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Abstract The Singh–Maddala distribution is very flexible

and most widely used for modeling the income, wage,

expenditure and wealth distribution of the country. Several

mathematical and statistical properties of this distribution

(such as quantiles, moments, moment generating function,

hazard rate, mean residual lifetime, mean deviation about

mean and median, Bonferroni and Lorenz curves and

various entropies) are derived. We establish relations for

the single and product moments of generalized order

statistics from the Singh–Maddala distribution and then we

use these results to compute the first four moments and

variance of order statistics and record values for sample

different sizes for various values of the shape and scale

parameters. For this distribution, two characterizing results

based on conditional moments of generalized order statis-

tics and recurrence relations for single moments are

established. The method of maximum likelihood is adopted

for estimating the unknown parameters. For different

parameters settings and sample sizes, the various simula-

tion studies are performed and compared to the perfor-

mance of the Singh–Maddala distribution. An application

of the model to a real data set is presented and compared

with the fit attained by some other well-known two and

three parameters distributions.

Keywords Generalized order statistics � Order statistics �
Record values � Single moments � Product moments �
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1 Introduction

The beta distribution is widely used in statistical modeling

of bounded random variables. It is easily calculated, can

take on a variety of shapes, and, perhaps as importantly,

none of the other commonly used distribution functions

have compact support. However, its application is limited.

First, as a two parameter distribution, it can provide only

limited precision in fitting data. It is desirable to have more

parametrically flexible versions of the beta to allow a richer

empirical description of data while still offering more

structure than a nonparametric estimator. Second, the beta

distribution does not offer a natural and convenient means

of introducing explanatory variables. In a B(a, b) distri-

bution, the parameters (a, b) jointly determine both the

shape and moments of the distribution. There is no satis-

factory way of conditioning the mean by specifying a and b
as functions of explanatory variables and regression coef-

ficients. Third, the beta is inconvenient for use in Bayesian

analysis. It is conjugate for binomial signals, but not for

signals of any continuous distribution. Kotz and Dorp

(2004) and Nadarajah and Gupta (2004) provided a com-

prehensive account of statistical properties of beta distri-

bution and it remains fair to say that the beta distribution

provides the premier family of continuous distributions on

bounded support (0, 1). The beta distribution, B(a, b), has

probability density function (pdf)
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f ðxÞ ¼ 1

Bða; bÞ x
a�1ð1 � xÞb�1; 0\x\1; a; b[ 0;

where

Bða; bÞ ¼
Z 1

0

ta�1ð1 � tÞb�1
dt;

denotes the beta function. More details and generalizations

of standard beta distribution involving algebraic and expo-

nential functions have been proposed in the literature; see in

Johnson et al. (1995) and Gupta and Nadarajah (2004).

McDonld (1984) introduced the four parameters gener-

alized Beta distribution of second kind with pdf

f ðxÞ ¼ axda�1

bdaBðd; kÞ½1 þ ðx=bÞa�kþd ; x[ 0; a;b[ 0; k; d[ 0

and cumulative distribution function (cdf)

FðxÞ ¼ 1

dBðd; kÞ
ðx=bÞa

1 þ ðx=bÞa
� �d

2F1
d; 1 � k;

ðx=bÞa

1 þ ðx=bÞa
aþ 1;

2
4

3
5 x[ 0;

where pFq denotes the generalized hypergeometric series

defined as

pFq ¼
a1; a2; . . .; ap; x
b1; b2; . . .; bq;

� �
¼
X1
i¼0

ða1Þi; ða2Þi; . . .; ðapÞi
ðb1Þi; ðb2Þi; . . .; ðbqÞi

xi

i!
;

where ðaÞi ¼ a ðaþ 1Þ � � � ðaþ i� 1Þ denotes the ascend-

ing factorial.

Singh–Maddala (SM) distribution is the member of

generalized Beta distribution of second kind if d = 1.

McDonld (1984) showed that the SM distribution provided

better fits than gamma and lognormal. Shahzad and Asghar

(2013) used the L-moments and TL-moments methods to

derive the point estimators of the parameters for SM

distribution.

The family of distributions proposed by Singh and

Maddala (1976), whose core distribution was generalized

beta distribution, became popular distribution for fitting the

distribution on income and expenditure. The three param-

eters SM distribution has the following pdf

f ðxÞ ¼ akb�axa�1½1 þ ðx=bÞa��ðkþ1Þ; x[ 0; a;b[ 0; k[ 0

ð1:1Þ

and the corresponding cdf is

FðxÞ ¼ 1 � ½1 þ ðx=bÞa��k; x[ 0; a; b[ 0; k[ 0:

ð1:2Þ

The survival function is

SðxÞ ¼ ½1 þ ðx=bÞa��k; x[ 0 ð1:3Þ

and the hazard function

HðxÞ ¼ f ðxÞ
SðxÞ ¼

akb�axa�1

½1 þ ðx=bÞa� ; x[ 0: ð1:4Þ

Here a, k are the shapes parameters and b is the scale

parameter respectively. Hereafter, a random variable X that

follows the distribution (1.2) is denoted by X� SMða; b; kÞ.
Special cases Let X� SMða; b; kÞ.
i. If k ! 1, then X reduces to the Fisk distribution.

ii. If k ! 1, then X reduces to the Weibull

distribution.

Order statistics and record values play an important

role in a wide range of theoretical and practical problems

such as characterization of probability distributions and

goodness of fit tests, entropy estimation, analysis of

censored samples, reliability analysis, quality control and

strength of materials. Their distributional and stochastic

properties have been studied extensively in the literature.

However, they can be considered as special cases of

generalized order statistics (GOS) that have been intro-

duced and extensively studied by Kamps (1995) to unify

several concepts that have been used in statistics such as

order statistics, record values, progressively Type II

censoring order statistics, Pfeifer records and sequential

order statistics. The statistical properties and the estima-

tion problems based on generalized order statistics for

some life time distributions are studied by several

researchers. For instance, Wu et al. (2007) obtained

maximum likelihood estimator (MLE) of lifetime per-

formance index for the Burr XII distribution with pro-

gressively type II right censored sample and Kim and Han

(2014) obtained Bayesian estimators and highest posterior

density credible intervals for the scale parameter of

Rayleigh distribution based GOS. Also, they derived the

Bayesian predictive estimator and the highest posterior

density predictive interval for independent future obser-

vations. Kumar (2015a, b) obtained the relations for

moments and moment generating function of type-II

exponentiated log-logistic and extended generalized half

logistic distribution based on GOS respectively.

The moments of order statistics play an important role in

many inferential problems. For example, they are useful in

the derivation of best linear unbiased estimators for scale

and location-scale families of distributions based on com-

plete and type-II censored samples. They are also useful in

evaluating the performance of the maximum likelihood

estimators and L-moment estimators, and in developing

point prediction and goodness-of-fit tests. Order statistics

and their moments have received considerable interest in

recent years and the moments of order statistics have been

tabulated quite extensively for several distributions, for

example, see Arnold et al. (1992) and David (1981). The

recurrence relations and identities have great significance
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because they are useful in reducing the number of opera-

tions necessary to obtain a general form for the function

under consideration and they reduce the amount of

direct computation, time and labour. This concept is well-

established in the statistical literature, see Arnold et al.

(1992).

The motivation of the paper is two fold: first is to study

the properties and relations for GOS of the SM distribution,

and second is to estimate the parameters of the model by

using maximum likelihood method assuming different

sample sizes and different parameters values. The

uniqueness of this study comes from the fact that we pro-

vide explicit expressions for single and product moments

using GOS for SM distribution. Also, to the best of our

knowledge thus far, no attempt has been made to estimate

the unknown parameters by using maximum likelihood

method.

