awadhi and Ghitany 2001) proposed Poisson-Lomax distribution as a mixture of Lomax
and Poisson distribution. (Abd-Ellah 2003) obtained Bayesian prediction bounds for certain
order statistics from Lomax distribution and (Abd-Elfattah, Alaboud, and Alharby 2007)
discussed the Bayesian and non-Bayesian estimation of the reliability of Lomax distribution.
(Ghitany, Al-Awadhi, and Alkhalfan 2007) proposed a new model called Marshall-Olkin ex-
tended Lomax distribution with its application to censored data. (Hassan and Al-Ghamdi
2009) discussed the estimation under optimum step stress accelerated life testing for the Lo-
max distribution. (Ramos, Marinho, Silva, and Cordeiro 2013) introduced the exponentiated
Lomax Poisson (ELP) distribution with an application to lifetime data. (Hassan and Nassr
2018) proposed the power Lomax Poisson distribution, (Nassar, Dey, and Kumar 2018b)
studied logarithm transformed Lomax distribution, (Dey, Nassar, Kumar, Alzaatreh, and
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Tahir 2019) proposed the alpha power transformed Lomax distribution, (Cordeiro, Afify, Or-
tega, Suzuki, and Mead 2019) introduced the odd-Lomax Lomax and (Afify, Cordeiro, Maed,
Alizadeh, Al-Mofleh, and Nofal 2019) introduced the generalized odd Lindley Lomax distri-
bution.

Given Z ∈ N , let Y1, Y2, . . . , Yz be independent and identically distributed (iid) random
variables with pdf given in (5). Let Z be a discrete random variable, having zero-truncated
Poisson (ZTP) distribution with probability mass function (pmf)

P (Z;λ) =
λz

(eλ − 1) z!
, λ > 0, z = 1, 2, 3, . . . . (6)

Suppose that X is a random variable representing the lifetime of a parallel system of Z com-
ponents, i.e. X = max{Yi}, i = 1, 2, . . . , z, and Y ′s and Z are independent. The conditional
pdf of X|Z can be written as

fX|Z(x|z) = z g(x) [G(x)]z−1, (7)

where G(.) and g(.) are the cdf and pdf of the EL distribution, respectively.The pdf of X is
obtained as follows.

Remark 1. If X = min{Yi}, we have the ELP distribution proposed by (Ramos et al. 2013).

Proposition 1. Let X = max{Yi}, where Yi = EL(α, β, θ), then according to (6) and (7), X
is distributed as CELP distribution, given by

f(x) =
αβλθ (1 + βx)−(α+1) (1− (1 + βx)−α)θ−1 exp[λ(1− (1 + βx)−α)θ]

(eλ − 1)
, (8)

with parameters α, β, θ and λ > 0.

Proof. By considering (6) and (7), the pdf of CELP (α, β, λ, θ) can be computed by simplifying
the unconditional pdf of X, given by

f(x) =

∞∑
z=1

f(x|z)P (Z = z).

The corresponding cdf of CELP distribution is given by

F (x) =
exp(λ(1− (1 + βx)−α)θ)− 1

(eλ − 1)
. (9)

The survival function (sf) and hazard rate function (hrf) of the CELP distribution are, re-
spectively, given by

S(x) =
exp(λ)− exp(λ(1− (1 + βx)−α)θ)

(eλ − 1)
(10)

and

h(x) =
αβλθ (1 + βx)−(α+1) (1− (1 + βx)−α)θ−1 exp(λ(1− (1 + βx)−α)θ)

exp(λ)− exp(λ(1− (1 + βx)−α)θ)
. (11)

The pdf, hrf of CELP distribution have been plotted in Figures 1 and 2, respectively, for
different values of α, β, θ and λ.

Here are some special cases of the CELP model: Let X ∼ CELP(α, β, λ, θ).

1. If θ = 1, then X reduces to the Lomax-ZTP distribution.
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2. If β = 1, then X reduces to exponentiated Pareto-ZTP distribution.

3. If β = 1 = θ, then X reduces to Pareto-ZTP distribution.

4. If λ→ 0+ and θ = 1, the CELP distribution reduces to the Lomax ditribution.

5. If λ → 0+ and β = 1, the CELP distribution reduces to the exponentiated Pareto
ditribution.

6. If α = 1, the CELP distribution reduces to the complementary Lomax Poisson distri-
bution.
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Figure 1: The pdf and hazard rate function plots of the CELP distribution for selected
parameter values

Theorem 1. The limiting distribution given by (9) when λ→ 0+ is limλ→0+F (x;α, β, λ, θ) =
(1− (1 + βx)−α)θ, which is the cdf of EL(α, β, θ).

Corollary 1. The pdf and hrf of the CELP distribution can be expressed in terms of the cdf
and pdf of the EL distribution as

f(x) = ωg(x)eλG(x)

and

h(x) =
λg(x)eλG(x)

eλ − eλG(x)
,

repectively, where ω = λ(eλ− 1)−1. G(x) and g(x) are the cdf and pdf of the EL distribution,
given by (4) and (5), respectively.

2.1. Series expansion of CELP distribution

Here we express the pdf of CELP distribution as an infinite series of EL distribution or Lomax
distribution. Using the exponential expansion of exp(λ(1− (1 + βx)−α)θ in (8),

f(x) =

∞∑
i=0

ψi g(x;α, β, θ(i+ 1)), (12)

where

ψi =
λi+1

(eλ − 1) (i+ 1) i!
, (13)
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and g(x;α, β, θ(i+ 1)) is an EL distribution with parameters α, β and θ(i+ 1).
Also for b > 0 real and non-integer, |a| < 1,

(1− a)b−1 =

∞∑
j=0

(−1)j Γ(b) aj

Γ(b− j) j!
. (14)

For θ(i + 1) > 0 real and non-integer, we can apply (14) in the expansion of (1 − (1 +
βx)−α)θ(i+1)−1 in (12) and after some algebraic manipulations, we obtain

f(x) =

∞∑
i=0

∞∑
j=0

ξi,j g(x;α, β(j + 1)), (15)

where

ξi,j =
(−1)jθλi+1Γ(θ(i+ 1))

(eλ − 1)(j + 1)Γ(θ(i+ 1)− j)i!j!

and g(x;α, β(j + 1)) is Lomax distribution with parameters α and β(j + 1).

3. Statistical and mathematical properties

In this section, we devoted to some statistical and mathematical properties of the CELP
distribution.

3.1. Quantile function

The quantile function are in widespread use in general statistics to obtain mathematical
properties of a distribution and often find the representation in terma of lookup tables for key
percentiles. For generating data from the CELP model, let p ∼ U(0, 1). Then, by inverting
the cdf (9) and after some algebra, we get the quantile function

xp = Q(p) =
1

β

{1−
(

log(p(eλ − 1) + 1)

λ

)1/θ
}−1/α

− 1

 , 0 < p < 1. (16)

In particular, the first three quantiles, Q1, Q2 and Q3, can be obtained by setting p = 0.25,
p = 0.5 and p = 0.75 in equation (16) respectively. Note that xp can be used to generate
CELP random variates.

The analysis of variability of the skewness and kurtosis of X can be investigated based on
quentile measure the Bowley skewness is given by

B =
Q(3/4) +Q(1/4)− 2Q(1/2)

Q(3/4)−Q(1/4)

and Moors’ kurtosis (Moors 1988) by

M =
Q(3/8)−Q(1/8) +Q(7/8)−Q(5/8)

Q(6/8)−Q(2/8)
,

where Q(.) is a quantile function given by (16).

These measures are less sensitive to outliers and they exit even for distributions without
moments. Figure 2 display plots of B and M as function of α, β and θ, which shows their
variability in terms of the shape parameters.
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Figure 2: Plots of B-skewness and M-kurtosis of CELP distribution for different parameter
values

3.2. Moments and moment generating function

The moments, incomplete moments, moment generating function, skewness and kurtosis of a
probability distribution are very important tools to illustrate the distribution. Let the random
variable Y follow the lomax distribution with α > 0 and β > 0 (Lomax(α, β)). Then

g(y;α, β) = αβ(1 + βy)−(α+1), y > 0.

(Lomax 1954) showed that

E(Y r) = αβ−rB(α− r, 1 + r), (17)

Now, the rth moment of CELP distribution can be written as

E(Xr) =

∫ ∞
0

xrf(x)dx

=
∞∑
i=0

∞∑
j=0

ξi,j

∫ ∞
0

xrαβ(j + 1)(1 + β(j + 1)x)−α−1dx

=
∞∑
i=0

∞∑
j=0

ξi,jE[Y r]

where Y ∼ Lomax(α, β(j + 1)) is the pdf of Lomax distribution with parameters α and
β(j + 1). On using (17) we get

E(Xr) =
∞∑
i=0

∞∑
j=0

ξi,j,rB(α− r, 1 + r), (18)

where

ξi,j,r =
(−1)j αθλi+1β−r Γ(θ(i+ 1))

(eλ − 1) (j + 1)r+1 Γ(θ(i+ 1)− j) i! j!
.

The skewness (γ1) and kurtosis (γ2) of the CELP distribution are, respectively, obtained from

γ1 =
1

σ3

3∑
r=0

(
3

r

)
(−1)r+1µ3−rE(Xr)
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and

γ2 =
1

σ4

4∑
r=0

(
4

r

)
(−1)rµ4−rE(Xr).

