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Abstract: In this day and age, depression is still one of the biggest problems in the world. If left
untreated, it can lead to suicidal thoughts and attempts. There is a need for proper diagnoses of Major
Depressive Disorder (MDD) and evaluation of the early stages to stop the side effects. Early detection
is critical to identify a variety of serious conditions. In order to provide safe and effective protection to
MDD patients, it is crucial to automate diagnoses and make decision-making tools widely available.
Although there are various classification systems for the diagnosis of MDD, no reliable, secure method
that meets these requirements has been established to date. In this paper, a federated deep learning-
based multimodal system for MDD classification using electroencephalography (EEG) and audio
datasets is presented while meeting data privacy requirements. The performance of the federated
learning (FL) model was tested on independent and identically distributed (IID) and non-IID data.
The study began by extracting features from several pre-trained models and ultimately decided to
use bidirectional short-term memory (Bi-LSTM) as the base model, as it had the highest validation
accuracy of 91% compared to a convolutional neural network and LSTM with 85% and 89% validation
accuracy on audio data, respectively. The Bi-LSTM model also achieved a validation accuracy of
98.9% for EEG data. The FL method was then used to perform experiments on IID and non-IID
datasets. The FL-based multimodal model achieved an exceptional training and validation accuracy
of 99.9% when trained and evaluated on both IID and non-IIID datasets. These results show that the
FL multimodal system performs almost as well as the Bi-LSTM multimodal system and emphasize
its suitability for processing IID and non-IIID data. Several clients were found to perform better than
conventional pre-trained models in a multimodal framework for federated learning using EEG and
audio datasets. The proposed framework stands out from other classification techniques for MDD
due to its special features, such as multimodality and data privacy for edge machines with limited
resources. Due to these additional features, the framework concept is the most suitable alternative
approach for the early classification of MDD patients.

Keywords: major depressive disorder; federated learning; deep learning; Bi-LSTM; IIDs; non-IIDs;
electroencephalography; audio
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1. Introduction

Mental disorders are a major global health problem as they contribute significantly
to the global burden of disease and have a major impact on people’s social and economic
well-being. According to the World Health Organization (WHO), an estimated 264 million
women and men of all ages suffer from a mental disorder, which means that up to 27% of
the world’s population is affected by mental health problems at some point in their lives [1].
According to current WHO reports from 2023, an estimated 5% of adults worldwide
suffer from depression [2]. Major depressive disorder (MDD) is a mental illness that has a
significant impact on general behavior, emotions, and cognitive abilities [3]. In addition, it
has been difficult to transfer diagnostic descriptions from clinically established nosology
to various biological indices. We need new methods to accurately diagnose depression,
including biomarkers [4–8]. According to the literature, depressed people release fewer
neurotransmitters and have lower concentrations of synaptic receptors compared to healthy
people [9,10].

Electroencephalography (EEG) is the conventional method used to detect brain activi-
ties which helps us in further diagnosis of brain diseases [11]. On the other hand, audio
recordings are an unconventional method that can be used to recognize the frequency of
valence and arousal in a person’s voice. Machine learning (ML) and deep learning (DL) are
used to create a centralized model for different fields such as healthcare, agriculture, smart
industry, intelligent management, and traffic and environmental monitoring systems [12].
Centralized models perform better because they have access to more data. Merging model
parameters and training on the device only increases training time in federated learning
(FL) in terms of model communication and aggregation [13–15]. For platforms focused
on real-time and continuous monitoring of mental health problems, including depres-
sion, these trade-offs may be significant. Despite the fact that FL [16,17] has been used
for a variety of healthcare services, there is a dearth of research that has utilized FL for
privacy-preserving multimodal analysis to assess MDD.