The remaining of the article is organized as follows.

Various mathematical and statistical properties of SM

distribution are presented in Sect. 2. Section 3 describes

the relations for single and product moments of general-

ized order statistics from SM distribution. The obtained

relations were used to compute first four moments and

variances of order statistics and record values. We

obtained the characterization of this distribution by using

conditional moments and recurrence relation for single

moment of generalized order statistics in Sect. 4. In

Sect. 5, we derive maximum likelihood estimation of SM

distribution. In Sect. 6, various simulations are performed

for different sample sizes. The importance of the model is

illustrated by means of an application to a real data set in

Sect. 6. Finally, Sect. 7 ends up with some general con-

cluding remarks.

2 Mathematical and statistical properties of SM
distribution

Let xp ¼ QðpÞ ¼ F�1ðpÞ, for 0\ p\ 1 denote the quantile

function of the SM distribution. Then

xp ¼ b ð1 � pÞ1=k � 1
h i1=a

: ð2:1Þ

In particular, the first three quantiles, Q1, Q2 and Q3, can

be obtain by setting p = 0.25, p = 0.5 and p = 0.75 in

Eq. (2.1) respectively.

The effects of the shape parameters a and k on the

skewness and kurtosis can be considered based on quantile

measures. The Bowley skewness (Kenney & Keeping

1962) is one of the earliest skewness measures defined by

B ¼
Q 3

4

� �
þ Q 1

4

� �
� 2Q 1

2

� �
Q 3

4

� �
� Q 1

4

� � :

Since only the middle two quartiles are considered and

the outer two quartiles are ignored, this adds robustness to

the measure. The Moors kurtosis (Moors 1988) is defined

as

M ¼
Q 3

8

� �
� Q 1

8

� �
þ Q 7

8

� �
� Q 5

8

� �
Q 6

8

� �
� Q 2

8

� � :

Clearly, M[ 0 and there is good concordance with the

classical kurtosis measures for some distributions. These

measures are less sensitive to outliers and they exist even

for distributions without moments. For the standard normal

distribution, these measures are 0 (Bowley) and 1.2331

(Moors).

In Figs. 1 and 2, various graphs of the pdf, cdf and

hazard rate and survival function for the SM distribution

Fig. 1 The pdf and cdf of the SM distribution for various parameter values
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for the different parameters values. These plots shows that

the pdf can be right skewed, approximately symmetric or

reversed J-shape. The plots in Fig. 2 indicate that the

hazard rate for the SM distribution is very flexible. It can

have increasing failure rate (IFR), decreasing failure rate

(DFR) functions.

2.1 Moments

We hardly need to emphasize the necessity and importance of

the moments in any statistical analysis especially in applied

work. Some of the most important features and characteristics

of a distribution can be studied through moments (e.g., ten-

dency, dispersion, skewness, and kurtosis).

Theorem 2.1 Let the random variable X follow the SM

distribution, then its nth moment has the following form

E½Xn� ¼ kbnB
aþ n

a
; k� n

a

� �
; ð2:2Þ

where B(a, b) denotes the beta function defined by

Bða; bÞ ¼
R 1

0
ta�1 ð1 � tÞb�1

dt.

Proof The nth moments is given by

l0n ¼ EðXnÞ ¼
Z 1

0

xnf ðxÞdx

¼ akb�a
Z 1

0

xaþn�1½1 þ ðx=bÞa��ðkþ1Þ
dx:

ð2:3Þ

The result follows by using Eq. (3.252.11) in Grad-

shteyn and Ryzhik (2007) to calculate the integral in (2.3).

The proof is complete.

The central moments (ln) of X can be determined from

(2.2) as l1 ¼ l01. Thus l2 ¼ l02 � l021, l3 ¼ l03�
3l02l01þ 2l031, l4 ¼ l04 � 4l03l01 � 3l022 þ 12l02l0

2
1�

6l041, etc.

The variance, skewness and kurtosis measures can now

be calculated using the relations

VarðXÞ ¼ l02 � l021;

Skewness ðXÞ ¼ l03 � 3l02l01 þ 2l031
Var3=2ðXÞ ;

Kurtosis ðXÞ ¼ l04 � 4l03l01 � 3l022 þ 12l02l0
2
1 � 6l041

Var2ðXÞ :

Theorem 2.2 The moment generating function of X,

MX(t) when random variable follows the SM distribution is

MXðtÞ ¼
X1
r¼0

kbrtr

r!
B

aþ r

a
; k� r

a

� �
: ð2:4Þ

Proof Let the moment generating function for X is given by

MXðtÞ ¼ E½etx � ¼
Z 1

0

etx f ðxÞdx

¼
Z 1

0

1 þ txþ t2x2

2!
þ � � � þ tnxn

n!
þ � � �

� 	
f ðxÞdx

¼
X1
r¼0

trE½Xr�
r!

¼
X1
r¼0

kbrtr

r!
B

aþ r

a
; k� r

a

� �
:

Fig. 2 The hazard rate function and survival function of the SM distribution for various parameter values
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2.2 Conditional moments

For the SM distribution, it can be easily seen that the

conditional moments, EðXnjX[ xÞ can be written as

EðXnjX[ xÞ ¼ 1

SðxÞ JnðxÞ;

where

JnðxÞ ¼
Z 1

x

ynf ðyÞdy

¼ akb�a
Z 1

x

ynþa�1 1 þ ðy=bÞa½ ��ðkþ1Þ
dy

¼ kbn ðb=xÞa½ �k�ðn=aÞ

k� n
a

� � 2F1 k� n

a
; 1 þ k; k� n

a
þ 1; � ba

xa

� 	
;

ð2:5Þ

where SðxÞ ¼ 1 � FðxÞ define in (1.3) and 2F1ða; b; c; xÞ
denotes the Gauss hypergeometric function defined by

2F1ða; b; c; xÞ ¼
X1
k¼0

ðaÞkðbÞk
ðcÞk

xk

k!
;

where ðeÞk ¼ e ðeþ 1Þ � � � ðeþ k � 1Þ denotes the ascend-

ing factorial.

An application of the conditional moments is the mean

residual life (MRL). MRL function is the expected

remaining life, X - x, given that the item has survived to

time x. Thus, in life testing situations, the expected addi-

tional lifetime given that a component has survived until

time x is called the (MRL). The MRL function in terms of

the first conditional moment as

mXðxÞ ¼ E½X � xjX[ x� ¼ 1

SðxÞ J1ðxÞ � x;

where J1(x) can be obtained from (2.5) where n = 1.

Another application of the conditional moments is the mean

deviations about the mean and the median. They are used to

measure the dispersion and the spread in a population from the

center. If we denote the median by M, then the mean deviations

about the mean and the median can be calculated as

dl ¼
Z 1

0

jx� lj f ðxÞ dx ¼ 2lFðlÞ � 2lþ 2 J1ðlÞ

and

dM ¼
Z 1

0

jx�Mj f ðxÞ dx ¼ 2 J1ðMÞ � l

respectively. Where J1(l) and J1(M) can be obtained from

(2.5). Also, F(l) and F(M) are easily calculated from (1.2).

2.3 Bonferroni and Lorenz curve

The Lorenz curve concept was introduced by Lorenz

(1905), who investigated the problem of measuring

concentration of wealth. The Lorenz curve has played a

basic role, for example, in the analysis of income and

earnings inequality (Sen 1973; Slottje 1989; Doiron and

Barrett 1996), industrial concentration (Hart 1971, 1975),

reliability (Chandra and Singpurwalla 1978, 1981). It has

also been used as a goodness of t test for exponentiality

(Gail and Gastwirth 1978; Nikitin and Tchirina 1996).

