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ARTICLE INFO ABSTRACT
Keywords: This article considers the issue of domain mean estimation utilizing bivariate auxiliary information
Small area estimation based enhanced direct and synthetic logarithmic type estimators under simple random sampling
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(SRS). The expressions of mean square error (MSE) of the proposed estimators are provided
to the 1% order approximation. The efficiency criteria are derived to exhibit the dominance of
the proposed estimators. To exemplify the theoretical results, a simulation study is conducted
on a hypothetically drawn trivariate normal population from R programming language. Some
applications of the suggested methods are also provided by analyzing the actual data from the
municipalities of Sweden and acreage of paddy crop in the Mohanlal Ganj tehsil of the Indian state
of Uttar Pradesh. The findings of the simulation and real data application exhibit that the proposed
direct and synthetic logarithmic estimators dominate the conventional direct and synthetic mean,
ratio, and logarithmic estimators in terms of least MSE and highest percent relative efficiency.

1. Introduction

The statistical field known as small area estimation (SAE) conflates the sampling survey, statistical models, and findings on a
limited population. The development of agricultural preparation for prompt yield increase has necessitated the use of SAE techniques
to gather data on many economic sectors, racial and ethnic groups, medical specialties, geographic areas, cultivable land, income,
health, or poverty measures, minerals, among others. Extensive surveys may yield information at large scale of aggregation at both
state and national levels because of sample designs. After acknowledging the necessity for precise values at the very basic levels
of accumulation, including block, tehsil, and gramme panchayat, for the efficient utilization of monetary assets, the aim of the
government is shifted from macro to micro levels.

The construct of a small area comes from an extensive survey that indicates its importance to know both the characteristics of
the mean population/total and the dimensions of the well known domain of subpopulations. If these estimators of domain only use
domain-specific sample data, they are known as direct estimators. A direct estimator may also employ the accessible supplementary
information related to the parameter of interest. A thorough explanation of the direct method of estimation was provided by [1].
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A modified direct regression estimator of domain means was developed by [2]. Ref. [3] investigated improved direct estimators for
domain mean utilizing municipalities data.

When the domain sizes are very small, parametric estimates of these domains could not be correct since the sample from the
usual direct sampling approach might not appropriately represent these domains. Under these circumstances, a synthetic (indirect)
estimator is used to estimate the population parameter. By utilizing other domains data that are equivalent to the domain of small size
of concern, these strategies essentially aim to offer an appropriate sample for all domains. Ref. [4] proposed a generalised synthetic
estimator of the domain mean for the purpose of estimating agricultural area. A generalised synthetic estimator for small regions
utilising systematic sampling was suggested by [5]. The effectiveness of the generalised regression estimator for small domains was
investigated by [6]. In small domains, synthetic estimators employing auxiliary information were proposed by [7]. By employing
auxiliary data, [8] suggested logarithmic type direct and synthetic estimators for domain mean under SRS, while [9] studied SAE
utilizing design based direct and synthetic logarithmic estimators for domain mean. For a more thorough examination of small area
estimation, the reader is advised to see [10], [11], [12], [13] among others.

Utilising the auxiliary data effectively allows the survey researchers to increase the effectiveness of their suggested estimators.
This information is connected to the supplementary variable, which has a high correlation with the variable being investigated. As
a result, sample surveys are frequently used to estimate parameters that are pertinent in small areas. Only a small amount of work
has been done on the estimation of domain mean utilizing bivariate auxiliary information (BVAI) under SRS. Ref. [14] examined the
work of [4] by utilizing BVAIL. However, [15] suggested BVAI-based direct and synthetic logarithmic estimators for domain mean
under SRS. Most of the researchers investigated both direct and synthetic estimators utilizing BVAI separately. The goal of this paper
is distinct from the above researches and discussed in the following points:

« We propose enhanced direct and synthetic logarithmic type estimators of domain mean using SRS by employing BVAL

» Mathematically compare the efficiency of the proposed direct and synthetic estimators with the existing direct and synthetic
estimators.

o Numerically compare the performance of the proposed direct and synthetic estimators against the existing direct and synthetic
estimators.

« The performance of the proposed direct and synthetic estimators is illustrated utilizing some real data sets.