Using (18), we obtain

γ1 =
3∑
r=0

∞∑
i=0

∞∑
j=0

(−1)j+r+1
(

3
r

)
αθλi+1β−r µ3−r Γ(θ(i+ 1))

σ3 (eλ − 1) (j + 1)r+1 Γ(θ(i+ 1)− j) i! j!
B(α− r, 1 + r), (19)

and

γ2 =
4∑
r=0

∞∑
i=0

∞∑
j=0

(−1)j+r
(

4
r

)
αθλi+1β−r µ4−r Γ(θ(i+ 1))

σ4 (eλ − 1) (j + 1)r+1 Γ(θ(i+ 1)− j) i! j!
B(α− r, 1 + r), (20)

where µ and σ are the mean and standard deviation of the CELP distribution.

The relations in (18) can be used to compute the expected values and higher order moments
of the CELP distribution. In Table 1, we have presented the expected values, variances, skew-
ness and kurtosis of the CELP distribution for λ = 1.1, 1.2, . . . , 2.0 and θ = 1.1, 1.2, . . . , 2.0,
respectively. One can see from Table 1 that the the means and variances are increasing with
respect to λ but skewness and kurtosis are decreasing with respect to λ. Similarly, the means
and variances are increasing with respect to θ but skewness and kurtosis are decreasing with
respect to θ.

The moment generating function of CELP distribution can be computed by substituting (18)
in (21) as follows:

Mx(t) = E(etx) =

∞∑
r=0

tr

r!
E(Xr)

=
∞∑
r=0

∞∑
i=0

∞∑
j=0

ξ∗i,j,rB(α− r, 1 + r), (21)

where

ξ∗i,j,r =
(−1)j αθλi+1β−r tr Γ(θ(i+ 1))

(eλ − 1) (j + 1)r+1 Γ(θ(i+ 1)− j) i! j! r!
.

Table 1: Expected values, variances, skewness and kurtosis of the CELP distribution for
different values of parameters

α = 5, β = 2.5, θ = 1.5 α = 5, β = 2.5, λ = 1.5

λ E(X) V(X) γ1 γ2 θ E(X) V(X) γ1 γ2

1.1 0.16810 0.02854 1.38110 51.75985 1.1 0.15314 0.02649 1.52053 53.08159
1.2 0.17163 0.02921 1.35126 51.10784 1.2 0.161 0.02775 1.44479 51.96525
1.3 0.17517 0.02987 1.32356 50.54843 1.3 0.16845 0.02894 1.37889 51.00714
1.4 0.17872 0.03052 1.29586 49.99448 1.4 0.17552 0.03008 1.32061 50.19443
1.5 0.18227 0.03117 1.26946 49.48087 1.5 0.18227 0.03117 1.26946 49.48087
1.6 0.18582 0.03180 1.24428 49.02240 1.6 0.18872 0.03220 1.22386 48.85617
1.7 0.18937 0.03244 1.21963 48.55791 1.7 0.1949 0.03319 1.18312 48.32825
1.8 0.19291 0.03307 1.19609 48.14234 1.8 0.20083 0.03415 1.14613 47.85178
1.9 0.19645 0.03368 1.17306 47.78042 1.9 0.20654 0.03507 1.11246 47.40381
2.0 0.19998 0.03429 1.15101 47.41709 2.0 0.21205 0.03595 1.08183 47.02954

3.3. Conditional moment and mean deviation

Here, we introduce an important lemma which will be used in the next section.
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Lemma 1. Let X be a random variable with pdf given in (15) and let Jn(t) =
∫ t

0 x
nf(x)dx.

Consider the lower incoimplete gamma function Γ(t, a) =
∫ t

0 x
a−1e−xdx. Then we have

Jn(t) =
αθ

(eλ − 1)β

∞∑
i=0

∞∑
j=0

n∑
s=0

(−1)n+j+sλi+1
(
n
s

)
[1− (1 + β(j + 1)t)(s−α)]Γ(θ(i+ 1))

(j + 1)n+2 Γ(θ(i+ 1)− j) i! j! (α− s)
. (22)

Proof. Using the equation (15), we have

Jn(t) =

∫ t

0
xnf(x)dx =

∞∑
i=0

∞∑
j=0

ξi,j

∫ t

0
xng(x;α, β(j + 1))dx

= αβ
∞∑
i=0

∞∑
j=0

ξi,j

∫ t

0
xn(1 + β(j + 1)x)−(α+1)dx

=
α

β

∞∑
i=0

∞∑
j=0

n∑
s=0

ξi,j (−1)n+s

(
n

s

)
[1− (1 + β(j + 1)t)(s−α)]

(j + 1)n+1 (α− s)
.

The proof is complete.

The n−th conditional moments of the CELP distribution is given by

ηn(t) = E[Xn|x > t] =
1

1− F (t)

∫ ∞
t

xnf(x)dx =
1

S(t)
[E(Xn)− Jn(t)].

It can be expressed using (10), (18) and Lemma 1. The same remark hold for the n−th
reversed moments of the CELP distribution is given by

mn(t) = E[Xn|x ≤ t] =
1

F (t)

∫ t

0
xnf(x)dx =

1

F (t)
Jn(t).

The important application of the first reversed moment is related to Bonferroni and Lorenz
curves defined by L(p) = m1(xp)/µ

′
1 and B(p) = m1(xp)/pµ

′
1, respectively, where xp can be

evaluated numerically from equation (16) for a given probability. These curves are very useful
in economics, demography, insurance, engineering and medicine.

3.4. Entropies

An entropy can be considered as a measeure of uncertainty of probability distribution of a
random variable. Therefore, we obtain two entropies for CELP distribution.
Entropy 1. Let us now focus our attention on the Rényi entropy. If X has the probability
distribution function f(·), Rényi entropy is defined as

=R(δ) =
1

1− δ
log

(∫ ∞
0

f δ(x)dx

)
, δ > 0, δ 6= 1.

Using equation (8), we have

f δ(x) =

(
αβλθ

eλ − 1

)δ
(1 + βx)−δ(α+1)[1− (1 + βx)−α]δ(θ−1) eδλ[1−(1+βx)−α]θ .

After some algebra, we can write

f δ(x) =

(
αβλθ

eλ − 1

)δ ∞∑
i=0

∞∑
j=0

(−1)j(δλ)i Γ[δ(θ − 1) + θi+ 1] (1 + βx)−δ(α+1)−αj

i! j! Γ[δ(θ − 1) + θi+ 1− j]
.

Then, the Rényi entropy of X reduces to

=R(δ) =

( αβλθ

eλ − 1

)δ ∞∑
i=0

∞∑
j=0

(−1)j(δλ)i Γ[δ(θ − 1) + θi+ 1]

i! j! Γ[δ(θ − 1) + θi+ 1− j]

∫ k

0

1

(1 + βx)δ(α+1)+αj
dx

 .
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Finally, it can be expressed as

=R(δ) =
1

1− δ
log

[(
αβλθ

eλ − 1

)δ ∞∑
i=0

ei

]
, (23)

where

ei =

∞∑
j=0

(−1)j(δλ)i Γ[δ(θ − 1) + θi+ 1] B(1, δ(α+ 1) + αj)

i! j! βΓ[δ(θ − 1) + θi+ 1− j]
.

The δ−entropy, say Hδ(x), is defined by

Hδ(x) =
1

δ − 1
log

[
1−

∫ 1

0
f δ(x)dx

]
, δ > 0, δ 6= 1,

and then it follows from equation (23).
Entropy 2. We now focus our attention on the entropy which is proposed by (Mathai and

Haubold 2008): JMH(γ) = 1
γ−1

(∫∞
−∞ f

2−γ(x)dx− 1
)

. Proceeding as for =R(δ) with 2 − γ
instead of δ, we obtain

f2−γ(x) =

(
αβλθ

eλ − 1

)2−γ ∞∑
i=0

∞∑
j=0

(−1)j(λ(2− γ))i Γ[(2− γ)(θ − 1) + θi+ 1] (1 + βx)−(2−γ)(α+1)−αj

i! j! Γ[(2− γ)(θ − 1) + θi+ 1− j]
.

Hence

JMH(γ) =
1

γ − 1

(∫ ∞
−∞

f2−γ(x)dx− 1

)
=

1

γ − 1

[(
αβλθ

eλ − 1

)2−γ ∞∑
i=0

φi − 1

]
,

where

φi =

∞∑
j=0

(−1)j(λ(2− γ))i Γ[(2− γ)(θ − 1) + θi+ 1] B(1, (2− γ)(α+ 1) + αj)

i! j! βΓ[(2− γ)(θ − 1) + θi+ 1− j]
.

3.5. Residual life function

The residual life is described by the conditional random variable R(t) = X − t|X > t, t ≥ 0.
The sf of the residual lifetime R(t) of the CELP distribution is

SR(t)
(x) =

S(x+ t)

S(t)
=
eλ − eλ[1−{1+β(x+t)}−α]θ

eλ − eλ[1−(1+βt)−α]θ
, x > 0

and the associated cdf is

FR(t)
(x) =

eλ[1−{1+β(x+t)}−α]θ − eλ[1−(1+βt)−α]θ

eλ − eλ[1−(1+βt)−α]θ
.