Another income inequality analysis tools, is the Bonferroni

Curve that was introduced by Bonferroni (1930). Bonfer-

roni curve have assumed relief not only in economics to

study income and poverty, but also in other fields like

reliability, demography, insurance and medicine. Csörg}o

et al. (1998) discussed the asymptotic confidence bands for

the Lorenz and Bonferroni curves based on the empirical

Lorenz curve.

Let X be a continuous random variable with probability

density function f(x) cumulative distribution function F(x).

Let F-1(.) denote the quantile function then the Bonefer-

roni and Lorenz curves of a random variable X are defined

by

BðpÞ ¼ 1

pl

Z q

0

x f ðxÞdx ð2:6Þ

and

LðpÞ ¼ 1

l

Z q

0

xf ðxÞdx; ð2:7Þ

respectively, where l = E(x) and q = F-1(p). By using

(2.5), one can reduce (2.6) and (2.7) to

BðpÞ ¼ ak q1þa

pl bað1 þ aÞ 2F1 1 þ 1

a
; 1 þ k;

1

a
þ 2; � qa

ba

� 	

and

LðpÞ ¼ akq1þa

lbað1 þ aÞ 2F1 1 þ 1

a
; 1 þ k;

1

a
þ 2;� qa

ba

� 	
;

respectively.

2.4 Renyi entropy

The entropy of a random variable X with the density

function f(x) is a measure of variation of the uncer-

tainty. Renyi entropy is defined as IRðqÞ ¼
ð1 � qÞ�1

log½IðqÞ�, where IðqÞ ¼
R
< f qðxÞdx, q[ 0 and

q = 1. If a random variable X has a SM distribution,

then, we have

IðqÞ ¼ ðakb�aÞq
Z 1

0

xqða�1Þ½1 þ ðx=bÞa��qðkþ1Þ
dx

¼ kqaq�1b1�qB
qða� 1Þ þ 1

a
; qðkþ 1Þ � qða� 1Þ þ 1

a

� 	
;

[see Gradshteyn and Ryzhik (2007), p. 325], where
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Bða; bÞ ¼
Z 1

0

ta�1ð1 � tÞb�1
dt;

denotes the beta function. Hence, the Renyi entropy

reduces to IRðqÞ ¼ q log k
1�q � log aþ log bþ 1

1�q logB

qða�1Þþ1

a ; qðkþ 1Þ � qða�1Þþ1

a

� �
:

3 Generalized order statistics

The concept of GOS was introduced by Kamps (1995) as a

general framework for models of ordered random vari-

ables. Moreover, many other models of ordered random

variables, such as, order statistics, k-th upper record values,

upper record values, progressively Type II censoring order

statistics, Pfeifer records and sequential order statistics are

seen to be particular cases of GOS. These models can be

effectively applied, e.g., in reliability theory. Suppose

Xð1; n; m; kÞ; . . .; Xðn; n; m; kÞ, ðk� 1; m is a real num-

ber), are nGOS from an absolutely continuous cumulative

distribution function (cdf) F(x) with probability density

function (pdf) f(x), if their joint pdf is of the form

k
Yn�1

j¼1

cj

 ! Yn�1

i¼1

½1 � FðxiÞ�m f ðxiÞ
 !

ð1 � FðxnÞÞk�1
f ðxnÞ ð3:1Þ

on the cone F�1ð0Þ\x1 � � � � � xn\F�1ð1Þ, where cj ¼
k þ ðn� jÞðmþ 1Þ[ 0 for all j, 1 B j B n, k is a positive

integer and m C -1.

If m = 0 and k = 1, then this model reduces to the

ordinary r-th order statistic and (3.1) will be the joint pdf of

n order statistics X1:n �X2:n � � � � �Xn:n from cdf F(x). If

k = 1 and m = -1, then (3.1) will be the joint pdfof the

first n record values of the identically and independently

distributed (iid) random variables with cdf F(x) and cor-

responding pdf f(x).

In view of (3.1), the marginal pdf of the r-th GOS,

X(r, n, m, k), 1 B r B n, is

fXðr;n;m;kÞðxÞ ¼
Cr�1

ðr � 1Þ!
�FðxÞ½ �cr�1

f ðxÞgr�1
m ðFðxÞÞ; ð3:2Þ

and the joint pdf of X(r, n, m, k) and X(s, n, m, k),

1 B r\ s B n, is

fXðr;n;m;kÞXðs;n;m;kÞðx; yÞ

¼ Cs�1

ðr � 1Þ!ðs� r � 1Þ!
�FðxÞ½ �mf ðxÞgr�1

m ðFðxÞÞ

� ½hmðFðyÞÞ � hmðFðxÞÞ�s�r�1 �FðyÞ½ �cs�1
f ðyÞ; x\y:

ð3:3Þ

Let X(r, n, m, k), r = 1, 2, …, n be GOS, then the

conditional pdf of X(s, n, m, k) given X(r, n, m, k) = x,

1 B r\ s B n, in view of (3.2) and (3.3), is

fXðs;n;m;kÞjXðr;n;m;kÞðyjxÞ ¼
Cs�1

ðs� r � 1Þ!Cr�1

� ½ðhmðFðyÞÞ � hmðFðxÞÞ�s�r�1 �FðyÞ½ �cs�1

�FðxÞ½ �crþ1
f ðyÞ; x\y:

ð3:4Þ

where

�FðxÞ ¼ 1 � FðxÞ; Cr�1 ¼
Yr
i¼1

ci;

hmðxÞ ¼ � 1

mþ 1
ð1 � xÞmþ1; m 6¼ �1

� lnð1 � xÞ; m ¼ �1

(

and

gmðxÞ ¼ hmðxÞ � hmð0Þ; x 2 ½0; 1Þ:

3.1 Relations for single moments of GOS

We shall first establish explicit expression for single

moments of jth GOS, E½X jðr; n; m; kÞ� ¼ lðjÞr;n;m;k. Theo-

rem 1 gives an explicit expression for 1 B r B n and

j = 0, 1, 2, ….

Theorem 1 For the SM distribution as given in (1.2) and

1 B r B n, k C 1, m C -1 and j = 0, 1, 2, …,

lðjÞr;n;m;k ¼ b j
X1
p¼0

ð�1ÞpC j
a þ 1
� �

p!C j
a þ 1 � p
� � Qr

a¼1

1 þ p�ðj=aÞ
kca

� �; p\
j

a
þ 1;

ð3:5Þ

where Cð: Þ denotes the complete gamma function defined

by CðaÞ ¼
R1

0
ta�1 et dt.