Lightweight FL describes the establishment of technologies and approaches that
reduce the amount of computational and communication resources required to build MDD
models on mobile devices or distributed platforms [18]. It aims to make federated learning
efficient and flexible in contexts with minimal resources [19]. It could be used in many
different domains that require fast analysis of large amounts of distributed data [20]. In
the field of FL, there is still a lack of studies on MDD classification. These challenges need
to be addressed for FL to be used successfully in the real world for people with MDD. FL
could, therefore, provide a private and secure system for a sensitive disease such as MDD,
as many hospitals do not share their data for privacy reasons [21].

Major depressive disorder is a severe form of depression. However, there are many
conventional methods for identifying MDD that are far less than optimal. AI-trained
models have helped to develop more accurate and robust models for detecting MDD.
Due to the sensitivity of medical data, it is difficult to share all patient information on
a centralized device. Therefore, in this work, we have developed a privacy-preserving
federated learning-based multimodal [22] system after studying the literature and research
on MDD detection. Thus, in this work, a privacy-preserving multimodal FL system for
MDD classification is developed using audio and EEG data. By having a local model at
each node, the efficiency of a federated learning-based node is not significantly affected
when connectivity is interrupted. It also reduces the communication overhead, which is
the main drawback of algorithms based on deep learning or machine learning.

Researchers have developed a range of neural network-based machine learning and
deep learning models to differentiate between MDD and non-MDD individuals. With
developments in artificial intelligence, these models may be able to identify MDD subjects
reliably and with high accuracy. Cai et al. [10] used four machine learning methods,
Support Vector Machine (SVM), K-Nearest Neighbour (KNN), Classification Tree (CT),
and Artificial Neural Network (ANN), to classify depression based on EEG signals and
achieved a significant accuracy of 79.27% with the KNN algorithm. Orabi et al. [6] processed
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many deep learning algorithms to access the results of “X, formerly Twitter” data for
depression detection and found that the Convolutional Neural Network (CNN) based
model performed well compared to the Recurrent Neural Network (RNN) based model.
Several techniques for recognizing various mental disorders are described in Table 1.
However, finding a balance between data accuracy and privacy is a major problem. While
the technology may detect diseases with great accuracy, there may be privacy issues.

Table 1. Comparative analysis of previous studies’ results.

References Data Type Method Applied Multi-Modality Data
Privacy Parameters

[23] Speech data Deep Neural
Network Architecture No No 96.7%

[24] X, formerly Twitter data Hybrid DL Model No No F1 score 89%

[25] EEG data 1D CNN Model No No Accuracy 90.5%

[26] EEG data DL Models No No Accuracy 99.24%

[27] Text data Deep Learning Model No No Accuracy 99%

[28] EEG data Deep Belief Network
(DBN) Model No No Accuracy 83.16%, 86.09% under

binary and multiple classes

[29] X, formerly Twitter data DL Models No No Got high accuracy of 98% with CNN

[30] Reddit data EL Model No No Accuracy 98.05%

[31] Questionnaire data AI-based Decision
Support System No No Accuracy 89%

Lam et al. [5] tested a transformer model and a 1D-CNN model for identifying de-
pressed and non-depressed individuals using audio and text data, which performed well
compared to other state-of-the-art depression detection systems. Zogan et al. [24] proposed
a hybrid deep learning model using Tweeter data for detecting depressed individuals and
achieved a good prediction with an F1 score of 89%. Mousavian et al. [32] developed de-
pression detection based on resting-state MRI and structured MRI images using a machine
learning model.

With the development of social media, people started sharing their emotions and
feelings by posting their messages on different platforms like Facebook, “X, formerly
Twitter”, WhatsApp, etc. Therefore, to diagnose and control depression, several optimized
machine and deep learning algorithms were developed using social media data [6,24,29].
Many resources restrict access to other users, so data must be shared in a centralized location
for privacy and sensitivity. The proposed study on the establishment of DL algorithms in a
federated learning setting to improve data privacy has been emphasized in Tables 1–3.

Table 2. Depression detection using a Multimodal System.