1.1. Notation

Suppose that the population Q =(€;,Q,, ..., Q) is made up of ‘A’ unique 2, small areas, or domains, that are each N, in size. The
domains, which might refer to a district, tehsil, or similar state-level entity, are the small domains of a population being surveyed and
may consider a variety of various shapes according to the circumstances. Let y be the research variable and (x, z) be the supplementary
variables. The constraint that n,, a =1,2, ..., A units in the s sample obtained from the domain ‘a’ of small size lead to the selection
of a random sample of n size without replacement. Thus, Zﬁ:] N, =N and 2:=1 n, =n. Let y,;, x4, and z,;; i =1,2,..., N,, denote
the i unit of the small domain a of the population for the characteristics y, x, and z, respectively. The terminologies used throughout
the paper are defined below:

Y= Zfi 1 ¥i/ N: population mean utilizing N observations on y;
= Z,N“l Y.i/ N,: population mean of domain a utilizing N, observations on y;

Z]i x;/ N: population mean of variable x utilizing N observations;

=2
Z
0= 20
Z

Z"z z ;/n: sample mean utilizing »n observations on characteristic z;

><| ><| ;<|
Il
ﬁ e

X,4i/ N,: population mean of variable x for domain a utilizing N, observations;

=z

z;/ N: population mean of variable z utilizing N observations;

T z-

z,;/ N,: population mean of variable z for domain g utilizing N, observations;

= 3
Il

| X;/n: sample mean utilizing n observations on characteristic x;

><| =i N, NI

=

X,i/n,: sample mean utilizing n, observations on x;

all
:

.= Zi= z,/n,: sample mean utilizing n, observations on z;
= Z," y;/n: sample mean utilizing n observations on y;
Vo= Zi=1 Y,i/n,: sample mean of domain a utilizing n, observations on y;

<

S)% ZN (x — X)?/(N — 1): Population mean square of variable x;
)% = 2 — X,)?/(N, — 1): Population mean square of variable x for the domain a;

s2=y" - (zi - Z )2/(N — 1): Population mean square of variable z;

S? = Zi:“l (24i = Z,)*/(N, — 1): Population mean square of variable z for the domain a;

Sy2 Zfi i = Y)2/(N —1): Population mean square of variable y;

Sy2 = ZZ"I Vai — Ya)2 /(N, — 1): Population mean square of variable y for the domain a;

C, =S, /X: Population variation coefficient of variable x;
C,, =S, /X,: Population variation coefficient of variable x for domain a;
C,=S,/Z: Population variation coefficient of variable z;

C., =S/ Z,: Population variation coefficient of variable z for domain a;
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Cc,=S8,/ Y: Population variation coefficient of variable y;
C,, =5, /Y,: Population variation coefficient of variable y for domain a;
: correlation coefficient of variables y and x;
py: correlation coefficient of variables y and z;
Py, correlation coefficient of variables x and z;
Py, x,: correlation coefficient of variables y and x for the domain a;
Py,z,: correlation coefficient of variables y and z for the domain a;
Px,z, correlation coefficient of variables x and z for the domain a.
To obtain the characteristics of the direct estimators, we consider the following error terms:
o=, —Y)/ Yy €1 = (X, — X))/ Xy 0 = (2, — Z,)/ Z,; such that E(e;)) =0, i =0,1,2, E(e}) = facﬁa, E(ed)= facga, E(e3) = faczza,
E(ege)) = fapy,x,Cy,Cx,> Eleger) = fapy, - Cy, C: » and E(eje)) = fopy - Cy C. , where f, = (N, —n,)/Nyn,.
Similarly, to obtain the characteristics of the synthetic estimators, we consider the following error terms:
e=G-1)/V, e, =~ X)/X, &, =(2~2Z)/Z; such that E(¢;) =0, i =0,1,2, E(¢}) = fC}, E(e}) = fC3, E(e3) = fC?, E(ge)) =
fryxCyCy, E(eggy) = fp,,C,C,, and E(g,€5) = fp,,C,C,, where f =(N —n)/Nn.
Further, in this section, we consider a literature review of all well-known direct and synthetic estimators of the domain mean that
rely on BVAL

pyx

1.2. Direct estimators

The direct conventional unbiased estimator is shown hereunder as

Vma=Ya

The variance of the estimator )‘z‘r’n , is given by

V)= f7ACE

The BVAI based direct ratio estimator is given by

’ ’ <X_u> <Z_a>
YVea=Ya\ — e
r.a a xa za

The MSE of the estimator yf , is given by

MSE(y;{a) = fayaz(ci + cfa + cja -2p, +,C, Cx. =2p, . C, C, +2p, . C, C,)

Ref. [15] suggested direct logarithmic type estimator using BVAI as follows:

7 =3 [l+i 10g<i—a)] [l+6 log<i>]
bka — Va a X, a Z,

where 4, and 6, are the constants.
The MSE of the estimator y‘;k . is given by
2 202 202
C) +4,C +6,CC +244py 4, C), Cx, +26,0y,.,C, C, ) o