Proof Using (4), we have

lðjÞr;n;m;k ¼
Z 1

0

x jfXðr;n;m;kÞðxÞdx

¼ Cr�1

ðr � 1Þ!ðmþ 1Þr�1

Xr�1

u¼0

ð�1Þu
r � 1

u

� 	Z 1

0

x j �FðxÞ½ �cr�u�1
f ðxÞdx

¼ kb jCr�1

ðr � 1Þ!ðmþ 1Þr�1

Xr�1

u¼0

ð�1Þu
r � 1

u

� 	Z 1

0

ð1 � tÞj=atk cr�u�ðj=aÞ�1dt

¼ kb jCr�1

ðr � 1Þ!ðmþ 1Þr
Xr�1

u¼0

X1
p¼0

ð�1Þuþp r � 1

u

� 	
C j

a þ 1
� �

p!C j
a þ 1 � p
� �

Z 1

0

tk cr�uþp�ðj=aÞ�1dt

¼ kb jCr�1

ðr � 1Þ!ðmþ 1Þr
Xr�1

u¼0

X1
p¼0

ð�1Þuþp r � 1

u

� 	
C j

a þ 1
� �

p!C j
a þ 1 � p
� �

� B
k

mþ 1
þ n� r þ uþ ðp� ðj=aÞÞ=k

mþ 1
; 1

� 	
:

ð3:6Þ
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where t ¼ ½ �FðxÞ�1=k and using the relation
Pb

a¼0 ð�1Þa

b

a

� 	
Bðaþ k; cÞ ¼ Bðk; cþ bÞ in (3.6) we get

lðjÞr;n;m;k ¼
b jCr�1

ðmþ 1Þr
X1
p¼0

ð�1Þp
C j

a þ 1
� �

C kþðn�rÞðmþ1Þþfp�ðj=aÞg=k
ðmþ1Þ

h i

p!C j
a þ 1 � p
� �

C kþnðmþ1Þþfp�ðj=aÞg=k
ðmþ1Þ

h i:

The result follows from the definition of the complete

gamma function.

In particular, the mean and variance of GOS are

lð1Þr;n;m;k ¼ b
X1
p¼0

ð�1ÞpC 1
a þ 1
� �

p!C 1
a þ 1 � p
� � Qr

a¼1

1 þ p�ð1=aÞ
kca

� �

and

r2
r;n;m;k ¼ lð2Þr;n;m;k � lð1Þr;n;m;k

� �2

¼ b2
X1
p¼0

ð�1Þp
C 2

a þ 1
� �

p!C 2
a þ 1 � p
� � Qr

a¼1

1 þ p�ð2=aÞ
kca

� �� lð1Þr;n;m;k

� �2

;

respectively.

3.2 Special Cases

1. Putting m = 0, k = 1 in (3.5), the explicit formula for

single moments of order statistics from the SM dis-

tribution can be obtained as

lðjÞr:n ¼
b jn!

ðn� rÞ!
X1
p¼0

ð�1ÞpC j
a þ 1
� �

p!C j
a þ 1 � p
� �C½n� r þ 1 þ ðp� ðj=aÞÞ=k�

C½nþ 1 þ ðp� ðj=aÞÞ=k� ;

ð3:7Þ

for r = 1

lðjÞ1:n ¼ nb j
X1
p¼0

ð�1ÞpC j
a þ 1
� �

p!C j
a þ 1 � p
� �

½nþ ðp� ðj=aÞÞ=k�
:

2. Setting m = -1 in (3.5), we get the explicit expression

for single moments of upper k record values from the

SM distribution can be obtained as

lðjÞ
UðrÞ:k ¼ b j

X1
p¼0

ð�1ÞpC j
a þ 1
� �

p!C j
a þ 1 � p
� �

1 þ p�ðj=aÞ
kk

� �r;

and hence for upper records

lðjÞ
UðrÞ ¼ b j

X1
p¼0

ð�1ÞpC j
a þ 1
� �

p!C j
a þ 1 � p
� �

1 þ p�ðj=aÞ
k

� �r: ð3:8Þ

Theorem 2 establishes a recurrence relations for lðjÞr;n;m;k
which can help us to obtain the higher moments.

Theorem 2 For the distribution given in (1.2) and for

1 B r B n, k C 1, m C -1,

1 � j

akcr

� 	
lðjÞr;n;m;k ¼ lðjÞr�1;n;m;k þ

jba

akcr
lðj�aÞ
r;n;m;k: ð3:9Þ

Through, we follow the conventions that lðjÞ0;n;m;k ¼ 0 for

n C 1 and lð0Þr;n;m;k ¼ 1 for 1 B r B n.

Proof Clearly, from (1.1) and (1.2), we see that

akxa�1 �FðxÞ ¼ ba 1 þ ðx=bÞa½ �f ðxÞ: ð3:10Þ

Therefore, from (3.2), we have

lðjÞr;n;m;k ¼
Cr�1

ðr � 1Þ!

Z 1

0

x j �FðxÞ½ �cr�1
f ðxÞgr�1

m ðFðxÞÞdx:

By integrating by parts, we obtain

lðjÞr;n;m;k ¼ lðjÞr�1;n;m;k þ
jCr�1

crðr � 1Þ!

Z 1

0

xj�1½ �FðxÞ�cr gr�1
m ðFðxÞÞdx

¼ lðjÞr�1;n;m;k þ
jCr�1

crðr � 1Þ!

Z 1

0

xj�1 �FðxÞ½ �cr�1
ba þ xa

akxa�1

� 	

f ðxÞgr�1
m ðFðxÞÞdx

¼ lðjÞr�1;n;m;k þ
jbaCr�1

akcrðr � 1Þ!

Z 1

0

xj�a �FðxÞ½ �cr�1 f ðxÞgr�1
m ðFðxÞÞdx

þ jCr�1

akcrðr � 1Þ!

Z 1

0

x j �FðxÞ½ �cr�1 f ðxÞgr�1
m ðFðxÞÞdx:

The result follows.

Remark 3.1 Under the assumption of Theorem 2 with

m = 0, k = 1 we shall deduced the recurrence relations for

single moments of ordinary order statistics of the SM

distribution.

Remark 3.2 Putting k = 0, m = -1 in Theorem 2 we

obtain the recurrence relations for single moments of

record values of the SM distribution, which is in agreement

with the corresponding result obtained by Kumar and Khan

(2012).

3.3 Relations for product moments of GOS

We shall first establish explicit expressions for the product

moments of ith and jth GOS, E ½Xði; jÞ
r;s; n;m; k� ¼ lði; jÞr; s;n;m;k.

Theorem 3 gives an explicit expression for

1 B r\ s B n and i, j = 0, 1, 2, …

Theorem 3 For the distribution given in (1.2) and

1 B r\ s B n, n C 1, k = 1, 2, … i, j = 0, 1, 2, … and

p\ j
a þ 1 and q\ i

a þ 1
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lði; jÞr; s;n;m;k ¼ biþj
X1
p¼0

X1
q¼0

ð�1ÞpþqC j
a þ 1
� �

C i
a þ 1
� �

p!q!C j
a þ 1 � p
� �

C i
a þ 1 � q
� �

� 1

Qr
a¼1

1 þ pþq�ðiþjÞ=a
kca

� � Qs
b¼rþ1

1 þ p�ðj=aÞ
kcb

� � : ð3:11Þ

Proof Using (3.3), we have

lði;jÞr;s;n;m;k ¼
Z 1

0

Z 1

x

xiy jfXðr;n;m;kÞXðs;n;m;kÞðx; yÞdxdy

¼ Cs�1

ðr� 1Þ!ðs� r � 1Þ!

Z 1

0

Z 1

x

xiy j �FðxÞ½ �mf ðxÞgr�1
m ðFðxÞÞ

� ½hmðFðyÞÞ � hmðFðxÞÞ�s�r�1 �FðyÞ½ �cs�1
f ðyÞdydx

¼ Cs�1

ðr� 1Þ!ðs� r � 1Þ!ðmþ 1Þs�2

�
Xr�1

u¼0

Xs�r�1

v¼0

ð�1Þuþv
r � 1

u

 !
s� r� 1

v

 !

�
Z 1

0

Z 1

x

xiy j �FðxÞ½ �ðs�rþu�vÞ ðmþ1Þ�1 �FðyÞ½ �cs�v�1
f ðxÞf ðyÞdydx

¼ b jCs�1

ðr� 1Þ!ðs� r � 1Þ!ðmþ 1Þs�2

�
Xr�1

u¼0

Xs�r�1

v¼0

X1
p¼0

ð�1Þuþvþq
r � 1

u

 !
s� r � 1

v

 !