The corresponding pdf is given by

fR(t)
(x) =

αβθλ{1 + β(x+ t)}−α−1[1− {1 + β(x+ t)}−α]θ−1eλ[1−{1+β(x+t)}−α]θ

eλ − eλ[1−(1+βt)−α]θ
.

Therefore, the hrf of R(t) is

hR(t)
(x) =

αβθλ{1 + β(x+ t)}−α−1[1− {1 + β(x+ t)}−α]θ−1eλ[1−{1+β(x+t)}−α]θ

eλ − eλ[1−{1+β(x+t)}−α]θ
.
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The mean residual life is defined as

I(t) = E(R(t)) =
1

S(t)

∫ ∞
t

xf(x)dx− t =
1

S(t)
[E(X)− J1(t)]− t,

where f(x) is given by (8), S(t)is given by (10), E(X) is given by (18) for r = 1 and J1(t) is
given by Lemma 1.

Further, the variance residual life is given by

V (t) = V ar(R(t)) =
2

S(t)

∫ ∞
t

xS(x)dx− 2tI(t)− [I(t)]2

=
1

S(t)
[E(X2)− J2(t)]− t2 − 2tI(t)[I(t)]2,

where E(X2) is given by (18) for r = 2 and J2(t) is given by Lemma 1.

3.6. Reversed residual life function

The reversed residual life is described by the conditional random variable R̄(t) = t−X|X ≤ t,
t ≥ 0. The sf of the reverse residual lifetime R̄(t) of the CELP distribution is given by

SR̄(t)
(x) =

F (t− x)

F (t)
=
eλ[1−{1+β(t−x)}−α]θ − 1

eλ[1−(1+βt)−α]θ − 1
, x > 0

and the associated cdf is

FR̄(t)
(x) =

eλ[1−(1+βt)−α]θ − eλ[1−{1+β(t−x)}−α]θ − 2

eλ[1−(1+βt)−α]θ − 1
.

The corresponding pdf is given by

fR̄(t)
(x) =

αβθλ{1 + β(t− x)}−α−1[1− {1 + β(t− x)}−α]θ−1eλ[1−{1+β(t−x)}−α]θ

eλ[1−(1+βt)−α]θ − 1
.

Therefore, the hrf of R̄(t) is

hR̄(t)
(x) =

αβθλ{1 + β(t− x)}−α−1[1− {1 + β(t− x)}−α]θ−1eλ[1−{1+β(t−x)}−α]θ

eλ[1−{1+β(t−x)}−α]θ − 1
.

Moreover, the mean reversed residual life is defined as

J(t) = E(R̄(t)) = t− 1

F (t)

∫ t

0
xf(x)dx = t− J1(t)

F (t)
,

where f(x) is given by (8), F (t)is given by (9) and J1(t) is given by Lemma 1.

Also, the variance reversed residual life is given by

W (t) = V ar(R̄(t)) = 2tJ(t)− [J(t)]2 − 2

F (t)

∫ t

0
xF (x)dx

= 2tJ(t)− [J(t)]2 − t2 +
J2(t)

F (t)
,

where J2(t) is given by Lemma 1.

3.7. Order statistics

Let X1, X2, . . . , Xn be a random sample from CELP distribution. Let X1:n ≤ X2:n ≤ . . . ≤
Xn:n be the order statistics from this random sample, then the pdf fi:n(x) of the ith order
statistic, for i = 1, 2, . . . , n, is obtained as follows:

fi:n(x) =
n!

(i− 1)!(n− i)!
f(x)(F (x))i−1(1− F (x))n−i,
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where f(x) and F (x) are the pdf and cdf of the CELP distribution, respectively.

fi:n(x) =

n−i∑
l=0

n!(−1)l

(i− 1)!(n− i− l)!l!
f(x)(F (x))i+l−1. (24)

Using the binomial expansion of F (x) in (24), we have

fi:n(x) =
n−i∑
l=0

i+l−1∑
k=0

(−1)i+2l+k−1 n! (i+ l − 1)! exp(kλ(1− (1 + βx)−α)θ) f(x)

(eλ − 1)i+l−1 (i+ l − k − 1)! (n− i− l)! (i− 1)! l! k!
. (25)

After some algebraic manipulations, we obtain

fi:n(x) =

n−i∑
l=0

i+l−1∑
k=0

φk,lf(x;α, β, θ, λ(k + 1)),

where

φk,l =
(−1)i+2l+k−1 n! (i+ l − 1)! exp(λ(k + 1)− 1)

(eλ − 1)i+l (i+ l − k − 1)! (n− i− l)! (i− 1)! (k + 1) l! k!

and f(x;α, β, θ, λ(k+1)) is the pdf of CELP distribution with parameters α, β, θ and λ(k+1).
The rth moment of the ith order statistic is given by

E(Xr
i:n) =

∫ ∞
0

xrfi:n(x)dx

=
n−i∑
l=0

i+l−1∑
k=0

φk,l

∫ ∞
0

xrf(x;α, β, θ, λ(k + 1))dx.

Thus, by considering (18), we obtain

E(Xr
i:n) =

n−i∑
l=0

i+l−1∑
k=0

∞∑
p=0

∞∑
q=0

φ∗k,l B(α− r, 1 + r), (26)

where

φ∗k,l =
(−1)q+i+2l+k−1 n! αθλp+1β−r(k + 1)p Γ(θ(p+ 1)) (i+ l − 1)!

(eλ − 1)i+l(i+ l − k − 1)!(n− i− l)! (i− 1)! (q + 1)r+1 Γ(θ(p+ 1)− q) l! k! p! q!
.

4. Parameters estimation and simulation study

In this section, we consider six frequentist methods of estimation to estimate the unknown
parameters of the CELP distribution. The first choice to estimate the unknown parameters
of the distribution is the maximum likelihood methods. Recently, many authors prefer to use
other classical methods such as method of maximum product of spacing and method of Per-
centiles, because these methods have some advantages over the maximum likelihood method.
Here, we study the estimation problem of the unknown parameters using different methods
of estimation to recommend the best method that can be used to estimate the distribution
parameters. It is not possible to compare the performance of the different estimators theo-
retically. For this reason, we perform a simulation study to compare the performance of the
different estimators using the minimum root mean square error criterion.

4.1. Method of maximum likelihood

Let x1, x2, · · · , xn be a random sample of size n from CELP distribution, then the log-
likelihood function corresponding to Eq.(8) is as follows
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L(α, β, θ, λ) = n log(αβλθ)− n log(eλ − 1)− (α+ 1)

n∑
i=1

log(1 + βxi)

+ (θ − 1)

n∑
i=1

log[1− (1 + βxi)
−α] + λ

n∑
i=1

[1− (1 + βxi)
−α]θ. (27)

The maximum likelihood estimators (MLEs) of the CELP distribution parameters α, β, λ and
θ can be obtained by solving the following four normal equations

∂L(α, β, θ, λ)

∂α
=
n

α
−

n∑
i=1

log(νi) + (θ − 1)

n∑
i=1

log(νi)

ναi − 1
+ λθ

n∑
i=1

ν−αi log(νi)[1− ν−αi ]θ−1,

∂L(α, β, θ, λ)

∂β
=
n

β
− (α+ 1)

n∑
i=1

xi
νi

+α(θ− 1)
n∑
i=1

xiν
−(α+1)
i

1− ν−αi
+ λαθ

n∑
i=1

xiν
−(α+1)
i [1− ν−αi ]θ−1,

∂L(α, β, θ, λ)

∂θ
=
n

θ
+

n∑
i=1

log[1− ν−αi ] + λ

n∑
i=1

[1− ν−αi ]θ log(1− ν−αi )

and
∂L(α, β, θ, λ)

∂λ
=
n

λ
− n(1− e−λ)−1 +

n∑
i=1

[1− ν−αi ]θ,

where νi ≡ ν(β;xi) = 1 + βxi. The MLEs of α, β, λ and θ denoted by α̂MLE , β̂MLE , λ̂MLE

and θ̂MLE are obtained by solving the above equations simultaneously or by maximizing the
log-likelihood function given by (27) with respect to α, β, λ and θ.