References Features Extracted Method Applied Data
Privacy Parameters

[33] Social networks, visual,
emotional, and user profile A Multimodal Dictionary Learning No F1-measure is 85%

[34] Audio, video, and text data Multi-model Fusion No Root Mean Square Error is 5.98

[35] Text, picture, and behaviour Multimodal Feature Fusion Network No F1-score is 0.9685

[36] Audio and text Cross Dataset Prediction No Root Mean Square Error is 5.62
using Lenear Regression model

[37] Audio and image
Time-Aware Attention-based
Multimodal Fusion Depression Detection
Network

No F1-score is 0.75
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Table 3. FL-based depression detection.

References Data Type Method Applied Multi-Modality Data Privacy Parameters

[38] Multi-source mobile
health data FL Model No Yes Accuracy 85.13%

[39] Speech data FL Method No Yes Accuracy 87%

[40] Audio data FL Model No Yes Accuracy with IID 86.3%
and with non-IID 85.3%

[41] Text data FL Framework No Yes Accuracy 93.46%

The research gap identified in Tables 1–3 shows that considerable accuracy has been
achieved in previous work but at the cost of privacy and resource utilization. Multimodal
frameworks are expected to provide more precise and accurate results as the unique charac-
teristics of each trained DL framework are considered across different MDD datasets [42–44].
Therefore, in the proposed framework, a multimodal system is developed using audio
and EEG data. A major limitation of DL algorithms is the confidentiality of patient mental
health data. Therefore, decentralized training with federated learning helps to protect the
privacy of the data. The main limitation in centralized training of DL algorithms is the
high communication cost required to transfer MDD-related data between the client and
the server. The datasets in centralized DL are not IID. For non-ID datasets, independence
means that all sample values are independent and not identically distributed. FL works
with both IID and non-ID datasets. The aims of this research were as follows:

1. To develop and analyze baseline EEG and audio-based multimodal systems for the
classification of MDD.

2. To implement and analyze privacy-preserved FL multimodal systems for the classifi-
cation of MDD using EEG and audio databases.

3. To analyze the impact of identical and non-identical multimodal Cross-Silo databases
on the FL-based MDD classification system.

The following sections of this work are structured as follows. Section 2 describes
the associated work done in the suggested study using comparative analysis tables and
research gap data. Section 3 mathematically defines the materials and methods used in the
proposed study, as well as their subsections which include the proposed FL framework,
DL methods, data collection details, multimodal framework, and methodology used. The
outcomes of the base DL models and the suggested FL multimodal employing EEG and
audio data are presented extensively in Section 4. Finally, Section 5 represents the proposed
study’s conclusion.

2. Materials and Methods

The following section provides examples of the procedures and methods used in the
proposed work. In this study, a federated deep learning framework is presented to solve
privacy issues related to depression classification. The framework uses a decentralized
client-server architecture to ensure the confidentiality of all identically and non-identically
distributed (IID and non-IID) client data. This research was conducted to classify MDD
patients and healthy control subjects. For this purpose, we first collected an online dataset
containing MDD data from EEG and audio recordings of many subjects. Subsequently,
these data were preprocessed for further training and finally analyzed using our proposed
framework. The results are presented below in Figure 1.
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The privacy-preserving Multimodal Federated Learning (MFL) model was developed
to achieve a robust model with the security of raw data by building a model on local
devices. The audio and EEG data from MDD and healthy control subjects were collected
in an online dataset. Subsequently, the data were pre-processed and divided into IID and
non-IID datasets, which were then forwarded to the implementation phase. First, the
DL algorithms Bidirectional Long-Term Memory (Bi-LSTM), Long Short-Term Memory
(LSTM), and Convolutional Neural Network (CNN) were applied separately to audio
and EEG datasets. In addition, the DL algorithm Bi-LSTM was implemented to create a
multimodal system from audio and EEG datasets. Finally, the multimodal FL framework
was developed to create a privacy-sensitive system for MDD subjects.