�
C j

aþ 1
� �

p!C j
aþ 1 � q
� �

½cs�v þ ðp� ðj=aÞÞ=k�

�
Z 1

0

xi �FðxÞ½ �cr�u�1þðp�ðj=aÞÞ=k
f ðxÞ

¼ biþjCs�1

ðr� 1Þ!ðs� r � 1Þ!ðmþ 1Þs
X1
p¼0

X1
q¼0

ð�1ÞpþqC j
aþ 1
� �

C i
aþ 1
� �

p!q!C j
aþ 1 � p
� �

C i
aþ 1 � q
� �

�
Xr�1

u¼0

ð�1Þu
r � 1

u

 !
B

k

mþ 1
þ n� rþ uþ ½pþ q� ðiþ jÞ=a�=k

mþ 1
; 1

� 	

�
Xs�r�1

v¼0

ð�1Þv
s� r � 1

v

 !
B

k

mþ 1
þ n� sþ vþ ðp� ðj=aÞÞ=k

mþ 1
;1

� 	
:

The proof is complete.

As a check, put j = 0 in (3.10) and use (3.5), we have

lði;0Þr; s;n;m;k ¼ lðiÞr;n;m;k.

For simplicity, we denote the (1, 1)th moments of

X(r, n, m, k)and X(s, n, m, k), which are also called the

simple product moments of these GOS, by lr,s,n,m,k. The

simple product moments are used for evaluating the

covariances, in other words

rr;s;n;m;k ¼ Cov½Xðr; n;m; kÞ;Xðs; n;m; kÞ�
¼ lr;s;n;m;k � lr;n;m;kls;n;m;k:

3.4 Special cases

1. Putting m = 0, k = 1 in (3.11), we shall deduced the

explicit formula for product moments of ordinary order

statistics of SM distribution.

2. Setting m = -1 in (3.11), we obtain the explicit

expression for product moments of k record values of

SM distribution.

Theorem 4 establishes a recurrence relations for product

moments of X(r, n, m, k) and X(s, n, m, k).

Theorem 4 For 1 B r\ s B n -1, n C 2 and

k = 1, 2, …

1 � j

akcs

� 	
lði;jÞr;s;n;m;k ¼ lði;jÞr;s�1;n;m;k þ

jba

akcs
lði;j�aÞ
r;s;n;m;k: ð3:12Þ

Proof From (3.3), we have

lði;jÞr;s;n;m;k ¼
Cs�1

ðr � 1Þ!ðs� r � 1Þ!Z 1

0

xi �FðxÞ½ �mf ðxÞgr�1
m ðFðxÞÞIðxÞdx;

ð3:13Þ

where IðxÞ ¼
R1
x

y j½hmðFðyÞÞ � hmðFðxÞÞ�s�r�1 �FðyÞ½ �cs�1

f ðyÞdy:

Solving the integral in I(x) by parts and substituting the

resulting expression in (3.13), we get

lði;jÞr;s;n;m;k ¼ lði;jÞr;s�1;n;m;k þ
jCs�1

csðr � 1Þ!ðs� r � 1Þ!

�
Z 1

0

Z 1

x

xiyj�1 �FðxÞ½ �mf ðxÞgr�1
m ðFðxÞÞ

� ½hmðFðyÞÞ � hmðFðxÞÞ�s�r�1 �FðyÞ½ �cs dydx

¼ lði;jÞr;s�1;n;m;k þ
jCs�1

csðr � 1Þ!ðs� r � 1Þ!

�
Z 1

0

Z 1

x

xiyj�1 �FðxÞ½ �mf ðxÞgr�1
m ðFðxÞÞ

� ½hmðFðyÞÞ � hmðFðxÞÞ�s�r�1 �FðyÞ½ �cs�1 ba þ ya

akya�1

� 	
f ðyÞdydx

¼ lði;jÞr;s�1;n;m;k þ
jbaCs�1

akcsðr � 1Þ!ðs� r � 1Þ!

�
Z 1

0

Z 1

x

xiyj�a �FðxÞ½ �mf ðxÞgr�1
m ðFðxÞÞ

� ½hmðFðyÞÞ � hmðFðxÞÞ�s�r�1 �FðyÞ½ �cs�1
f ðyÞdydx

þ jCs�1

akcsðr � 1Þ!ðs� r � 1Þ!

Z 1

0

Z 1

x

xiy j �FðxÞ½ �mf ðxÞgr�1
m ðFðxÞÞ

� ½hmðFðyÞÞ � hmðFðxÞÞ�s�r�1 �FðyÞ½ �cs�1
f ðyÞdydx:

The result follows.

Remark 3.4 Under the assumption of Theorem 4 with

m = 0, k = 1 we shall deduced the recurrence relations for

product moments of order statistics of the SM distribution.

Remark 3.5 Putting k = 0, m = -1 in Theorem 4 we

obtain the recurrence relations for product moments of k-th

record values from SM distribution, which is in agreement

with the corresponding result obtained by Kumar and Khan

(2012).
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4 Characterization

In this section, we shall characterize SM distribution based

on conditional expectation of GOS and recurrence relation

for single moment of GOS. Using Theorem 5 we provide

the stronger version of Theorem 2.

Let L(a, b) stand for the space of all integrable functions

on (a, b). A sequence (hn) , L(a, b) is called complete on

L(a, b) if for all functions g 2 L(a, b) the condition

Z b

a

gðxÞfnðxÞdx ¼ 0; n 2 N;

implies g(x) = 0 a.e. on (a, b). We start with the following

result of Lin (1986).

Proposition 1 Let n0 be any fixed non-negative integer,

�1� a\b�1 and g(x) C 0 an absolutely continuous

function with g0ðxÞ 6¼ 0 a.e. on (a, b). Then the sequence of

functions fðgðxÞÞne�gðxÞ; n� n0g is complete in L(a, b)iff

g(x) is strictly monotone on (a, b).

Using the above Proposition we get a stronger version of

Theorem 2.

Theorem 5 Let X be a non-negative random variable

having an absolutely continuous distribution function F(x)

with F(0) = 0 and 0\F(x)\ 1 for all x[ 0, then

1 � j

akcr

� 	
lðjÞr;n;m;k ¼ lðjÞr�1;n;m;k þ

jba

akcr
lðj�aÞ
r;n;m;k: ð4:1Þ

if and only if

�Fðx; a; b; kÞ ¼ ½1 þ ðx=bÞa��k; x[ 0;
a; b[ 0; and k[ 0:

Proof The necessary part follows immediately from

Eq. (3.8). By the other hand if the recurrence relation in

Eq. (4.1) is satisfied, then by using Eq. (3.2), we have

Cr�1

ðr � 1Þ!

Z 1

0

x j �FðxÞ½ �cr�1
f ðxÞgr�1

m ðFðxÞÞdx

¼ ðr � 1ÞCr�1

crðr � 1Þ!

Z 1

0

x j �FðxÞ½ �crþm
f ðxÞgr�2

m ðFðxÞÞdx

þ jbaCr�1

akcrðr � 1Þ!

Z 1

0

xj�a �FðxÞ½ �cr�1
f ðxÞgr�1

m ðFðxÞÞdx

þ jCr�1

akcrðr � 1Þ!

Z 1

0

xj�1 �FðxÞ½ �cr�1
f ðxÞgr�1

m ðFðxÞÞdx

ð4:2Þ

Integrating the first integral on the right hand side of

Eq. (4.2) by parts and simplifying the resulting expression,

we get

jCr�1

crðr � 1Þ!