4.2. Method of ordinary and weighted least squares

(Swain, Venkatraman, and Wilson 1988) proposed the ordinary least squares (OLS) and
weighted least squares (WLS) methods to obtain the estimates of the unknown parameters of
beta distributions. Here, we consider the two methods to estimate the unknown parameters
of the CELP distribution. Let x1:n < x2:n < · · · < xn:n be the order observations obtained
from a sample of size n from the CELP distribution, then the OLS and WLS estimates of
α, β, λ and θ can be obtained by minimizing the following function with respect to α, β, λ and
θ

S(α, β, θ, λ) =

n∑
i=1

ωi

{
exp[λ(1− (1 + βxi:n)−α)θ]− 1

eλ − 1
− i

n+ 1

}2

. (28)

The OLS estimates denoted by α̂OLS , β̂OLS , λ̂OLS and θ̂OLS are obtained by setting ωi = 1,
while we can obtain the WLS estimates denoted by α̂WLS , β̂WLS , λ̂WLS and θ̂WLS by setting

ωi = (n+1)2(n+2)
i(n−i+1) . These estimates can also be obtained by solving the following equations

∂S(α, β, θ, λ)

∂α
=

n∑
i=1

ωi

{
exp[λ(1− ν−αi:n )θ]− 1

eλ − 1
− i

n+ 1

}
ϕ1(xi:n|α, β, θ, λ),

∂S(α, β, θ, λ)

∂β
=

n∑
i=1

ωi

{
exp[λ(1− ν−αi:n )θ]− 1

eλ − 1
− i

n+ 1

}
ϕ2(xi:n|α, β, θ, λ),

∂S(α, β, θ, λ)

∂θ
=

n∑
i=1

ωi

{
exp[λ(1− ν−αi:n )θ]− 1

eλ − 1
− i

n+ 1

}
ϕ3(xi:n|α, β, θ, λ)
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and
∂S(α, β, θ, λ)

∂λ
=

n∑
i=1

ωi

{
exp[λ(1− ν−αi:n )θ]− 1

eλ − 1
− i

n+ 1

}
ϕ4(xi:n|α, β, θ, λ),

where

ϕ1(xi:n|α, β, θ, λ) =
λθν−αi:n log(νi:n)(1− ν−αi:n )θ−1eλ(1−ν−αi:n )θ

eλ − 1
, (29)

ϕ2(xi:n|α, β, θ, λ) =
λθαxi:nν

−(α+1)
i:n (1− ν−αi:n )θ−1eλ(1−ν−αi:n )θ

eλ − 1
, (30)

ϕ3(xi:n|α, β, θ, λ) =
λ(1− ν−αi:n )θ log(1− ν−αi:n )eλ(1−ν−αi:n )θ

eλ − 1
(31)

and

ϕ4(xi:n|α, β, θ, λ) =
(eλ − 1)eλ(1−ν−αi:n )θ(1− ν−αi:n )θ − eλ[eλ(1−ν−αi:n )θ − 1]

(eλ − 1)2
, (32)

where νi:n, i = 1, 2, ..., n are the order observations of νi as defined earlier.

4.3. Method of percentile

Since the CELP has a closed form distribution function given by (9), then we can use the
percentiles (PE) method to estimate the unknown parameters α, β, λ and θ by equating the
sample percentile points with the corresponding population percentile points, for more de-
tails about the PE method see (Kao 1958), (Kao 1959). Let pi = i

n+1 be the estimate of

F (xi:n|α, β, θ, λ), then the PE estimates denoted by α̂PE , β̂PE , λ̂PE and θ̂PE can be obtained
by minimizing the following function

P (α, β, θ, λ) =

n∑
i=1

xi:n − 1

β

[(
1−

(
log[1 + pi(e

λ − 1)]

λ

)1/θ)−1/α

− 1

]
2

, (33)

with respect to α, β, λ and θ, or equivalently by solving the following non-linear equations

∂P (α, β, θ, λ)

∂α
=

n∑
i=1

{
xi:n −

1

β

[
(1− (υi)

1/θ)−1/α − 1
]}

$1(xi:n|α, β, θ, λ),

∂P (α, β, θ, λ)

∂β
=

n∑
i=1

{
xi:n −

1

β

[
(1− (υi)

1/θ)−1/α − 1
]}

$2(xi:n|α, β, θ, λ),

∂P (α, β, θ, λ)

∂θ
=

n∑
i=1

{
xi:n −

1

β

[
(1− (υi)

1/θ)−1/α − 1
]}

$3(xi:n|α, β, θ, λ)

and
∂P (α, β, θ, λ)

∂λ
=

n∑
i=1

{
xi:n −

1

β

[
(1− (υi)

1/θ)−1/α − 1
]}

$4(xi:n|α, β, θ, λ),

where υi = log[1+pi(e
λ−1)]

λ and

$1(xi:n|α, β, θ, λ) =
1

βα2
log(1− υ1/θ

i )(1− υ1/θ
i )−1/α,

$2(xi:n|α, β, θ, λ) =
[1− (υi)

1/θ]−1/α − 1

β2
,
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$3(xi:n|α, β, θ, λ) =
1

βαθ2
log(υi)υ

1/θ
i (1− υ1/θ

i )−1−1/α

and

$4(xi:n|α, β, θ, λ) =
1

βαθλ
υ

1/θ−1
i (1− υ1/θ

i )−1−1/α[pie
λ(1−υi)].

4.4. Method of maximum product of spacing

According to (Cheng and Amin 1979), (Cheng and Amin 1983), the maximum product of
spacing (MPS) estimates of the unknown parameters of the CELP distribution can be obtained
based on the idea of differences between the values of the cdf at consecutive data points. Based
on a random sample of size n from the CELP distribution, the uniform spacings can be defined
as follows

Di(α, β, θ, λ) = F (xi:n|α, β, θ, λ)− F (xi−1:n|α, β, θ, λ), i = 1, 2, ..., n, (34)

where F (|α, β, θ, λ) is the cdf given by (9), F (x0:n|α, β, θ, λ) = 0 and F (xn+1:n|α, β, θ, λ) = 1.
The MPS estimates denoted by α̂MPS , β̂MPS , λ̂MPS and θ̂MPS can be obtained by maximizing

M(α, β, θ, λ) =
1

n+ 1

n+1∑
i=1

logDi(α, λ, a)

=
1

n+ 1

n+1∑
i=1

log

{
eλ[1−(1+βxi:n)−α]θ − 1

eλ − 1
− eλ[1−(1+βxi−1:n)−α]θ − 1

eλ − 1

}
with respect to α, β, λ and θ, or by solving the following equations four equations

∂M(α, β, θ, λ)

∂α
=

1

n+ 1

n+1∑
i=1

ϕ1(xi:n|α, β, θ, λ)− ϕ1(xi−1:n|α, β, θ, λ)

Di(α, β, θ, λ)
,

∂M(α, β, θ, λ)

∂β
=

1

n+ 1

n+1∑
i=1

ϕ2(xi:n|α, β, θ, λ)− ϕ2(xi−1:n|α, β, θ, λ)

Di(α, β, θ, λ)
,

∂M(α, β, θ, λ)

∂θ
=

1

n+ 1

n+1∑
i=1

ϕ3(xi:n|α, β, θ, λ)− ϕ3(xi−1:n|α, β, θ, λ)

Di(α, β, θ, λ)

and
∂M(α, β, θ, λ)

∂λ
=

1

n+ 1

n+1∑
i=1

ϕ4(xi:n|α, β, θ, λ)− ϕ4(xi−1:n|α, β, θ, λ)

Di(α, β, θ, λ)
,

where ϕ1(xi:n|α, β, θ, λ), ϕ2(xi:n|α, β, θ, λ), ϕ3(xi:n|α, β, θ, λ) and ϕ4(xi:n|α, β, θ, λ) are given
by (29), (30), (31) and (32).

4.5. Method of Cramér-von-Mises

The Cramér-von-Mises estimates (CMEs) denoted by α̂CME , β̂CME , λ̂CME and θ̂CME of α,
β, λ and θ can be obtained by minimizing the following function with respect to α, β, λ and
θ

C(α, β, λ, θ) =
1

12n
+

n∑
i=1

{
eλ[1−(1+βxi:n)−α]θ − 1

eλ − 1
− 2i− 1

2n
−

}2

. (35)

These estimates also can be obtained by solving the following equations

∂C(α, β, λ, θ)

∂α
=

n∑
i=1

{
eλ[1−(1+βxi:n)−α]θ − 1

eλ − 1
− 2i− 1

2n
−

}
ϕ1(xi:n|α, β, λ, θ),
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∂C(α, β, λ, θ)

∂β
=

n∑
i=1

{
eλ[1−(1+βxi:n)−α]θ − 1

eλ − 1
− 2i− 1

2n
−

}
ϕ2(xi:n|α, β, λ, θ),

∂C(α, β, λ, θ)

∂θ
=

n∑
i=1

{
eλ[1−(1+βxi:n)−α]θ − 1

eλ − 1
− 2i− 1

2n
−

}
ϕ3(xi:n|α, β, λ, θ)

and

∂C(α, β, λ, θ)

∂λ
=

n∑
i=1

{
eλ[1−(1+βxi:n)−α]θ − 1

eλ − 1
− 2i− 1

2n
−

}
ϕ3(xi:n|α, β, λ, θ),

where ϕ1(xi:n|α, β, θ, λ), ϕ2(xi:n|α, β, θ, λ), ϕ3(xi:n|α, β, θ, λ) and ϕ4(xi:n|α, β, θ, λ) are defined
by (29), (30), (31) and (32).