2.1. Proposed Multimodal Federated Learning Framework for MDD Classification

In general, collaborative learning can be applied to the simultaneous processing of
large amounts of data on independently generated datasets with data processing nodes
that have approximately similar computational power. Data sharing may also require
collaborative learning with significant communication capacity and high data security.
Federated learning is a collaborative machine learning architecture that enables data eval-
uation, such as neural network (NN) training, directly on the data storage device. Only
the result parameters, such as changed weights of the NN, are imported into the neural
network to create an aggregated analysis framework in FL. Therefore, compared to regular
distributed systems, FL systems do not collect data in a centralized data warehouse.

The proposed FL framework for MDD classification is shown in Figure 2. For feder-
ated machine learning or deep learning, the proposed framework involves a client-server
architecture, and the given tasks need to be performed on the client and server sides with
separate programming codes. N clients were connected to a server in a federated cluster,
each with an individual set of programming languages. In the current study, the proposed
federated learning framework for MDD identification, including a client-server architecture,
was implemented using Python programming libraries led by Keras and TensorFlow.
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have their datasets (D1, D2, . . . DN), so the full dataset is represented as DN = D1 ∪D2 ∪. . .∪DN.
All shared datasets DN’s are pooled together in a standard decentralized training method to
develop a deep learning framework. In the FL, each client’s data Di is trained independently,
and each trained model collaborates without disclosing any client information due to
other clients Ki or the server S. Further, the FL averaging structure is discussed below in
Algorithm 1.

Algorithm 1. Federated Averaging

K—number of clients from 1 to n
B—minimum batch size
E—number of epochs
F—fractions of clients
Server function—FedAvg
Initialize global weights w
for round i = 1, 2. . .do

M←max (F.K, 1)
Vt ← (random sets of M clients)
for client k € Vt do parallel
ClientUpdate(k, wt)

wt+1 ← ΣKk=1Wk
t+1

end
end

Client function—ClientUpdate(k, w)
B← Split data into batches
For each local epoch i from1 to E do

Update client w
Return w to server

2.2. Deep Learning Methods

The DL techniques can help in the diagnosis of mental health issues using data
from social media, clinical health records, and mobile device sensors. The centralized DL
methods are widely used to identify and classify depression, and many researchers have
developed robust models. Due to their ability to easily work on big data problems, in this
work, we have used LSTM, CNN, and Bi-LSTM for preparing our base models.
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In the CNN algorithm, a convolutional layer loops across the width and length in
two dimensions. When the data inputs are Mel Frequency Cepstral Coefficients, whose
dimensions represent duration and bandwidth, respectively, this does not apply. By ad-
dressing Mel Frequency Cepstral Coefficients (MFCC) in the depression detection problem,
one-dimensional convolution is more appropriate than two-dimensional convolution. Con-
volution across the frequency axis is applied in the suggested model. As a result, the model
is able to provide features that represent a brief temporal association. The configuration of
a 1D CNN model requires forward and backward propagation layers; this is referred to as
Multi-Layer Perceptron (MLP). In CNN layers, the forward propagation layer is presented
as follows: Xl

k = bl
k + ∑

nl−1
i=1 conv1D

(
wl−1

ik , sl−1
i

)
where Xl

k is the input, bl
k is the bias factor

at kth the neuron of layer l, wl−1
ik is the kernel, and sl−1

i is the output of ith neuron. So, the

output can be expressed as Yl
k = f

(
Xl

k

)
.

Long Short-Term Memory (LSTM) is specially used for sequential data like time
series, waves, speech, text, and so on. LSTM is designed to overcome the long-term
dependencies of Recurrent Neural Networks and provides more accurate predictions
by remembering the information for a long time. It includes three gates; input gate,
output gate, and forget gate. All of these gates generate values as 0 or 1, where 0 denotes
that the gate is blocked, and no information is passing and 1 denotes the opposite. In
LSTM, the representation of the Forgot Gate, R, is Rt = σ

(
W f .[Ct−1,ht−1, at]b f

)
. Input

gate, P, is defined as Pt = σ(Wi.[Ct−1,ht−1, at]bi), and Output gate, T, is described as
Tt = σ(Wo.[Ct−1,ht−1, at]bo).