Z 1

0

xj�1½FðxÞ�cr�1
gr�1
m ðFðxÞÞdx

� �FðxÞ � ba

akxa�1
f ðxÞ � x

ak
f ðxÞ


 �
dx ¼ 0:

It now follows from Proposition 1

�FðxÞ ¼ ba½1 þ ðx=bÞa�
akxa�1

f ðxÞ;

which prove that �Fðx; a; b; kÞ ¼ ½1 þ ðx=bÞa��k; x[ 0;

a; b[ 0; and k[ 0:

Theorem 6 Let X(r, n, m, k), r = 1, 2, …, n be GOS

based on continuous cumulative distribution function F(x)

with F(0) = 0 and 0\F(x)\ 1 for all x[ 0, then for two

consecutive values r and r ? 1, 2 B r ? 1\ s B n, the

conditional expectation of GOS X(s, n, m, k) given

X(l, n, m, k) = x, is given as

E½Xðs;n;m; kÞjXðl;n;m;kÞ ¼ x� ¼ b
X1
p¼0

ð�1Þpþð1=aÞC 1
aþ 1
� �

p!C 1
aþ 1� p
� �

� ½1þ ðx=bÞa�p
Ys�l

j¼1

clþj

clþj � p=k

 !
; l¼ r; rþ 1 ð4:3Þ

if and only if X has the cdf

�Fðx; a; b; kÞ ¼ ½1 þ ðx=bÞa��k; x[ 0;
a; b[ 0 and k[ 0:

Proof We have from (3.4)

E½Xðs; n;m; kÞjXðr; n;m; kÞ ¼ x� ¼ Cs�1

ðs� r � 1Þ!Cr�1ðmþ 1Þs�r�1

�
Z 1

x

y 1 �
�FðyÞ
�FðxÞ

� 	mþ1
" #s�r�1

�FðyÞ
�FðxÞ

� 	cs�1
f ðyÞ
�FðxÞ dy: ð4:4Þ

By setting u ¼ �FðyÞ
�FðxÞ from (1.2) in (4.4), we obtain

E½Xðs; n;m; kÞjXðr; n;m; kÞ ¼ x� ¼ bCs�1

ðs� r � 1Þ!Cr�1ðmþ 1Þs�r�1

�
X1
p¼0

ð�1Þpþð1=aÞC 1
a þ 1
� �

½1 þ ðx=bÞa�p

p!C 1
a þ 1 � p
� �

�
Z 1

0

ucs�ðp=kÞ�1ð1 � umþ1Þs�r�1
du ð4:5Þ

Again by setting t ¼ umþ1 in (4.5), we get

E ½Xðs; n; m; kÞjXðr; n;m; kÞ ¼ x�

¼ bCs�1

Cr�1

X1
p¼0

ð�1Þpþð1=aÞC 1
a þ 1
� �

½1 þ ðx=bÞa�p

p!C 1
a þ 1 � p
� � Qs�r

j¼1

ðcrþj � p=kÞ

and hence the result given in (4.3).

To prove sufficient part, we have from (3.4) and (4.3)
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Cs�1

ðs� r � 1Þ!Cr�1ðmþ 1Þs�r�1

Z 1

x

y ð �FðxÞÞmþ1 � ð �FðyÞÞmþ1
h is�r�1

� ½ �FðyÞ�cs�1
f ðyÞdy ¼ ½ �FðxÞ�crþ1HrðxÞ;

ð4:6Þ

where

HrðxÞ ¼ b
X1
p¼0

ð�1Þpþð1=aÞC 1
aþ 1
� �

1 þ ðx=bÞa½ �p

p!C 1
aþ 1 � p
� � Ys�r

j¼1

crþj

crþj � p=k

 !
:

Differentiating (4.6) both sides with respect to x and re-

arranging the terms, we get

� Cs�1
�FðxÞ½ �mf ðxÞ

ðs� r � 2Þ!Cr�1ðmþ 1Þs�r�2

Z 1

x

y ð �FðxÞÞmþ1 � ð �FðyÞÞmþ1
h is�r�2

� �FðyÞ½ �cs�1
f ðyÞdy ¼ H0

rðxÞ �FðxÞ½ �crþ1�crþ1HrðxÞ �FðxÞ½ �crþ1�1
f ðxÞ

or

�crþ1Hrþ1ðxÞ �FðxÞ½ �crþ2þm
f ðxÞ ¼ H0

rðxÞ �FðxÞ½ �crþ1

�crþ1HrðxÞ �FðxÞ½ �crþ1�1
f ðxÞ:

Therefore,

f ðxÞ
�FðxÞ ¼ � H0

rðxÞ
crþ1½Hrþ1ðxÞ � HrðxÞ�

¼ akxa�1

ba½1 þ ðx=bÞa�

which gives

�Fðx; a; b; kÞ ¼ ½1 þ ðx=bÞa��k; x[ 0;
a; b[ 0 and k[ 0:

Remark 4.1 For k = 1, m = 0 and k = 1, m = -1, in

Theorems 5–6, we obtain the characterization results of the

SM distribution based on order statistics and record values,

respectively.

5 Estimation

In this section we discuss the process of obtaining the

maximum likelihood estimators of the parameters a, b and

k. Let X1, X2, …Xn be the random sample with observed

values x1, x2, …, xn from SM distribution. Let H ¼
ða; b; kÞ be the parameter vector. The likelihood function

based on the random sample of size n is obtained from

Lða; b; k; xÞ ¼
ankn

Qn
i¼1

xa�1
i

bna
Qn
i¼1

½1 þ ðxi=bÞa�kþ1
; ð5:1Þ

The maximum likelihood estimates are the values of a, b
and k that maximize this likelihood function.

5.1 Maximum likelihood estimation

The log likelihood function lða; b; kj xÞ ¼
log Lða; b; k j xÞ, dropping terms that do not involve a, b
and k is

lða; b; kjxÞ ¼ n ln a� na ln bþ n ln kþ ða� 1Þ
Xn
i¼1

lnxi

� ðkþ 1Þ
Xn
i¼1

ln 1 þ ðxi=bÞa½ �: ð5:2Þ

To obtain the normal equations for the unknown

parameters, we differentiate (5.2) partially with respect

to a, b and k and equate to zero. The resulting equations

are

0 ¼ olða; b; kjxÞ
oa

¼ n

a
� n ln bþ

Xn
i¼1

ln xi � ðkþ 1Þ
Xn
i¼1

ðxi=bÞa lnðxi=bÞ
½1 þ ðxi=bÞa�

;

ð5:3Þ

0 ¼ olða; b; kjxÞ
ob

¼ � na
b

þ aðkþ 1Þ
Xn
i¼1

xai

baþ1½1 þ ðxi=bÞa�
ð5:4Þ

and

0 ¼ olða; b; kjxÞ
ok

¼ n

k
� ðaþ 1Þ

Xn
i¼1

ln½1 þ ðxi=bÞa�: ð5:5Þ

The solutions of the above equations are the maximum

likelihood estimators of the parameters a, b and k denoted

by âMLE, b̂MLE and k̂MLE respectively. As the equations

expressed in (5.3), (5.4) and (5.5) cannot be solved ana-

lytically. It is usually more convenient to use nonlinear

optimization algorithms such as the quasi-Newton algo-

rithm to numerically maximize the sample likelihood

function.

5.2 Approximate confidence intervals

In this section, we present the asymptotic confidence

intervals for the parameters of the SM distribution.