5. Simulation study

It is not possible to compare the performance of the differernt estimators derived in the previ-
ous sections theoretically, therfore, we conduct a Monte Carlo simulation study to determine
the best estimation method that can be used to estimate the CELP distribution paramteres.
We generate 1000 random samples of sizes 50, 100 and 200 from CELP distrribution and by
considering λ = 1 in all setting and by choosing α = (0.5, 1.5), β = (0.5, 1) and θ = (1, 2). In
each comination from eight parameter combinations, we obtain the average value of estimates
as well as the root mean square error (RMSE) as follows

Mean(µ̂j) =
1

1000

1000∑
i=1

µ̂j,i and RMSE(µ̂j) =

√√√√ 1

1000

1000∑
i=1

(µ̂j,i − µj)2,

where µ = (α, β, λ, θ) and µ̂ = (α̂, β̂, λ̂, θ̂). All the estimators are obtained by solving four
nonlinear equations. This is a very popular problem in the literature and some numerical
techniques can be used to obtain the estimates. We first estimated the parameters using the
method of maximum likelihood by maximizing the log-likelihood function using the Quasi
Newton method. For all other methods, the maximum likelihood estimates were used as
the initial values. These values are displayed for the different six methods of estimation in
Tables 2-4. The simulation study is carried out using Mathcad program version 2007. From
these Tables, we observe that the RMSE decreases as the sample size increases, which means
that the different methods provide a consistent estimators. The PCEs perform better than
other estimates in terms of minimum RMSE in most cases followed by WLSEs, LSEs, CMEs,
MPSEs and MLEs.
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Table 2: Average values of estimates and the corresponding RMSEs (in parentheses) for
n = 50

Parameters MLEs LSEs WLSEs PCEs MPSEs CMEs

α = 0.5 0.530(0.201) 0.513(0.134) 0.502(0.113) 0.528(0.198) 0.596(0.256) 0.525(0.191)
β = 0.5 0.768(0.880) 0.548(0.352) 0.504(0.332) 0.460(0.258) 0.707(1.163) 0.757(1.288)
θ = 1 1.104(0.733) 1.063(0.399) 1.088(0.423) 1.443(0.803) 0.991(0.903) 0.790(0.397)
λ = 1 1.183(2.953) 0.746(0.961) 0.530(1.067) 1.186(0.359) 1.188(2.223) 0.956(2.208)

α = 0.5 0.494(0.128) 0.479(0.113) 0.477(0.106) 0.547(0.211) 0.567(0.207) 0.531(0.136)
β = 0.5 0.432(0.341) 0.435(0.312) 0.460(0.316) 0.486(0.261) 0.689(0.956) 0.450(0.407)
θ = 2 2.110(0.985) 1.829(0.648) 1.796(0.748) 2.757(1.457) 2.146(1.935) 1.618(0.929)
λ = 1 0.668(2.542) 0.692(1.317) 0.619(1.424) 1.160(0.317) 0.834(1.512) 0.977(1.948)

α = 1.5 1.864(0.879) 1.693(0.665) 1.794(0.955) 1.364(0.689) 2.398(1.281) 2.061(1.278)
β = 0.5 0.584(0.550) 0.497(0.295) 0.536(0.398) 0.529(0.302) 0.322(0.331) 0.481(0.352)
θ = 1 1.104(0.577) 1.018(0.509) 0.960(0.443) 0.725(0.573) 0.813(0.394) 1.060(0.573)
λ = 1 0.868(1.614) 1.003(0.931) 1.189(1.421) 1.016(0.283) 1.327(1.688) 0.991(1.120)

α = 1.5 1.787(0.845) 1.567(0.511) 1.746(0.971) 1.658(0.959) 2.004(0.818) 1.799(0.886)
β = 0.5 0.657(0.646) 0.548(0.356) 0.603(0.519) 0.438(0.317) 0.409(0.378) 0.684(0.916)
θ = 2 2.696(2.170) 2.175(1.013) 2.247(1.308) 1.388(1.309) 1.798(1.275) 2.554(1.714)
λ = 1 0.543(1.402) 0.619(1.075) 0.615(1.362) 0.963(0.913) 1.198(1.569) 0.382(1.314)

α = 0.5 0.528(0.191) 0.518(0.165) 0.522(0.149) 0.532(0.227) 0.619(0.286) 0.534(0.176)
β = 1 1.853(2.737) 0.806(0.634) 0.866(0.653) 0.774(0.429) 1.107(1.736) 1.038(1.244)
θ = 1 1.348(1.167) 0.916(0.432) 0.959(0.418) 1.231(0.662) 0.869(0.680) 1.016(0.537)
λ = 1 0.455(1.835) 0.685(1.075) 0.726(0.883) 1.094(0.288) 1.234(1.987) 0.804(1.350)

α = 0.5 0.478(0.137) 0.473(0.126) 0.466(0.122) 0.481(0.210) 0.521(0.138) 0.502(0.108)
β = 1 1.322(1.520) 0.900(0.486) 0.858(0.460) 0.849(0.551) 1.072(1.261) 1.018(0.727)
θ = 2 1.717(0.808) 1.714(0.784) 1.737(0.800) 2.128(1.162) 1.817(1.313) 1.783(0.715)
λ = 1 1.342(1.721) 0.855(1.481) 0.769(1.574) 0.961(0.299) 0.808(1.687) 0.876(1.323)

α = 1.5 1.749(0.839) 1.565(0.538) 1.659(0.637) 1.405(0.662) 2.141(0.961) 1.706(0.710)
β = 2 2.047(1.699) 2.166(0.950) 2.117(1.086) 2.270(1.145) 1.388(1.206) 2.328(1.342)
θ = 1 1.088(0.435) 1.104(0.456) 1.055(0.418) 0.840(0.573) 0.916(0.324) 1.192(0.568)
λ = 1 0.680(1.793) 0.875(0.958) 0.975(0.954) 1.074(0.276) 0.939(1.041) 0.927(0.894)

α = 1.5 1.735(0.813) 1.517(0.431) 1.513(0.385) 1.623(0.864) 1.740(0.594) 1.779(0.800)
β = 2 2.865(3.007) 1.843(0.681) 1.776(0.700) 2.023(1.386) 2.562(3.933) 2.534(2.320)
θ = 2 2.723(2.141) 1.967(0.839) 1.930(0.830) 1.462(1.177) 2.295(2.268) 2.254(1.192)
λ = 1 0.606(1.682) 0.678(1.283) 0.691(1.473) 1.129(0.431) 0.972(1.775) 1.049(1.393)
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Table 3: Average values of estimates and the corresponding RMSEs (in parentheses) for
n = 100

Parameters MLEs LSEs WLSEs PCEs MPSEs CMEs

α = 0.5 0.467(0.100) 0.476(0.082) 0.474(0.078) 0.504(0.177) 0.520(0.104) 0.483(0.111)
β = 0.5 0.755(0.722) 0.526(0.316) 0.526(0.297) 0.499(0.253) 0.692(0.819) 0.644(0.990)
θ = 1 1.143(0.547) 0.966(0.294) 0.996(0.280) 1.393(0.800) 0.946(0.478) 0.905(0.327)
λ = 1 0.726(1.697) 0.799(0.851) 0.737(0.954) 1.179(0.353) 1.187(1.936) 0.958(1.602)

α = 0.5 0.473(0.096) 0.482(0.087) 0.479(0.084) 0.509(0.158) 0.503(0.090) 0.498(0.074)
β = 0.5 0.434(0.282) 0.485(0.302) 0.477(0.300) 0.388(0.220) 0.580(0.617) 0.472(0.258)
θ = 2 1.895(0.768) 1.690(0.597) 1.819(0.637) 2.562(1.436) 1.956(1.119) 1.753(0.585)
λ = 1 0.860(1.844) 0.991(1.127) 0.835(1.152) 1.126(0.307) 0.879(1.331) 1.073(0.881)

α = 1.5 1.870(0.833) 1.623(0.443) 1.736(0.652) 1.464(0.660) 2.160(1.038) 1.772(0.667)
β = 0.5 0.487(0.385) 0.475(0.251) 0.474(0.276) 0.586(0.289) 0.364(0.331) 0.484(0.343)
θ = 1 0.955(0.341) 0.995(0.314) 0.930(0.290) 0.820(0.556) 0.825(0.339) 1.009(0.368)
λ = 1 0.990(1.565) 0.947(0.513) 1.119(1.098) 1.087(0.250) 1.222(1.447) 0.981(0.754)

α = 1.5 1.604(0.472) 1.570(0.318) 1.592(0.415) 1.362(0.545) 1.750(0.482) 1.713(0.567)
β = 0.5 0.568(0.533) 0.455(0.206) 0.503(0.255) 0.581(0.199) 0.398(0.313) 0.467(0.298)
θ = 2 2.327(1.690) 1.991(0.645) 1.975(0.785) 1.719(1.099) 1.765(0.908) 2.091(0.942)
λ = 1 0.638(1.341) 0.785(0.585) 1.013(1.126) 1.096(0.242) 0.923(1.490) 0.786(0.627)

α = 0.5 0.486(0.117) 0.512(0.103) 0.511(0.087) 0.525(0.200) 0.537(0.131) 0.520(0.109)
β = 1 0.978(0.837) 0.822(0.565) 0.903(0.577) 0.839(0.409) 0.975(1.176) 0.938(0.595)
θ = 1 1.002(0.382) 0.930(0.364) 0.969(0.344) 1.203(0.616) 0.895(0.435) 0.966(0.435)
λ = 1 0.697(1.351) 0.782(0.752) 0.821(0.628) 1.119(0.206) 0.883(1.736) 0.989(1.096)

α = 0.5 0.485(0.093) 0.487(0.092) 0.491(0.085) 0.488(0.165) 0.516(0.080) 0.507(0.081)
β = 1 1.266(0.795) 1.004(0.466) 1.018(0.436) 1.049(0.513) 1.078(1.067) 1.103(0.643)
θ = 2 2.148(0.805) 1.880(0.705) 1.925(0.734) 2.058(1.056) 1.880(1.077) 1.948(0.704)
λ = 1 0.973(1.052) 1.060(1.162) 1.061(1.232) 0.975(0.234) 0.993(1.262) 0.990(0.829)