Bidirectional LSTM is referred to as an updated version of LSTM because it works
for information transmission in both directions, forward and backward at the same time.
In this way, it helps to better predict the output value. The model can learn from both
the present and the future time steps thanks to BiLSTM. We used BiLSTM to demon-
strate the depression identification and detection system because we wanted to extract
the properties of EEG and sound data. Therefore, it calculates the output value jointly as
D f = σ

(
W f

[
xn, h1

n−1, h2
n−1

]
+ b f

)
.

2.3. Multimodal Architecture

A data representation that incorporates information from various sources is known
as a multimodal representation. Multimodality refers to obtaining most of the details of
data by using multiple techniques, so that the deep learning algorithm may be trained
effectively to produce superior outputs [45]. As each modality operates differently, merging
them is difficult, and the beginning of each modality requires a different pattern. Stacking
numerous diverse datasets may result in improved performance compared to individual
models. A growing amount of multimodal data is being transferred through internet
connections as an outcome of the expansion of the network and a wide range of smart
gadgets in the past few years. Therefore, a larger variety of multimodal scenarios for
applications are arising [46].

The recent achievement of large frameworks and their multimodal variations, in
particular, highlights AI’s potential in multimodal core systems. The joint representations
are methods that combine unimodal representations into a multimodal environment. Joint
representations are employed in tasks that contain multimodal information during both
the training and the testing processes [45]. A concatenation of specific modality attributes
is the most basic example of a combined representation. The multimodal ‘m’ is described
mathematically as Ym = f (Y1, Y2, . . . , Yn).

2.4. Data Acquisition

In this experiment, to create a multimodal system, we collected 3-channel EEG and
audio recordings from the MODMA dataset [47]. EEG recordings include data from 55
participants; here, 26 depressed and 29 non-depressed participants were recorded. The
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data was recorded in a resting state (participants’ eyes were closed) for 90 s in a room with
no noise [48]. A pervasive EEG collection device with three electrodes is used for data
collection from the prefrontal lobe of participants because this part of the human brain
relates to emotions and psychiatric conditions [49].

Audio recordings include data from 52 Chinese subjects (23 depressed and 29 healthy
participants). These data were collected from the Second Affiliated Hospital of Lanzhou
University [50]. In this dataset, each subject had 29 recordings, which were classified as
positive, neutral, and negative emotional stimuli. High-quality equipment was used to
collect speech data. All the participants from healthy and depressed groups were aged 18
to 55.

For data preprocessing, the Mel Frequency Cepstral Coefficients technique was imple-
mented. Due to its efficiency in identifying the change of low-frequency data and focusing
on people’s perceptions, the MFCC feature is the most commonly utilized audio feature in
speech-related activities and signals like EEG waves. To avoid its large variance affecting
the training, all MFCC factors were normalized. Thus, after preprocessing, 161 features
were extracted using MFCC for both audio and EEG signals. Results are discussed in
Table 4.

Table 4. The details of participants from the audio and 3-channel EEG dataset.

Subject Type
Age

(in Years)
Gender

Male Female

Has Depression 16–56 15 11

No Depression 18–55 19 10

2.5. IIDs and Non-IIDs

IID and non-IID data in FL represent various data distribution trends among the
involved clients or systems. Every client or system in the federated learning configuration
has an equivalent distribution of IID data available to it. The average distribution of
the data is similar for all clients and is independent. However, non-IID denotes that
data distribution among clients is neither identical nor independent. The data could be
unbalanced, have distinct feature visualizations, or have multiple category distributions,
among other statistical characteristics. The non-IID dataset was created by randomly
distributing the original dataset among clients. Therefore, in non-IID, data is distributed in
different patterns among clients. When a federated learning algorithm is combined with a
deep learning algorithm, it effectively works on diverse datasets by involving relatively
reliable clients as shown in Figure 3.
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3. Results

In this section, the results of the DL algorithms LSTM, Bi-LSTM, and CNN are briefly
discussed by comparing their performance in the classification of Major Depressive Dis-
order. By comparing the training and validation accuracy, the best-trained model was
identified. Another FL-based deep multimodal model was trained for the classification of
MDD. However, different Python libraries such as Pandas, Tensor-Flow, NumPy, Sklearn,
and others were used for the preprocessing, categorization, scaling, testing, and training of
the data.