Since the MLEs of the unknown parameters a, b and k
cannot be derived in closed form, it is not easy to derive the

exact distributions of the MLEs. Hence, we cannot obtain

exact confidence intervals for the parameters. We must use

the large sample approximation. It is known that the

asymptotic distribution of the MLEs is ½
ffiffiffi
n

p
ðâMLE � aÞ;ffiffiffi

n
p

ðb̂MLE � bÞ;
ffiffiffi
n

p
ðk̂MLE � kÞ� ! N3ð0; I�1ðHÞÞ, where

IðHÞ is the observed Fisher information matrix of the

unknown parameters H ¼ ða; b; kÞ and is given by
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IðHÞ ¼
Iaa Iab Iak

Ibb Ibk
Ikk

0
@

1
A

H¼Ĥ

The elements of IðHÞ are defined in ‘‘Appendix’’. The

multivariate normal distribution N3ð0; IðHÞ�1Þ, where the

mean vector 0 ¼ ð0; 0; 0ÞT , can be used to construct con-

fidence intervals.

The approximate 100ð1 � sÞ% two-sided confidence

intervals for a, b and k of the form

â	 zs=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðâÞ

p
;

b̂	 zs=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varðb̂Þ

q

and

k̂	 zs=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varðk̂Þ

q

respectively, where zs=2 is the upper ðs=2Þ-th percentile of a

standard normal distribution.

6 Numerical results

6.1 Tabulations of first four moments and variances

The recurrence relations obtained in the preceding sections

allow us to evaluate the means, variances and covariances

of all order statistics for all sample sizes in a simple

recursive manner. Means, variances and covariances of all

order statistics can be used for various inferential purposes;

for example, they are useful in determining BLUEs of

location/scale parameters and best linear unbiased predic-

tors (BLUPs) of censored failure times. More details on

BLUEs and BLUPs based on order statistics can be seen in

Balakrishnan and Cohen (1991) and Arnold et al. (1992).

In Tables 1 and 2, we have presented the first four

moments and variances of order statistics and upper record

values up to five decimal places, for sample sizes

n = 1(1)10, a = 3, b = 2 and k = 1.

6.2 Simulation study

This section deals with the simulation study to evaluate the

performance of maximum likelihood estimator (MLEs) of

the three parameters SM distribution in terms of the sample

size n. We use the inverse cdf method to generate the

random variate from (1.2). For the SM distribution, the

inverse cdf can not be obtain in explicit form. For this

reason, we propose to use the Newton’s method to solve

the inverse cdf SM distribution. We consider different

values for sample size where

n = 3, 5, 7, 10, 15, 30, 50, 100, 150 and different param-

eter values I: a = 1.0, b = 0.5, k = 1.0 and II:

a = 1.2, b = 1.0, k = 1.5. We repeat the process 1000

times. For a total of 2 parameter combinations, we obtain

the average value of estimate and root mean square error

(RMEs). The simulation results are displayed in Table 3.

From Table 3, it is noted that the MLEs are quite close to

the true parameter values and RMEs decrease as the sample

size increase in both the cases. It indicate that the deduce

asymptotically unbiased and consistent estimator of the

parameters a, b and k.

Table 1 First four moments,

variances, some order statistics

from Eq. (3.7)

Xr :n # j -th moment! j = 1 j = 2 j = 3 j = 4 Variance

n = 1 r = 1 Expression (3.7) 3.63264 15.58368 10.00498 8.28967 2.387607

n = 2 r = 1 Expression (3.7) 3.16346 10.00498 9.03490 6.93246 0.002510

n = 2 r = 2 Expression (3.7) 7.26528 31.16736 20.00996 16.57933 2.616960

n = 3 r = 1 Expression (3.7) 3.06700 9.30036 8.81236 6.67184 0.106130

n = 3 r = 2 Expression (3.7) 4.84420 19.37115 17.69737 11.23843 1.095129

n = 3 r = 3 Expression (3.7) 10.89793 46.75105 30.01493 24.86900 1.013810

n = 4 r = 1 Expression (3.7) 3.02745 9.03490 8.71451 6.56659 0.130550

n = 4 r = 2 Expression (3.7) 5.48588 22.22948 21.52619 12.82423 2.865400

n = 4 r = 3 Expression (3.7) 0.39606 17.45473 16.58011 3.35900 0.297870

n = 4 r = 4 Expression (3.7) 14.53057 62.33473 40.01991 33.15866 1.803780

n = 5 r = 1 Expression (3.7) 3.00616 8.89679 8.65953 6.51034 0.140210

n = 5 r = 2 Expression (3.7) 6.23441 25.91985 25.56853 14.70145 3.948701

n = 5 r = 3 Expression (3.7) 14.79631 71.52458 71.46460 36.46482 3.406680

n = 5 r = 4 Expression (3.7) 14.82714 6.38806 3.72421 26.26477 4.232745

n = 5 r = 5 Expression (3.7) 18.16321 77.91841 50.02489 41.44833 4.984290
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6.3 Real data analysis

In this section, a real data set is considered for the illus-

tration of the usefulness and applicability of the SM dis-

tribution. The data set represents the survival times (in

days) of guinea pigs injected with different doses of

tubercle bacilli. The regimen number is the common log-

arithm of the number of bacillary units in 0.5 ml. of

challenge solution; i.e., regimen 6.6 corresponds to

4.0 9 106 bacillary units per 0.5 ml. (log10(4.0 9 106) =

6.6). This data set was originally reported by Bjerkedal

(1960). This data set has also been analyzed by Kundu and

Howlader (2010). They showed that inverse Weibull dis-

tribution is good fitted model for this data set. Corre-

sponding to regimen 6.6, there were 72 observations which

are listed below:

12, 15, 22, 24, 24, 32, 32, 33, 34, 38, 38, 43, 44, 48, 52,

53, 54, 54, 55, 56, 57, 58, 58, 59, 60, 60, 60, 60, 61, 62, 63,

65, 65, 67, 68, 70, 70, 72, 73, 75, 76, 76, 81, 83, 84, 85, 87,

91, 95, 96, 98, 99, 109, 110, 121, 127, 129, 131, 143, 146,

146, 175, 175, 211, 233, 258, 258, 263, 297, 341, 341, 376.

The SM distribution is fitted to the data set and its fitting

is compared with some well known lifetime distributions

namely, gamma (Gm), Weibull (We) and inverse Weibull

(IW) distributions with their respective pdfs given by

Gm : f xð Þ ¼ b�a

C að Þ x
a�1 exp � x

b

� 	
; x[ 0; a; b[ 0;

We : f xð Þ ¼ a
b

x

b

� 	a�1

exp � x

b

� 	a
 �
; x[ 0; a; b[ 0;

and

IW : f xð Þ ¼ abx� aþ1ð Þ exp �bx� að Þ; x[ 0; a; b[ 0:

We used different methods to test the goodness of fit of

the above distributions based on maximum likelihood

estimation method. We obtain estimated negative log

likelihood function -lnL, the Akaike information criterion

(AIC), proposed by Akaike (1974), defined by

AIC ¼ 2 � k � ln Lð Þð Þ, Bayesian information criterion

(BIC) proposed by Schwarz (1978), defined by

BIC ¼ k � lnðnÞ � 2 � log Lð Þ, where k is the number of

parameters in the distribution, n is the number of obser-

vations in the given data set, and L is the maximized value

Table 2 First four moments

and variances of some upper

record values from Eq. (3.8)

r # j -th moment! j = 1 j = 2 j = 3 j = 4 Variance

1 Expression (3.8) 0.806522 0.806190 0.833070 0.855186 0.155712

2 Expression (3.8) 1.194722 1.700648 1.916390 2.072625 0.273287

3 Expression (3.8) 1.560754 2.923529 3.541159 4.003828 0.487576

4 Expression (3.8) 1.955091 4.685094 6.069290 7.155188 0.862713

5 Expression (3.8) 2.402608 7.275322 10.06014 12.35472 1.502797

6 Expression (3.8) 2.923235 11.12048 16.40166 20.97667 2.575177

7 Expression (3.8) 3.536888 16.85596 26.51133 33.16200 4.346383

8 Expression (3.8) 4.265492 25.43269 42.65533 64.06124 7.238268

9 Expression (3.8) 5.134243 38.27570 80.48108 114.4830 11.91525

10 Expression (3.8) 6.172692 57.52164 131.2132 124.5281 19.41951

Table 3 Average values of estimates and RMSEs of â, b̂ and k̂

n Parameter I II

Estimate RMSE Estimate RMSE

3 a 1.019976 0.000399 1.179724 0.034892

b 0.355183 0.415789 1.151882 0.084756

k 0.833650 1.360371 1.682543 0.294209

5 a 0.963012 0.000284 1.158834 0.025229

b 0.525402 0.225243 1.083712 0.080412

k 1.054736 0.893524 1.521267 0.229186

7 a 0.975461 0.000264 1.150615 0.024162

b 0.408437 0.215294 1.040182 0.070820

k 0.854063 0.091748 1.539384 0.212168

10 a 1.016478 0.000188 1.160315 0.023154

b 0.323468 0.210142 1.2112301 0.070618

k 0.687501 0.081378 1.742335 0.066392

15 a 1.028461 0.000164 1.221310 0.021253

b 0.445282 0.204011 0.906684 0.070329

k 0.607570 0.079646 1.281032 0.023140

30 a 0.869796 0.000148 1.143027 0.011548

b 0.617787 0.146086 1.132319 0.070126

k 0.092576 0.062123 1.018425 0.022184

50 a 1.004798 0.000082 1.121414 0.010152

b 0.287672 0.131981 1.214386 0.060132

k 0.745971 0.059676 1.683743 0.021342

100 a 0.938863 0.000045 1.201253 0.010105

b 0.630241 0.130216 1.128741 0.058281

k 0.138276 0.058627 1.585772 0.020573

150 a 1.021824 0.000039 1.106251 0.010101

b 0.338515 0.099864 0.841054 0.049202

k 0.158362 0.053465 1.267843 0.020112
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of the likelihood function for the estimated model and

Kolmogorov–Smirnov (K–S) statistics with its p value. The

best distribution corresponds to lowest -lnL, AIC, BIC and

K–S statistic values.

The values of MLEs of the parameters of the considered

lifetime distributions, -lnL, AIC, BIC, K–S statistic with its

p-values are presented in Table 4. This Table shows that

the SM distribution out-performs the other three well

known distributions, since it has the smallest -lnL, AIC,

BIC and K–S statistic values and highest p-values. More

information is provided by visual comparisons using fitted

cumulative distribution functions of the competing distri-

butions with the empirical cdf (ECDF) and quantile–

quantile (Q–Q) plots. Figure 3 shows the estimated cdfs of

the competing models with ECDF. From Fig. 3 one can

observe that the estimated cdf of the SM distribution is

Table 4 The MLEs, the values

of log-likelihood function, AIC,

BIC and K-S statistic and

associated p-values for the real

data set

S. no. Distribution MLEs -lnL AIC BIC K–S p value

1. Gamma â = 2.0815

b̂ = 47.9564

394.2476 792.4952 797.0485 0.1384 0.12664

2. Weibull â = 1.3932

b̂ = 110.5551

397.1477 798.2953 802.8487 0.1465 0.09107

3. Inverse Weibull â = 1.4148

b̂ = 283.8312

395.6491 795.2982 799.8515 0.1520 0.07184

4. SM â = 3.0165 389.4698 784.9395 791.7695 0.0837 0.69368
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Fig. 3 Estimated cdfs of different distributions and the empirical cdf

for the real data

0 100 200 300

0
10

0
20

0
30

0

Fitted Gamma Quantiles

Sa
m

ple
 Q

ua
nt

ile
s

0 100 200 300

0
10

0
20

0
30

0

Fitted Weibull Quantiles

Sa
m

ple
 Q

ua
nt

ile
s

0 100 200 300

0
10

0
20

0
30

0

Fitted Inverse Weibull Q

Sa
m

ple
 Q

ua
nt

ile
s

0 100 200 300

0
10

0
20

0
30

0

Fitted SM Quantiles

Sa
m

ple
 Q

ua
nt

ile
s

Fig. 4 Quantile–quantile plots

for the real data set
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closest to the ECDF. Also, a Q–Q plot consists of plots of

the sample quantiles and the fitted quantiles. The Q–Q

plots for the competing distributions are shown in Fig. 4

and from this Figure one can observe that the model based

on SM distribution has the points closest to the diagonal

line. Thus, these plots indicate that the SM distribution

provide a good fit for the given data set and therefore, the

SM distribution can be used effectively in the analysis of

the given data set.

Substituting the MLEs of the unknown parameters in

Fisher information matrix given in Sect. 5.2, the observed

variance–covariance matrix comes out

I�1ðHÞ ¼
0:3480

�5:2457

�0:1240

�5:2457

137:5071

2:6533

�0:1240

2:6533

0:0610

2
64

3
75:

Thus, using the diagonal elements of the matrix I�1ðHÞ,
the two sided 95% asymptotic confidence intervals of the

parameters a, b, and k are (1.8603, 4.1728), (37.8448,

83.8121), and (0.1890, 1.1571), respectively.

7 Concluding Remarks

In this paper, the various structural properties of the

distribution are derived including explicit expressions

for moments, mean deviation, Bonferroni and Lorenz

curves, Renyi entropy and quantile function. The explicit

expressions and recurrence relations for single and pro-

duct moments of GOS from the SM distribution are

derived. The two characterizing results of SM distribu-

tion have been obtained on using conditional moments of

GOS and a recurrence relation for single moments. The

method of maximum likelihood is adopted for estimating

the model parameters. For different parameter settings

and sample sizes, the various simulation studies are

performed and compared to assess the performance of

the SM distribution. We have analyzed one real data set

and the proposed SM distribution provides a very good

fit to the data set.
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Appendix

By differentiating (5.2), the elements of the Fisher infor-

mation matrix IðHÞ for the parameters (a, b, k) are:

Iaa ¼ � n

a2
� aðaþ 1Þðkþ 1Þ

Xn
i¼1

ðxi=bÞa�2

½1 þ ðxi=bÞa�
� ðk

þ 1Þ
Xn
i¼1

ðxi=bÞ2a
lnðxi=bÞ

½1 þ ðxi=bÞa�2
:

Iab ¼ � n

b
� aðkþ 1Þ

Xn
i¼1

ðxi=bÞa�1
lnðxi=bÞ

½1 þ ðxi=bÞa�
þ aðk

þ 1Þ
Xn
i¼1

ðxi=bÞ2a�1
lnðxi=bÞ

½1 þ ðxi=bÞa�2
:

Iak ¼ �
Xn
i¼1

ðxi=bÞa lnðxi=bÞ
½1 þ ðxi=bÞa�

:

Ibb ¼ na

b2
� aðkþ 1Þðaþ 1Þ

Xn
i¼1

xai

baþ2½1 þ ðxi=bÞa�

þ a2ðkþ 1Þ
Xn
i¼1

x2a
i

baþ1½1 þ ðxi=bÞa�2
:

Ibk ¼ �a
Xn
i¼1

xai

baþ1½1 þ ðxi=bÞa�
:

Ikk ¼ � n

k2
:
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