=d _ v2
MSEG) = Ta¥a <+2/105 c C,

aPx,z,

Minimize (1) with respect to 4, and §,, we get

) _ i pyazupxaza B p/"axu
aor Cxa 1= p)zcuza

5 _ i pYaxupxaza B p}’aza
a(opt) Cza 1— P)zcazu

The minimal MSE of the suggested direct logarithmic estimator y‘g’k , is determined by using 4, and &, values in (1) as

a(opt a(opt

MSE o= 1522 (1-R2 )

Ya-XaZa

where Ri ‘oz denotes the multiple coefficient of correlation (y on x, z) in domain a.
ataca

3
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1.3. Synthetic estimators
The synthetic mean per unit estimator is given by
)_’f,,,a =y
The MSE of the estimator y, _ is given by
MSE®;, )= - Y%+ fY2c§

The BVAI based synthetic ratio estimator is given by

(X (Za
n=IF)F
Under the synthetic assumption Y, 2 Y(X,/X)(Z,/Z), the MSE( 7. ) is given by

MSE®; ) =Y. f(C; +C; +C2 =2p,,.C,Cy = 2p,.C,C; +2p,.C;C;)

Ref. [15] suggested BVAI based synthetic logarithmic type estimator as follows:

7 =51+ at0g( = )| |1+610 i)]
=31+t ()] |1eors (3

where A, and 6 are the constants.
Using ¥, @Y (1 + AA)(1+6B), Y, 2 Y (1 + AA), and Y, = Y (1 + § B) as synthetic assumptions, the MSE(7;, ) can be expressed as

MSE®;, )= fY2(CH+ CL+82C2 +24p,,C,C, +26p,,C,C, +228p,.C,C; ) (2)

The optimum values of 4 and é are obtained by minimizing (2) for these variables as
I Cy\ [ PyzPxz = Pyx
(opt) Cx 1— p%z
5 _ <&> pyx/)xz_pyz
(opt) CZ 1= p)zﬂ

We put 4,y and 6, in (2) to establish the minimal MSE of the proposed synthetic estimator y;, .

MSE}y Jnin= FT2C? (1 - Rﬁﬂ)
where Ri vz denotes the multiple coefficient of correlation (y on x, z).

In Section 2, we propose BVAI-based enhanced direct and synthetic logarithmic type estimators for the mean of domain a. Section 3
develops the efficiency criteria for the proposed estimators. In Section 4, the efficiency criteria of the proposed estimators have been
assessed by performing a simulation study. In Section 5, some applications of the suggested direct and synthetic logarithmic type
estimators are presented utilizing the data of the municipalities of Sweden and the acreage of paddy crop of the Indian state of Uttar
Pradesh’s Mohanlal Ganj tehsil. Section 6 concisely conclude this paper.

2. Suggested estimators

In this section, the logarithmic transformation for the direct and synthetic estimators is used due to the following key points.
Firstly, the logarithm transformation can stabilize variance, which is particularly useful when dealing with data that exhibit het-
eroscedasticity, where the variability of the data changes across the range of values. Secondly, it can normalize data distributions
that are skewed, making the data more closely approximate a normal distribution, which is a common assumption for many statis-
tical methods. Additionally, the logarithm transformation can make multiplicative relationships additive, simplifying the modelling
of complex relationships within the data. These benefits enhance the interpretability and robustness of the estimators, potentially
leading to more reliable and meaningful results. For more details about the advantages of logarithmic transformation, reader may
see [16] and [17]. Taking inspiration from these advantages and motivated by [16], this paper suggests BVAI based enhanced direct
and synthetic logarithmic type estimators for mean of domain a under SRS.

2.1. Direct estimator

The proposed novel direct logarithmic estimator is given by

=5, 1+ 4,1 all 1+6,1 %
ykp,a_z:aya + 4,108 X__a +0,log ZTH



A. Kumar, S. Bhushan, R. Pokhrel et al. Heliyon 10 (2024) 33839

where ¢, 4,, and §, are the suitably opted scalars.
To establish the mathematical expressions of the mean square error and minimum mean square error of the suggested direct
logarithmic estimator y‘,jp > We consider the error terms defined in Section 1.1 and express y‘,jp , s

) _ X,(1+ep) Z,(1+ey)
Tipa = Ca¥all +€g) [1 + A, log (Tﬂ [1 +6,log <T>]

a a

_ e% e%
=Y, (1+ey [1+4, e =5t 146, =5+

When we neglect the error components with powers higher than 2 and subtract Y, from both sides of the previous expression, we
obtain

62 62
- > 5 > +4 -1 )+6 -2+
yZp,a - Ya = (gaYa - Ya) + gaYa € N (el 2 > a <32 2 ) a®0€l
+0,epe, + A,0,€ €5

Squaring and taking expectation on both sides provides
C}%a + A (4, — I)C)%a +6,(6,— I)Cga