3.1. Deep Learning for Audio Dataset

The DL algorithms are applied to the audio dataset after preprocessing the data to
see the results in different situations with the best performance. In datasets related to
depression, there is a significant data imbalance that brings a preference for non-depressed
individuals in categorization. To reduce the prediction bias, sampling methods must be
used to equalize the size of the depressed and non-depressed classes.

In addition, multiple signals from a single individual may emphasize very personal
characteristics. Therefore, it is important to standardize the length of each person’s re-
sponses. MFCC is a commonly used voice descriptor for depression detection of depression.
Thus, with the help of MFCC, 161 columns of features were extracted from the audio dataset.
Subsequently, the DL models LSTM, CNN, and Bi-LSTM were used to classify depressed
and non-depressed subjects.

Table 5 and Figure 5 displays the outcomes of comparing various DL algorithms
working with audio features. Therefore, validation parameters clearly show that Bi-LSTM
performed better upon audio features compared to the CNN and LSTM models. The
Bi-LSTM model attained the highest validation accuracy, precision, and recall, with a score
of 91% for each of these outcomes. On the other hand, LSTM and CNN models achieved
validation accuracy of 89% and 85%, respectively. In Figure 4, the confusion matrix clearly
shows that the Bi-LSTM model identified MDD and normal subjects more correctly than
CNN and LSTM models using the audio dataset.

Table 5. Result table of DL algorithms for audio data.

Parameters Bi LSTM CNN LSTM

Accuracy 99.08333 99.66667 99.33333

Val Accuracy 91 85 89

Precision 99.08333 99.66667 99.33333

Val Precision 91 85 89

Recall 99.08333 99.66667 99.33333

Val Recall 91 85 89

Loss 0.032376 0.012926 0.015737

Val Loss 0.349078 0.439554 0.347897

Diagnostics 2024, 14, x FOR PEER REVIEW 10 of 21 
 

 

Recall 99.08333 99.66667 99.33333 
Val Recall 91 85 89 

Loss 0.032376 0.012926 0.015737 
Val Loss 0.349078 0.439554 0.347897 

 
Figure 4. Confusion matrix of DL models with the audio dataset. 

  

  

Figure 4. Confusion matrix of DL models with the audio dataset.



Diagnostics 2024, 14, 43 10 of 20

Diagnostics 2024, 14, x FOR PEER REVIEW 10 of 21 
 

 

Recall 99.08333 99.66667 99.33333 
Val Recall 91 85 89 

Loss 0.032376 0.012926 0.015737 
Val Loss 0.349078 0.439554 0.347897 

 
Figure 4. Confusion matrix of DL models with the audio dataset. 

  

  

Diagnostics 2024, 14, x FOR PEER REVIEW 11 of 21 
 

 

  

Figure 5. Training and Validation results using DL models for audio data. 

3.2. Deep Learning for EEG Dataset 
EEG data is firstly preprocessed and 3-channel data is converted into 161 columns 

and 20,134 rows for the application of the DL model. EEG signals are one-dimensional 
data. For their classification, a one-dimensional model was developed using CNN, LSTM, 
and Bi-LSTM algorithms. However, the EEG data was collected from the subject’s pre-
frontal lobe using a 3-channel device that detects brain activities. 

The deep learning models gave better results with EEG data, as shown in Table 6. 
The training and validation results show that the Bi-LSTM and LSTM models performed 
approximately equally upon the EEG dataset. In Figure 6, confusion matrices present the 
number of identified MDD and normal patients with the help of different DL models us-
ing the EEG dataset. 