α = 1.5 1.599(0.506) 1.452(0.295) 1.477(0.274) 1.406(0.576) 1.561(0.319) 1.548(0.385)
β = 2 2.080(1.232) 2.151(0.582) 2.045(0.488) 1.977(0.781) 2.076(1.123) 2.312(1.053)
θ = 1 1.040(0.335) 1.052(0.330) 1.042(0.297) 0.940(0.557) 0.945(0.286) 1.095(0.361)
λ = 1 0.849(1.727) 0.940(0.893) 0.909(0.862) 0.906(0.216) 1.004(0.989) 1.019(0.771)

α = 1.5 1.526(0.399) 1.487(0.341) 1.482(0.324) 1.403(0.479) 1.571(0.322) 1.500(0.326)
β = 2 2.150(1.056) 2.056(0.630) 2.052(0.652) 2.005(0.599) 1.946(1.180) 2.240(1.020)
θ = 2 2.202(0.819) 2.026(0.698) 2.048(0.636) 1.680(0.941) 1.932(0.795) 2.060(0.753)
λ = 1 0.665(1.503) 0.766(1.010) 0.768(1.084) 0.950(0.155) 0.962(1.268) 1.032(1.112)
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Table 4: Average values of estimates and the corresponding RMSEs (in parentheses) for
n = 200

Parameters MLEs LSEs WLSEs PCEs MPSEs CMEs

α = 0.5 0.489(0.073) 0.501(0.062) 0.489(0.061) 0.503(0.165) 0.502(0.070) 0.509(0.085)
β = 0.5 0.637(0.392) 0.512(0.304) 0.521(0.280) 0.504(0.221) 0.570(0.470) 0.634(0.353)
θ = 1 1.047(0.328) 0.989(0.196) 1.002(0.224) 1.387(0.524) 0.939(0.341) 1.052(0.462)
λ = 1 1.117(1.670) 0.973(0.634) 0.941(0.807) 1.174(0.351) 1.157(1.849) 1.151(0.989)

α = 0.5 0.485(0.072) 0.493(0.063) 0.488(0.064) 0.509(0.156) 0.499(0.062) 0.497(0.055)
β = 0.5 0.515(0.224) 0.474(0.280) 0.508(0.277) 0.401(0.258) 0.470(0.302) 0.455(0.253)
θ = 2 2.040(0.680) 1.705(0.542) 1.897(0.497) 2.329(1.172) 1.857(0.689) 1.769(0.548)
λ = 1 0.937(1.826) 1.053(0.940) 0.882(1.005) 1.065(0.264) 0.932(1.164) 0.970(0.736)

α = 1.5 1.546(0.341) 1.487(0.318) 1.535(0.378) 1.410(0.533) 1.713(0.454) 1.586(0.529)
β = 0.5 0.539(0.228) 0.563(0.201) 0.557(0.246) 0.538(0.206) 0.418(0.197) 0.574(0.277)
θ = 1 1.033(0.238) 1.061(0.253) 1.022(0.241) 0.835(0.512) 0.957(0.220) 1.057(0.284)
λ = 1 0.981(1.145) 0.946(0.484) 1.032(0.890) 1.087(0.219) 0.910(1.127) 0.993(0.670)

α = 1.5 1.569(0.266) 1.568(0.225) 1.599(0.291) 1.368(0.469) 1.606(0.268) 1.653(0.433)
β = 0.5 0.466(0.236) 0.455(0.155) 0.462(0.205) 0.599(0.194) 0.455(0.260) 0.471(0.243)
θ = 2 1.934(0.474) 1.944(0.490) 1.909(0.579) 1.829(1.038) 1.711(0.561) 1.988(0.743)
λ = 1 0.779(1.179) 0.891(0.492) 0.949(0.754) 1.102(0.229) 1.073(1.376) 0.909(0.574)

α = 0.5 0.478(0.077) 0.502(0.079) 0.502(0.060) 0.515(0.185) 0.503(0.066) 0.501(0.049)
β = 1 0.907(0.495) 1.060(0.441) 1.019(0.360) 0.895(0.386) 1.012(0.782) 1.152(0.587)
θ = 1 0.994(0.287) 1.042(0.333) 1.029(0.252) 1.098(0.529) 0.921(0.305) 1.036(0.185)
λ = 1 0.907(0.902) 0.904(0.679) 0.905(0.568) 1.036(0.154) 1.082(1.152) 0.956(0.563)

α = 0.5 0.480(0.085) 0.490(0.064) 0.867(0.056) 0.495(0.158) 0.507(0.045) 0.492(0.045)
β = 1 1.124(0.661) 1.000(0.447) 1.077(0.419) 0.980(0.487) 1.012(0.891) 0.970(0.436)
θ = 2 2.025(0.781) 1.921(0.657) 1.993(0.529) 2.022(0.924) 1.927(0.804) 1.984(0.446)
λ = 1 1.069(0.914) 1.007(0.867) 1.050(0.904) 1.036(0.231) 0.928(0.708) 0.921(0.532)

α = 1.5 1.553(0.330) 1.444(0.199) 1.462(0.176) 1.433(0.496) 1.515(0.222) 1.512(0.263)
β = 2 2.028(0.938) 2.085(0.360) 2.003(0.270) 1.996(0.625) 1.964(0.825) 2.129(0.699)
θ = 1 0.957(0.234) 0.998(0.240) 1.004(0.210) 0.910(0.512) 0.941(0.195) 1.023(0.237)
λ = 1 1.079(1.332) 1.003(0.660) 0.925(0.673) 1.020(0.201) 0.943(0.602) 1.007(0.445)

α = 1.5 1.541(0.272) 1.520(0.201) 1.519(0.200) 1.481(0.404) 1.539(0.293) 1.500(0.251)
β = 2 1.993(0.971) 1.977(0.508) 2.032(0.636) 2.019(0.570) 1.957(0.914) 1.980(0.648)
θ = 2 1.904(0.504) 1.935(0.409) 1.998(0.531) 1.703(0.851) 1.994(0.494) 1.954(0.531)
λ = 1 1.046(1.458) 1.065(0.521) 1.040(0.524) 1.007(0.112) 1.003(0.722) 1.016(0.699)

6. Applications

In this section, we provide two applications to real data sets to illustrate the importance of the
CELP distribution presented in Section 2. The MLEs of the model parameters are computed
and goodness-of-fit statistics for these models are compared with other competing models.
The first real data set was originally reported by (Lee and Wang 2003), which represents the
remission times (in months) of a random sample of 128 bladder cancer patients. The cancer
data were analyzed by (Mead and Afify 2017) and (Aldahlan and Afify 2018). The Second
data set was taken from (Murthy, Xie, and Jiang 2004), which represents the failures times
of 50 items.

We compare the fits of the new CELP distribution with some competative models which are
listed in Table 5 and their densities are given by:
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TL: f(x) = αβ (1 + βx)−α−1 [1− λ+ 2λ (1 + βx)−α
]

;

BEL: f(x) = βθλ
B(a,b) (1 + λx)−θ−1

[
1− (1 + λx)−θ

]aβ−1
{

1−
[
1− (1 + λx)−θ

]β}b−1

;

McL: f(x) = cαβα

B(a/c,η+1) (β + x)−α−1
[
1−

(
β

β+x

)α]a−1 {
1−

[
1−

(
β

β+x

)α]c}η
;

WL: f(x) = abα
β

(
1 + x

β

)bα−1
[
1−

(
1 + x

β

)−α]b−1

e
−a
[(

1+ x
β

)α
−1
]b

;

BXL: f(x) = 2θα
β

(
1 + x

β

)α−1 [(
1 + x

β

)α
− 1
]

e
−
[(

1+ x
β

)α
−1
]2 {

1− e
−
[(

1+ x
β

)α
−1
]2}θ−1

.

The parameters of the above densities are positive real numbers, except |λ| ≤ 1 for the TL
model.

The fitted models are compared using goodness-of-fit measures, namely: the maximized log-
likelihood under the model (−̂̀), Cramér-Von Mises (CVM), Anderson-Darling (AD), Kol-
mogorov Smirnov (KS) statistic and its p-value (PV). The values of goodness-of-fit statistics,
the MLEs and their corresponding standard errors (SEs) (listed in parentheses) of the fitted
models are given in Tables 6 and 7, respectively. It is clear that the CELP distribution fits
very well for both the data sets. Figures 3 and 4 show the fitted pdf, cdf, sf and PP plots of
the CELP distribution for both the data sets, respectively.