L+831+ 1, +44apy,x,Cy, Cx, +40apy,z,Cy,Cz,
MSE®G;, )=, +444840x,2,Cx, Cz,
”py Za " Va Cz

-2 1+f Aapyaxac)’acxa +96 4
a W\ +4bupy, -, €.y — 2202 — 22

The above expression can further be written as

C

MSE(J—’Zp.a)=?a2(1+C§P1_24,an) ®

Cﬁa + A (4, — l)Cfa +6,(6, — 1)C§a + Mapyaxacyacxa) and Q, = 1+f AabPy,x,Cy, Cx, + éapyizucyaczg
+45”p}’aza Cya Cza + 4/1a5apxaza Cxu Cza ‘ +laéapxaza Cxa Cza - 7” C)%a - Taczza
Minimize (3) with respect to {, gives the optimum value of ¢, as

0,

ga(opt) = Pl

where P, = 1+fa<

Using the value of ¢, in (3), provides
Q2
min. MSEG? =72 1-=L 4)
kp,a a Pl

It is remarkable that the simultaneously optimizing 4, and 6, is not possible. The optimum values of A, and J,(,,, can be
established by using {, =1 in the estimator yzp , and minimizing the MSE expression regarding 4, and ¢, respectively. The optimum
value of 4, and 6, are reported below:

) _ CYa pyazapxaza B pYaxa
oo\

5 _ CYu p)’axapxaza B pygza
a(opt) — Cza 1— [J)z( .

2.2. Synthetic estimator

The proposed novel synthetic logarithmic estimator is

Vpa=C7 [1 + Alog <Xia>] [1 +5log (Zi>]

where ¢, A, and § are the suitably opted scalars.
We use the error terms defined in Section 1.1 to express j}}ip , and determine the mean square error and minimum mean square
error of the estimator yip .
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a

=¢Y (1 +¢p) 1+Alog<_£> + Alog (1 +61)] [1 +510g(_£
] X, V4

a

>+6log(1+sz)]

_ &2 €2
=Vl +gp) |1+AA+2 51—31+... 1+6B+6 52—72+...

where A = log( ) and B = log( ) Further, by excluding error terms with powers higher than 2 and subtracting Y, on both

sides of the last expresswn we arrive at

(1 + AA)(1 + 6B) + (1 + AA)5 <52— —§> +(1+6B)A <gl - ;) L

Fipa =~ Ya=CY Y, 5)
+A0€16, + (1 + AA)(1 +6B)eg + (1 + AA)depe, + (1 + 6B)Agge,

Taking square and expectation both sides to (5), we get
[ {¢Y(1+ AA)(1+6B) - Y,}?

52 82 2
A1+ 6B) <51 - —> +(1+ AA)6 (.92 - 7)

+A8e 65 + (1 + AA)(1 + 6 B)ey + (1 + AA)de e,

MSE()_)i y=E _ +(1+5B)/160€1 B B
pa +2{CY(1+ AA)(1 +6B)—-Y,}{YX

+€2)72

2 2
A(1+6B) <51 - —> +(1+AA)8 <52 - i) + Abe £,

+(1+ AA)(1 + 5B)eg + (1 + AA)dege, + (1 + 5B)Aege,

After simplifying and using ¥, = Y (1+ AA)(1+6B), Y, 2 Y(1+ AA), and Y, = Y (1 + & B) as the synthetic assumptions, the MSE(;, )
is expressed as

Cy+ A= 1DCE+6(6~1)C?
72402 Y21+ 11 +44p,,C,C, +46p,.C,C,
a +248p,,C,C,
MSE®F, )= _
pa +2YY, f16C,C,
72 A2 _ 82
|7 {147 (3nCiCe+0p,.0,C. - 42 - 2c2) )
+YY,fAép,,C,C,
which can further be written as
MSEG,, ) =Y, +¢*Py—2¢0, (6)

C2 +AMA=DC2+5(5—1)C?+44p,,C,C
here P, = Y2 |1 z YT
where B2 [ * f{ +48p,,C,C, +28p,,C,C,
V2 A2 52
0,- Ya_{_l + £ (A0C,Co+p,.C,C. - 4C2 =22} |
+YY,fA6p,.C,C,
Minimize (6) with respect to ¢, we get

0,
Coopn = P,

+2YY,f46C,C, and

Using the value of C(op,) in (6), provides

Q2
2
min. MSE(ykpa)—Y P2 7)
It is remarkable that the simultaneously optimizing 4, and 6, is tedious. The optimum values of 4, and J,, can be determined
by using ¢ =1 in the estimator y;p ., and minimizing the MSE expression with respect to 4 and 4, respectively. The optimum value of
A and 6 are reported below:

2 _<&> pyszz_pyx
(opt) C, 1— /’;Z(z
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5 _ <Cy> PyxPxz ~ Pyz
©opt) =\
CZ I-p )2(2

Corollary 2.1. The suggested novel direct estimator yzp . berforms worse than the suggested novel synthetic estimator yip o

o _ 0}

_2 > Y2 _1 (8)
P2 a P12

and vice versa. Otherwise, the estimators y‘,jp , and yip , are efficient equally provided the equivalence in (8) retains.