Figure 5. Training and Validation results using DL models for audio data.



Diagnostics 2024, 14, 43 11 of 20

3.2. Deep Learning for EEG Dataset

EEG data is firstly preprocessed and 3-channel data is converted into 161 columns and
20,134 rows for the application of the DL model. EEG signals are one-dimensional data.
For their classification, a one-dimensional model was developed using CNN, LSTM, and
Bi-LSTM algorithms. However, the EEG data was collected from the subject’s prefrontal
lobe using a 3-channel device that detects brain activities.

The deep learning models gave better results with EEG data, as shown in Table 6.
The training and validation results show that the Bi-LSTM and LSTM models performed
approximately equally upon the EEG dataset. In Figure 6, confusion matrices present the
number of identified MDD and normal patients with the help of different DL models using
the EEG dataset.

Table 6. Result table of DL algorithms for EEG data.

Parameters BiLSTM CNN LSTM

Accuracy 99.28598 98.99417 99.19285

Val Accuracy 98.95704 96.92078 98.93221

Precision 99.28598 98.99417 99.19285

Val Precision 98.95704 96.92078 98.93221

Recall 99.28598 98.99417 99.19285

Val Recall 98.95704 96.92078 98.93221

Loss 0.019303 0.02646 0.023499

Val Loss 0.043929 0.09795 0.047406
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The results in Table 6 demonstrate that the validation accuracy, precision, and recall
using the Bi-LSTM model is the highest with a score of 98.95% for each parameter. The
LSTM model took second place with a score of 98.93% for each of the three parameters;
the validation accuracy, precision, and recall. However, the CNN model has also achieved
good validation results with 96.92% accuracy, precision, and recall. Figure 7, shows the
results of the DL models increasing in value with every epoch from 0 to 100.

3.3. Deep Learning Using Multimodal Audio and EEG Datasets

Multimodal learning is the process of linking information from different sources. The
fundamental challenge when using DL algorithms is to determine the best architecture
for a target. A strong model that provides high accuracy in EEG identification may not
perform as well on voice recognition tests. The aim of this work is to present a DL model for
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MDD classification to improve the accuracy of the classification problem. The DL algorithm
Bi-LSTM was developed to train a multimodal model based on audio and EEG data.

For this purpose, the audio and EEG datasets are first preprocessed, and then the
extracted features are collected in 161 rows for each dataset. To train a multimodal system,
we need equal parameters. Thus, the concatenation layer merges both models in the form
of a multimodal model.

Table 7 shows the results of the multimodal DL model with audio and EEG data. The
validation results clearly show that it is a robust model with an accuracy, precision, and
recall of 100% in each case. In Figure 8, we can see that the accuracy increases from the first
epoch, and the differences between the training and validation accuracy are very small.
This model could, therefore, be used in real-life situations.

Table 7. Result table of DL multimodal system.

Parameters DL Multimodal

Accuracy 99.99411

Validation Accuracy 100

Precision 99.97054

Validation Precision 100

Recall 99.95877

Validation Recall 100

Loss 0.00047

Validation Loss 0.000117
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3.4. Federated Learning Multimodal Using Audio and EEG Datasets

The FL model was used together with the DL model to increase the confidentiality of
the data by developing our model at the client’s site. The weights of the central model are
initialized randomly in the initial phase of the FL procedure. After initialization, the central
server repeatedly contacts the clients at each communication cycle until the frame converges.
There are mainly two FL settings for data partitioning: (1) the IID setting, in which the data
is distributed independently and identically among the clients, and (2) the non-ID setting,
in which each client has data from different distributions. The communication process,
therefore, becomes slower as the size of the NN increases. However, in this framework, the
communication parameters are not applied. Further, FL could be used for heterogeneous
data as in non-IID environments. Non-IID data could affect the accuracy and precision
of the model, but this largely depends on the type of data the clients have. If the clients
have data from healthy control subjects, this would result in negative samples, whereas in
contrast, the model would recognize a positive number of samples for depressed control
subjects. This model performed better in both IID and non-IID situations, demonstrating
the stability of the proposed MFL model.