Table 5: The fitted competitive models

Distribution Author(s)

Transmuted Lomax (TL) (Ashour and Eltehiwy 2013)
Beta exponentiated Lomax (BEL) (Mead 2016)
McDonald Lomax (McL) (Lemonte and Cordeiro 2013)
Exponentiated Lomax (EL) (Abdul-Moniem and Abdel-Hameed 2012)
Weibull Lomax (WL) (Tahir et al. 2015)
Burr X Lomax (BXL) (Yousof et al. 2017)
Lomax (L) (Lomax 1954)
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Table 6: Goodness-of-fit statistics, MLEs and SEs for cancer data

Model −̂̀ CVM AD KS PV Estimates (SEs)

CELP 409.385 0.013 0.084 0.028 0.999 α 2.872(0.888)
β 0.121(0.072)
θ 1.027(0.707)
λ 3.263(2.444)

TL 409.625 0.019 0.125 0.035 0.996 α 4.016(1.486)
β 0.052(0.025)
λ -0.844(0.139)

BEL 409.927 0.025 0.168 0.039 0.989 β 2.693(4.883)
θ 1.446(4.180)
λ 0.077(0.112)
a 0.565(0.986)
b 2.703(8.117)

McL 409.912 0.025 0.168 0.039 0.989 α 0.808(3.545)
β 11.29(18.29)
a 1.506(0.283)
b 4.188(26.36)
c 2.104(3.111)

EL 410.071 0.028 0.189 0.040 0.984 α 4.570(2.117)
β 0.040(0.026)
θ 1.587(0.274)

WL 410.079 0.030 0.201 0.041 0.978 α 0.110(0.173)
β 6.881(6.791)
a 35.52(103.4)
b 1.518(0.287)

BXL 411.145 0.054 0.354 0.047 0.932 α 0.298(0.051)
β 1.020(0.664)
θ 0.933(0.249)

L 413.836 0.077 0.471 0.097 0.174 α 12.77(5.964)
β 0.009(0.004)
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Figure 3: Fitted pdf, cdf, sf and PP plots for cancer data
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Figure 4: Fitted pdf, cdf, sf and PP plots for failures times data
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Table 7: Goodness-of-fit statistics, MLEs and SEs for failures times data

Model −̂̀ CVM AD KS PV Estimates (SEs)

CELP 150.152 0.050 0.261 0.086 0.850 α 52.72(1.498)
β 0.002(0.0003)
θ 0.587(0.229)
λ 0.875(1.533)

TL 152.150 0.088 0.444 0.094 0.763 α 23.41(14.01)
β 0.004(0.001)
λ 0.467(0.654)

BEL 150.145 0.055 0.279 0.094 0.766 β 2.246(4.229)
θ 3.426(14.73)
λ 0.011(0.016)
a 0.289(0.530)
b 3.862(17.46)

McL 150.131 0.054 0.276 0.094 0.768 α 0.386(13.41)
β 31.84(223)
a 0.648(0.136)
b 36.22(1864)
c 2.068(4.780)

EL 150.343 0.069 0.344 0.107 0.612 α 23.43(11.65)
β 0.004(0.002)
θ 0.700(0.122)

WL 150.681 0.085 0.428 0.111 0.558 α 0.012(0.020)
β 6032(76.56)
a 7407(12905)
b 0.800(0.095)

BXL 150.327 0.062 0.316 0.097 0.726 α 0.482(0.169)
β 5.134(4.095)
θ 0.334(0.075)

L 152.573 0.069 0.349 0.105 0.638 α 28.56(13.17)
β 0.004(0.002)



100 The Complementary Exponentiated Lomax-Poisson Distribution

x

D
e

n
s
it
y

0 20 40 60 80

0
.0

0
0

.0
2

0
.0

4
0

.0
6

0
.0

8
0

.1
0 MLEs

LSEs
WLSEs

x

D
e

n
s
it
y

0 20 40 60 80

0
.0

0
0

.0
2

0
.0

4
0

.0
6

0
.0

8
0

.1
0 PCEs

MPSEs
CMEs

Figure 5: The fitted CELP PDF for different estimation methods for cancer data
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Figure 6: The fitted CELP PDF for different estimation methods failures times data

We obtain the estimates of the unknown parameters of the CELP distribution using six
methods of estimation and the values of −̂̀, KS and corresponding P-values are displayed
in Tables 8 and 9 for both the data sets. The values in Tables 8 and 9 reveal that the
MLE method can be used to estimate the parameters of the CELP distribution for bladder
cancer data, whereas, the LSE method can be used to estimate the parameters of the CELP
distribution for failures times data. However, all estimation methods perform well. The
histogram of the data and the fitted densities for estimation methods are displayed in Figures
5 and 6. These Figures support the results in Tables 8 and 9.

7. Conclusion

In this article, we have proposed a new distribution, called the complementary exponentiated
Lomax-Poisson distribution and discussed its various properties. We have observed that
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Table 8: The parameters estimates of the CELP model using different methods, −̂̀, KS
statistic and corresponding PV for bladder cancer data

Method α β θ λ −̂̀ KS PV

MLEs 2.872 0.121 1.027 3.263 409.385 0.028 0.9999
LSEs 2.454 0.162 1.022 3.626 409.536 0.031 0.9997
WLSEs 2.349 0.186 1.909 1.898 409.509 0.033 0.9989
PCEs 2.204 0.255 1.806 3.043 410.814 0.035 0.9977
MPSEs 3.896 0.065 0.559 4.540 409.920 0.039 0.9894
CMEs 2.540 0.159 1.536 2.377 409.540 0.031 0.9997

Table 9: The parameters estimates of the CELP model using different methods, −̂̀, KS
statistic and corresponding PV for failures times data

Method α β θ λ −̂̀ KS PV

MLEs 52.72 0.002 0.587 0.875 150.152 0.086 0.8501
LSEs 23.20 0.005 0.326 2.892 150.544 0.077 0.9298
WLSEs 6.074 0.022 0.343 2.794 150.487 0.084 0.8732
PCEs 2.406 0.118 0.601 2.938 152.062 0.094 0.7709
MPSEs 10.72 0.013 0.425 2.341 150.484 0.085 0.8607
CMEs 4.097 0.041 0.378 3.001 150.473 0.079 0.9105

the proposed distribution is more flexible than some of the existing models. We have also
observed that it has decreasing, increasing and unimodal hazard rate depending upon the
parameters. The estimation of model parameters are outlined using six different frequentist
methods of estimation. Two applications to real data sets are presented as an illustration of
the potentiality of the new model as compared to some existing models. After comparing the
values of four popular goodness-of-fit statistics, we may say that our model CELP distribution
is better as compared to others for these two data sets. We expect the utility of the newly
proposed model in different fields especially in reliability when the hazard rate is decreasing,
increasing or unimodal (upside-down bathtub). The new model is analytically quite tractable,
and it can be used quite effectively, to analyze censored data also.

Acknowledgments

The authors would like to thank the Editor, Associate Editor and the referees for careful
reading and for valuable comments that greatly improved the presentation of article.

References

Abd-Elfattah AM, Alaboud FM, Alharby AH (2007). “On Sample Size Estimation for Lomax
Distribution.” Australian Journal of Basic and Applied Sciences, 1, 373–378.

Abd-Ellah AH (2003). “Bayesian One Sample Prediction Bounds for the Lomax Distribution.”
Indian Journal of Pure and Applied Mathematics, 30, 101–109.

Abdul-Moniem IB, Abdel-Hameed HF (2012). “On Exponentiated Lomax Distribution.” In-
ternational Journal of Mathematical Archive, 3, 2144–2150.

Adamidis A, Loukas S (1998). “A Lifetime Distribution with Decreasing Failure Rate.” Statis-
tics and Probability Letters, 39, 35–42.



102 The Complementary Exponentiated Lomax-Poisson Distribution

Afify AZ, Cordeiro GM, Maed ME, Alizadeh M, Al-Mofleh H, Nofal ZM (2019). “The Gener-
alized Odd Lindley-G Family: Properties and Applications.” Anais da Academia Brasileira
de Ciências, 91, 1–22.

Afify AZ, Mohamed OA (2020). “A New Three-Parameter Exponential Distribution with
Variable Shapes for the Hazard Rate: Estimation and Applications.” Mathematics, 8, 1–17.

Afify AZ, Nassar M, Cordeiro GM, Kumar D (2020). “The Weibull Marshall-Olkin Lindley
Distribution: Properties and Estimation.” Journal of Taibah University for Science, 14,
192–204.

Al-Awadhi SA, Ghitany ME (2001). “Statistical Properties of Poisson-Lomax Distribution
and Its Application to Repeated Accidents Data.” Journal of Applied Statistical Science,
10, 365–372.

Aldahlan M, Afify AZ (2018). “The Odd Exponentiated Half-Logistic Burr XII Distribution.”
Pakistan Journal of Statistics and Operation Research, 14, 305–317.

Alkasasbeh MR, Raqab MZ (2009). “Estimation of the Generalized Logistic Distribution
Parameters: Comparative Study.” Statistical Methodology, 6, 262–279.

Ashour SK, Eltehiwy MA (2013). “Transmuted Lomax Distribution.” American Journal of
Applied Mathematics and Statistics, 1, 21–127.

Barreto-Souza W, Cribari-Neto F (2009). “A Generalization of the Exponential-Poisson Dis-
tribution.” Statistics and Probability Letters, 79, 2493–2500.

Basu AP, Klein JP (1982). Some Recent Results in Competing Risks Theory Sur-
vival Analysis, 216–229. Institute of Mathematical Statistics, Hayward, CA,
doi:10.1214/lnms/1215464851. https://projecteuclid.org/euclid.lnms/1215464851.

Cancho VG, Louzada-Neto F, Barriga GDC (2011). “The Poisson-Exponential Lifetime Dis-
tribution.” Computational Statistics & Data Analysis, 55, 2493–2500.

Cheng RCH, Amin NAK (1979). Maximum Product of Spacings Estimation with Applications
to the Lognormal Distribution. Technical report, Department of Mathematics, University
of Wales.