Proof. In order to achieve (8), we compare (4) and (7). []

3. Efficiency conditions

By evaluating the MSEs of the suggested and the current direct and synthetic estimators, this section supplies the efficiency
conditions in the subsequent lemma.

Lemma 3.1.

s . . —d . . . . -d
(i). The proposed direct estimator Vipa dominates the direct mean per unit estimator Vima if

2
MSE® V© % 1-f,C?
Opad <V 0o = 5 >1-1.C,
1
(ii). The proposed synthetic estimator )’)ip ., dominates the synthetic mean per unit estimator y, , if

o
=s 2 2.2
)<MSE(yfn,a) = ?2 >Y - fY, Cy

MSEG,,,

Lemma 3.2.

i). The proposed direct estimator j ominates the direct ratio estimator j° i
(i). The proposed direct estimator 7 , tes the direct ratio estimator 3¢

2

o C? +C? +C? -2 c, C
MSE(y,,) < MSEG;,) = 71>1—fa< Yo T T e v e >
1

_2pyﬂzﬂ Cyﬂ CZH + 2pxﬂzﬂ C'Xd CZH
" N s . T =
(ii). The proposed synthetic estimator Vipa dominates the synthetic ratio estimator ¥, , if

2

0, oo [ C24+C2+C2-2p,.C,C
MSEG,,) < MSEG,,) = 722>Y3—fY5< S e ia )

_2pyszCz + szzcxcz
Lemma 3.3.

(i). The proposed direct estimator yzp , dominates the conventional direct logarithmic type estimator )_’Zk i
Q2
MSEG? Y<MSEG! )= —L>1-7C*1-R: __)
ykp.a ybk,a Pl azy, Ya-XaZq
(ii). The proposed synthetic estimator )'zlip , dominates the conventional synthetic logarithmic type estimator y;, if
2
s s . 52 2 2
MSE(ykp,a) <MSE®yy, ) = Fz >Y - fY;C,A-R) )

y.xz

The suggested direct and synthetic estimators dominate the contemporary direct and synthetic estimators under the efficiency
conditions determined in the above lemmas.

4. Simulation study

To assess the effectiveness of the suggested direct and synthetic logarithmic type estimators, a simulation experiment is conducted
utilizing a hypothetically drawn normal population. The normal population of N =16,000 size is generated with the parameters
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Y =15, X =20, Z=25,6,=76, 6, =75, 6, =77 and various values of correlation coefficients p,,, p,., and p,, mentioned in
Tables 1-2.

The population is divided into 8 domains each of size 2000. The required statistics of all domains are calculated for a random
sample of 440 which is chosen from all domains. Based on 16,000 iterations, the direct and synthetic estimators’ MSE and percent
relative efficiency (PRE) are tabulated by considering the formulae given below:

16,000
MSE® )= 6000 000 2 G4, -7

1 16,000
MSE -t
SEGLD) = Te 000 Z(y“, )

PRE(J )= 7@5"’“) 100
s X
FonaFoa MSEG )
PREG® .7 —(y”’”) x 100
Do Va) = MSE(: )

where 3¢ =5 ., 78, 5y o Thy o A T =T 00 T T s T
Tables 1-2 contain the outcomes for the direct and synthetlc estimators.

4.1. Important results of simulation study

The important results of the simulation study have been described in pointwise format to provide a thorough grasp of the merits
of the suggested estimators.

(1). The outcomes of Table 1 exhibit that the proposed direct logarithmic estimator yzp , represses the conventional direct estimators

like direct unbiased estimator ym ,» direct ratio estimator yr ,» direct conventional logarithmic estimator )‘)Zk B having least mean

square error and highest percent relative efficiency, respectively, for different amounts of p,, p,,, and p,., in all domains.
(ii). The outcomes of Table 2 exhibit that the proposed synthetic estimator yipa represses the conventional synthetic estimators
such as synthetic mean per unit estimator jy, , synthetic ratio estimator y, ,, synthetic conventional logarithmic estimator y;,

having least mean square error and highest percent relative efficiency, respectively, for different amounts of p,., p,,, and p,, in
all 8 domains.

(iii). The outcomes of Tables 1-2 exhibit that the mean square error and percent relative efficiency of the suggested direct and syn-
thetic estimators jzzp B and )‘/ip B decrease and increase as the amounts of p,, p,,, and p,, reduce.