As we can see from Figure 9 and Table 8, under the IID setting, the outcomes are
slightly less than the central DL multimodal system because of the decentralized training
of data at local locations. As such, the training and validation accuracies for all IID data
are 99.94% and 99.93%, respectively. Further, the evaluation matrix’s result for validation
precision is 99.9% and recall is 99.94%. Thus, a privacy-preserved FL model could be used
for MDD diagnosis.
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Table 8. Result table of the FL multimodal system for IID settings.

IID Settings

Parameters FL Multimodal

Accuracy 99.94

Validation Accuracy 99.93

Precision 99.97

Validation Precision 99.9

Recall 99.88

Validation Recall 99.94

Loss 0

Validation Loss 0

Figure 10 and Table 9 show the performance of the FL multimodal system in non-IID
settings. The results are slightly higher in non-IID settings than in IID settings. As such,
the training accuracy, precision, and recall for non-IID settings are 99.99% for each. Further,
we obtained 0 loss for training and validation.
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Table 9. Result table of the FL multimodal system for non-IID settings.

Non-IID Settings

Parameters FL Multimodal

Accuracy 99.99

Validation Accuracy 99.97

Precision 99.99

Validation Precision 99.96

Recall 99.99

Validation Recall 99.95

Loss 0

Validation Loss 0
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4. Discussion

The performance of the proposed MFL model for detecting depression was compared
with the pre-trained models in Tables 1–3. The proposed system performed better with more
privacy by identifying depression with maximum accuracy and minimum loss using audio
and EEG datasets. First, a base model with LSTM, Bi-LSTM, and CNN algorithms was
trained individually on EEG and audio datasets. In both data sets, Bi-LSTM outperformed
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the other algorithms. Subsequently, a multimodal model was created from EEG and
audio data sets by applying Bi-LSTM. The DL multi-model achieved 100% accuracy and
precision in the validation phase. Finally, the FL algorithm was applied to the multimodal
in combination with Bi-LSTM after splitting the EEG and audio datasets into four clients
for IID and non-IID scenarios. The system captured the audio and EEG features more
accurately with both IID and non-IID datasets. The proposed system achieved 99.9%
accuracy with 0 losses in both IID and non-IIID scenarios. Thus, it is clear that the proposed
system is consistent with training parameters with a wide set of clients.

5. Conclusions and Future Trends

In today’s world, it is crucial to classify MDD individuals while protecting privacy by
using multimodal DL. In this study, the use of privacy-preserving federated deep learning
for MDD classification was investigated. First, pre-trained deep learning models such as
CNN, LSTM, and Bi-LSTM were used and evaluated. Compared to the other algorithms
discussed, Bi-LSTM obtained a validation accuracy of 91% for audio data and 98.95% for
EEG data. Consider the best performing model, i.e., Bi-LSTM, as the baseline model for
multimodal deep learning. The multimodal DL model achieved a score of 100% validation
accuracy, precision, and recall. In addition, a federated learning-based multimodal privacy-
preserving model was implemented with Bi-LSTM for individuals with MDD using audio
and EEG data. The proposed model could protect the high-risk and sensitive mental health
data by developing it on the client’s side. Moreover, the concept of multimodality increases
the robustness and reliability of the model by performing it with multiple data sources
and types. For this experiment, we used the multimodal MODMA dataset. As a result,
the proposed system achieved a training accuracy of 99.99% with 0 losses and a validation
accuracy of 99.97% for IID and non-IID settings. Based on the results, it was found that the
proposed system outperforms the federated multimodal deep learning system in terms of
resource utilization and privacy while achieving classification results very similar to those
of the baseline deep learning-based multimodal system. Most importantly, communication
costs are lower in the FL model as the trained model is shared between client and server
rather than the entire dataset. In future studies, this model could be applied to different
types of datasets such as image data, video data, text data, etc.
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