Cheng RCH, Amin NAK (1983). “Estimating Parameters in Continuous Univariate Distribu-
tions with a Shifted Origin.” J. R. Statist. Soc. B, 45, 394–403.

Cordeiro GM, Afify AZ, Ortega EM, Suzuki AK, Mead ME (2019). “The Odd Lomax Gener-
ator of Distributions: Properties, Estimation and Applications.” Journal of Computational
and Applied Mathematics, 347, 222–237.

Dey S, Ali S, Park C (2015). “Weighted Exponential Distribution: Properties and Different
Methods of Estimation.” Journal of Statistical Computation and Simulation, 85, 3641–3661.

Dey S, Alzaatreh A, Zhang C, Kumar D (2017a). “A New Extension of Generalized Expo-
nential Distribution with Application to Ozone Data.” Ozone: Science & Engineering, 39,
273–285.

Dey S, Dey T, Ali S, Mulekar MS (2016). “Two-Parameter Maxwell Distribution: Properties
and Different Methods of Estimation.” Journal of Statistical Theory and Practice, 10, 291–
310.

Dey S, Dey T, D K (2014). “Two-Parameter Rayleigh Distribution: Different Methods of
Estimation.” American Journal of Mathematical and Management Sciences, 33, 55–74.



Austrian Journal of Statistics 103

Dey S, Kumar D, Ramos PL, Louzada F (2017b). “Exponentiated Chen Distribution: Prop-
erties and Estimation.” Communication in Statistics - Simulation and Computation, 46,
8118–8139.

Dey S, Nassar M, Kumar D, Alzaatreh A, Tahir MH (2019). “A New Lifetime Distribution
with Decreasing and Upside-Down Bathtub-Shaped Hazard Rate Function.” STATISTICA,
79, 399–426.

Dey S, Raheem E, Mukherjee S, Ng HKT (2017c). “Two Parameter Exponentiated-Gumbel
Distribution: Properties and Estimation with Flood Data Example.” Journal of Statistics
and Management Systems, 20, 197–233.

Dey S, Zhang C, Asgharzadeh A, Ghorbannezhad M (2017d). “Comparisons of Methods of
Estimation for the NH Distribution.” Annals of Data Science, 4, 441–455.

Ghitany ME, Al-Awadhi FA, Alkhalfan LA (2007). “Marshal-Olkin Extended Lomax Distri-
bution and Its Application to Censored Data.” Communications in Statistics - Theory and
Methods, 36, 1855–1866.

Hassan AS, Al-Ghamdi A (2009). “Optimum Step Stress Accelerated Life Testing for Lomax
Distribution.” Journal of Applied Sciences Research, 5, 2153–2164.

Hassan AS, Nassr SG (2018). “Power Lomax Poisson Distribution: Properties and Estima-
tion.” Journal of Data Science, 16, 105–128.

Kao JHK (1958). “Computer Methods for Estimating Weibull Parameters in Reliability
Studies.” Trans. IRE Reliability Quality Control, 13, 15–22.

Kao JHK (1959). “A Graphical Estimation of Mixed Weibull Parameters in Life Testing
Electron Tube.” Technometrics, 01, 389–407.

Kumar D, Kumar M (2019). “A New Generalization of the Extended Exponential Distribution
with an Application.” Annals of Data Sciences, 6, 441–462.

Kundu D, Raqab MZ (2005). “Generalized Rayleigh distribution: Different Methods of Esti-
mations.” Computational Statistics and Data Analysis, 49, 187–200.

Kus C (2007). “A New Lifetime Distribution. Computational Statistics and Data Analysis.”
Computational Statistics and Data Analysis, 51, 4497–4509.

Lee ET, Wang JW (2003). Statistical Methods for Survival Data Analysis. Third Ed. Wiley,
New York.

Lemonte AJ, Cordeiro GM (2013). “An Extended Lomax Distribution.” Statistics, 47, 800–
816.

Lomax KS (1954). “Business Failures: Another Example of the Analysis of Failure Data.”
Journal of the American Statistical Association, 49, 847–852.

Louzada F, Marchi V, Carpenter J (2013). “The Complementary Exponentiated Exponen-
tial Geometric Lifetime Distribution.” Journal of Probability and Statistics, 2013, Art.ID
502159, 12.

Lu W, Shi D (2012). “A New Compounding Life Distribution: The Weibull Poisson Distri-
bution.” Journal of Applied Statistics, 39, 21–38.

Mahmoudi E, Sepahdar A (2013). “Exponentiated Weibull-Poisson Distribution: Model,
Properties and Applications.” Mathematics and Computers in Simulation, 92, 76–97.

Mathai AM, Haubold HJ (2008). “On Generalized Distributions and Pathways.” Physics
Letters A, 372, 2109–2113.



104 The Complementary Exponentiated Lomax-Poisson Distribution

Mazucheli J, Louzada F, Ghitany ME (2013). “Comparison of Estimation Methods for the
Parameters of the Weighted Lindley Distribution.” Applied Mathematics and Computation,
220, 463–471.

Mead ME (2016). “On Five-Parameter Lomax Distribution: Properties and Applications.”
Pakistan Journal of Statistics and Operation Research, 12, 185–199.

Mead ME, Afify AZ (2017). “On Five-Parameter Burr XII Distribution: Properties and
Applications.” South African Statistical Journal, 51, 67–80.

Moors JJA (1988). “A Quantile Alternative for Kurtosis.” Journal of the Royal Statistical
Society: Series D, 37, 25–32.

Murthy DP, Xie M, Jiang R (2004). Weibull Models. John Wiley Sons.

Nassar M, Afify AZ, Dey S, Kumar D (2018a). “A New Extension of Weibull Distribution:
Properties and Different Methods of Estimation.” Journal of Computational and Applied
Mathematics, 336, 439–457.

Nassar M, Afify AZ, Shakhatreh MK (2020). “Estimation Methods of Alpha Power Exponen-
tial Distribution with Applications to Engineering and Medical Data.” Pakistan Journal of
Statistics and Operation Research, 16, 149–166.

Nassar M, Dey S, Kumar D (2018b). “Logarithm Transformed Lomax Distribution with
Applications.” Calcutta Statistical Association Bulletin, 70, 122–135.

Ramos MW, Marinho PRD, Silva RV, Cordeiro GM (2013). “The Exponentiated Lomax
Poisson Distribution with an Application to Lifetime Data.” Advances and Applications in
Statistics, 34, 107–135.

Ristic MM, Nadarajah S (2014). “A New Lifetime Distribution.” Journal of Statistical Com-
putation and Simulation, 81, 135–150.

Sen S, Afify AZ, Al-Mofleh H, Ahsanullah M (2019). “The Quasi Xgamma-Geometric Distri-
bution with Application in Medicine.” Filomat, 33, 5291–5330.

Swain J, Venkatraman S, Wilson J (1988). “Least Squares Estimation of Distribution Function
in Johnson’s Translation System.” Journal of Statistical Computation and Simulation, 29,
271–297.

Tahir MH, Cordeiro GM (2016). “Compounding of Distributions: A Survey and New Gener-
alized Classes.” Journal of Statistical Distributions and Applications, 3, 1–35.

Tahir MH, Cordeiro GM, Mansoor M, Zubair M (2015). “The Weibull-Lomax Distribution:
Properties and Applications.” Hacettepe Journal of Mathematics and Statistics, 44, 461–
480.

Yousof HM, Afify AZ, Hamedani GG, Aryal G (2017). “The Burr X Generator of Distributions
for Lifetime Data.” Journal of Statistical Theory and Applications, 16, 288–305.

Affiliation:

Devendra Kumar
Department of Statistics
Central University of Haryana, Haryana, India
Corresponding author E-mail: devendrastas@gmail.com

mailto:devendrastas@gmail.com


Austrian Journal of Statistics 105

Mazen Nassar
Department of Statistics, Faculty of Science
King Abdulaziz University, Jeddah, Saudia Arabia
Department of Statistics, Faculty of Commerce
Zagazig University, Egypt
E-mail: mezo10011@gmail.com

Ahmed Z. Afify
Department of Statistics Mathematics and Insurance,
Benha University, Egypt
E-mail: ahmed.afify@fcom.bu.edu.eg

Sanku Dey
Department of Statistics
St. Anthony’s College, Shillong-793001, Meghalaya, India
E-mail: sankud66@gmail.com

Austrian Journal of Statistics http://www.ajs.or.at/

published by the Austrian Society of Statistics http://www.osg.or.at/

Volume 50 Submitted: 2019-11-05
July 2021 Accepted: 2020-04-28

View publication stats

mailto:mezo10011@gmail.com
mailto:ahmed.afify@fcom.bu.edu.eg
mailto:sankud66@gmail.com
http://www.ajs.or.at/
http://www.osg.or.at/
https://www.researchgate.net/publication/340979548

	Introduction
	The CELP distribution
	Series expansion of CELP distribution

	Statistical and mathematical properties
	Quantile function
	Moments and moment generating function
	Conditional moment and mean deviation
	Entropies
	Residual life function
	Reversed residual life function
	Order statistics

	Parameters estimation and simulation study
	Method of maximum likelihood
	Method of ordinary and weighted least squares
	Method of percentile
	Method of maximum product of spacing
	Method of Cramer-von-Mises

	Simulation study
	Applications
	Conclusion