(iv). Furthermore, the outcomes of Table 1 and Table 2 demonstrate the better efficiency the suggested synthetic estimator over
the proposed direct estimator for several combinations of correlation coefficients in each domain. This fact is supported by
Corollary 2.1.

5. Real data applications
In this section, two real data sets are used for evaluating the suggested direct and synthetic estimators.
5.1. Data set 1

We have taken actual data of Swedish municipal statistics from the book of [18]. The Swedish municipalities are its smaller
local governing units that are responsible to manage an important part of basic facilities, namely, schools, hospitals, emergency
facilities, and planning department. There are total 284 municipalities in Sweden which are known as the MU284. It offers a lot of
different features and sizes. Sweden is divided into 8 districts (domains), with sizes of 25, 48, 32, 38, 56, 41, 15, and 29 respectively:
Stockholm, East Middle Sweden, Smaland and the islands, South Sweden, West Sweden, North Middle Sweden, Middle Norrland, and
Upper Norrland. This study considers the 4 domains such as (1). East Middle Sweden, (2). Smaland and the islands, (3). North Middle
Sweden, and (4). Middle Norrland, out of the above mentioned 8 domains. The municipalities are described in various ways by eight
variables in the data set. We select REV 84, P75, and M E84 from among these eight variables. In this data collection, the following
study and supplementary variables are considered:

y: Real estate values in 1984 (REV84) evaluation (in millions of Kronor),
x: Population in 1975 (P75) (in ‘000),
z: Municipality employees in 1984 (ME84),
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Table 1
Simulated MSE and PRE of direct estimators for different values of correlation coefficients.

Pyx 0.7 0.6 0.5 0.4 0.8 0.7 0.6 0.5
Pyz 0.8 0.7 0.6 0.5 0.7 0.6 0.5 0.4
Pz 0.9 0.8 0.7 0.6 0.6 0.5 0.4 0.3

Domains Estimators MSE PRE MSE PRE MSE PRE MSE PRE MSE PRE MSE PRE MSE PRE MSE PRE

1 ;‘zzm 10.02 100.00 10.00 100.00 10.62 100.00 10.64 100.00 10.18 100.00 10.26 100.00 10.25 100.00 10.24 100.00
j/f_a 7.07 141.6 876 11411 9.28 11440 10.93 97.33 4.47 22795 7.36 139.50 9.40 109.00 11.46 89.35
)’Jgkﬂ 3.61 277.72 510 195.89 6.54 162.33 7.68 138.53 2.86 356.41 4.29 23941 5.62 18222 6.85 149.33
j/ip’u 3.59 279.39 5.07 197.20 6.34 167.56 7.29 146.00 2.85 356.64 4.26 240.69 5.55 184.69 6.71 152.64
2 yjm 10.18 100.00 10.22 100.00 9.74 100.00 9.74 100.00 10.18 100.00 9.65 100.00 9.63 100.00 9.61 100.00
j}f_a 6.01 169.51 7.64 133.81 991 9826 11.55 84.36 4.32 23576 590 163.75 7.65 12591 9.38 102.41
)’JZM 3.62 281.00 5.14 19890 6.18 157.66 7.22 134.88 2.87 355.00 4.16 231.79 5.44 176.96 6.60 145.59
j/ip_a 3.58 284.70 5.09 200.73 6.05 160.94 6.99 139.36 2.86 355.24 4.14 23341 5.33 180.52 6.38 150.57
3 j/fm 10.12 100.00 10.13 100.00 10.27 100.00 10.28 100.00 10.36 100.00 10.03 100.00 10.02 100.00 10.03 100.00
yju 7.41 136.61 9.30 108.99 11.00 93.34 12.88 79.84 4.52 229.14 6.69 149.76 8.67 115.63 10.63 94.28
)'Jzkﬂ 3.70 27323 5.21 19458 6.46 158.86 7.56 135.92 3.04 345.02 4.39 22859 573 174.88 6.95 144.19
yiﬂ_a 3.69 27414 516 196.50 6.32 162.50 7.31 140.72 3.00 345.29 4.35 230.26 5.63 178.14 6.75 148.63
4 j}ﬁm 10.57 100.00 10.61 100.00 9.76 100.00 9.75 100.00 10.26 100.00 10.20 100.00 10.22 100.00 10.24 100.00
ﬁiu 7.32 14446 9.28 11430 1243 7851 14.45 67.47 471 217.80 6.27 162.65 8.19 124.80 10.11 101.34
)_’Zk,a 3.73 283.25 5.28 201.03 6.26 155.74 7.31 133.44 297 345.88 446 22849 584 17486 7.11 144.13
yiw 3.71 285.09 5.23 202.86 6.14 15892 7.09 137.44 295 346.06 4.43 230.31 572 178.69 6.86 149.40
5 yfm 10.43 100.00 10.43 100.00 10.73 100.00 10.75 100.00 10.44 100.00 10.64 100.00 10.65 100.00 10.65 100.00
j;fﬂ 6.68 156.06 8.47 123.17 10.50 102.17 12.24 87.80 5.22 199.97 6.73 158.10 8.77 121.46 10.81 98.57
}_)Zk.a 3.80 27490 535 195.03 6.74 159.17 7.89 136.19 293 355.63 4.46 238.78 586 181.77 7.15 149.02
PZM 3.76  277.06 5.29 197.21 6.59 162.73 7.61 141.15 292 355.79 4.43 240.36 575 185.26 6.92 153.86
6 y;vu 10.00 100.00 10.32 100.00 9.86 100.00 9.83 100.00 10.31 100.00 9.86 100.00 9.81 100.00 9.77 100.00
?;’ﬂ 7.00 147.00 871 11852 9.95 99.12 11.70 84.00 4.35 237.30 7.32 134.83 9.34 105.04 11.36 85.98
y;’kvu 4.00 294.83 4.99 20692 6.04 163.26 7.07 138.88 2.82 368.03 4.10 240.51 5.37 182.85 6.53 149.72
PZM 3.00 297.05 4.96 207.93 5.89 167.39 6.79 144.69 2.80 368.72 4.08 241.86 5.29 18535 6.39 153.01
7 j/fn‘u 10.16 100.00 10.13 100.00 10.39 100.00 10.37 100.00 10.56 100.00 10.16 100.00 10.14 100.00 10.13 100.00
}‘lfﬂ 8.40 120.88 10.60 95.61 12.78 81.31 14.88 69.66 4.36 242.08 599 169.58 7.82 129.64 9.64 105.12
ka,u 3.58 283.89 5.04 201.01 6.31 164.78 7.40 140.20 3.04 346.82 4.42 229.63 5.77 175.60 7.00 144.67
)'JZM 3.56 285.09 5.00 202.88 6.20 167.52 7.21 143.79 3.02 347.04 439 23149 564 179.67 6.74 150.36
8 j/j’n‘n 10.14 100.00 10.12 100.00 10.01 100.00 9.98 100.00 10.08 100.00 10.10 100.00 10.08 100.00 10.06 100.00
y;’ﬂ 7.57 133.93 9.44 107.17 11.15 89.77 13.12 76.03 592 170.38 8.82 11445 11.43 88.14 14.06 71.51
j/:k‘n 3.46 293.39 491 205.88 6.10 16413 7.15 139.61 279 361.92 419 240.86 550 183.21 6.71 149.99
PZM 3.42 296.12 4.89 20697 597 167.53 6.91 144.41 276 36222 4.16 24255 542 186.01 6.55 153.46

Table 3 displays the parameters of the domain for data set 1. The mean square error and percent relative efficiency of different
direct and synthetic estimators are presented in Tables 4-5 by adapting the below equations:

MSE®G )
PREG? .74 )= ——2% %100 9
o Vi) MSEG) 9)
PREG® .7 7MSE@5”’”) 100 (10)
G Vi) = MSEG: )

5.2. Data set 2

In order to collect taxes and carry out other administrative duties, Uttar Pradesh, similar to the other Indian states, is separated

into various districts. Each district is separated further into several revenue inspector circles (RICs), which consists of numerous
villages. The RICs are viewed as domains of small size in the current work.
It is observed that the acreage used to grow a specific crop fluctuates each year, either growing larger or smaller. The agricultural
acreage assessment issue for the RICs of the Uttar Pradesh’s Mohanlal Ganj tehsil is thus taken into consideration for real data
application. Sisendi, Amethi, Mohanlal Ganj, Nigoha, Khujauli, Nagram, Gosaiganj, and Behrauli are the 8 RICs of Mohanlal Ganj
tehsil that we consider as small domains. We selected 4 of these 8 domains to focus on in our analysis, namely, (1). Sisendi, (2).
Khujauli, (3). Gosaiganj, and (4). Behrauli. The crop acreage of paddy (measured in hectares) during the 2018-19 cultivation period
isregarded as a research variable y. As supplementary variables x and z, the crop acreage of paddy for the cultivation periods 2017-18
and 2016-17, respectively, is taken into consideration. Table 6 shows the parameters of all domains for quick reference. With the use
of the formulas (9) and (10), respectively, we computed the MSE and PRE of the suggested direct and synthetic logarithmic estimators
using the domain parameters, and the results are shown in Tables 7-8.
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Table 2
Simulated MSE and PRE of synthetic estimators for different values of correlation coefficients.

Pyx 0.7 0.6 0.5 0.4 0.8 0.7 0.6 0.5
Pyz 0.8 0.7 0.6 0.5 0.7 0.6 0.5 0.4
Pyz 0.9 0.8 0.7 0.6 0.6 0.5 0.4 0.3

Domains Estimators MSE ~ PRE MSE PRE MSE PRE MSE PRE MSE PRE MSE PRE MSE PRE MSE PRE

1 Pra 11.196 100.00 10.853 100.00 15.711 100.00 15.675 100.00 12.537 100.00 13.91 100.00 13.754 100.00 13.587 100.00
Via 1.007 1111.31 1.236 878.06 0.937 1676.90 1.097 1429.50 0.474 2645.22 1.065 1305.60 1.368 1005.47 1.667 815.29
Vika 0.544 2059.00 0.753 1440.67 0.598 2625.65 0.701 2237.26 0.308 4072.85 0.699 1990.49 0.911 1510.45 1.102 1233.24
j/,‘;m 0.542 2059.67 0.751 1441.97 0.597 2632.79 0.698 2246.64 0.307 4072.99 0.698 1991.89 0.909 1513.31 1.098 1237.09
2 Vra 13.453 100.00 13.380 100.00 10.312 100.00 10.195 100.00 10.94 100.00 13.79 100.00 14.054 100.00 14.261 100.00
Vg 0.690 1949.93 0.866 1545.78 1.413 729.63 1.631 625.24 0.646 1693.98 0.657 2098.46 0.84 1673.73 1.021 1397.11
Vika 0.372 3620.46 0.527 2541.06 0.906 1138.05 1.046 974.91 0.421 2604.62 0.431 3203.65 0.558 2517.87 0.674 2116.44
y;p_a 0.370 3621.93 0.526 2543.51 0.904 1141.03 1.041 978.93 0.420 2604.66 0.430 3206.31 0.557 2522.93 0.672 2123.21
3 Va 11.236 100.00 10.893 100.00 15.814 100.00 15.785 100.00 12.529 100.00 13.997 100.00 13.843 100.00 13.678 100.00
Vya 1.009 1113.39 1.238 880.09 0.933 1695.14 1.092 1445.66 0.474 2644.59 1.069 1309.23 1.373 1008.30 1.673 817.57
Vika 0.544 2063.57 0.754 1444.43 0.596 2651.73 0.698 2260.59 0.308 4071.12 0.701 1995.41 0.914 1514.32 1.106 1236.42
yzm 0.542 2064.24 0.753 1445.73 0.595 2658.95 0.695 2270.07 0.308 4071.25 0.700 1996.82 0.912 1517.18 1.103 1240.29
4 Voa 10.929 100.00 10.776 100.00 14.046 100.00 14.148 100.00 11.051 100.00 13.589 100.00 13.69 100.00 13.747 100.00
Vya 0.820 1332.27 1.051 1025.61 1.692 830.01 1.988 711.50 0.648 1704.25 0.675 2012.13 0.869 1576.02 1.062 1294.39
Voka 0.442 2474.57 0.639 1686.39 1.086 1293.44 1.276 1108.39 0.422 2621.3 0.442 3073.68 0.577 2372.11 0.701 1961.74
)’J’LM 0.440 2475.48 0.638 1687.96 1.083 1296.78 1.271 1112.93 0.420 2621.34 0.441 3076.20 0.576 2376.85 0.699 1967.99
5 Va 13.144 100.00 13.114 100.00 11.178 100.00 11.047 100.00 12.362 100.00 12.170 100.00 12.053 100.00 11.942 100.00
Vya 0.706 1862.67 0.883 1485.97 1.438 777.30 1.658 666.10 0.692 1786.17 0.728 1670.62 0.946 1274.39 1.165 1024.65
Voka 0.382 3462.48 0.536 2445.5 0.921 1213.36 1.063 1039.44 0.451 2745.18 0.477 2552.61 0.628 1918.38 0.769 1553.00
i’;w 0.379 3463.86 0.535 2447.85 0.919 1216.53 1.058 1043.72 0.450 2746.22 0.476 2554.65 0.627 1922.16 0.766 1557.93
6 Va 11.828 100.00 11.603 100.00 11.882 100.00 11.713 100.00 11.709 100.00 12.678 100.00 12.610 100.00 12.529 100.00
V. 1.033 1144.72 1.280 906.38 1.07 1110.58 1.260 929.49 0.498 2352.42 1.036 1223.65 1.335 944.60 1.632 767.88
Voka 0.558 2121.49 0.781 1487.38 0.685 1734.95 0.807 1451.43 0.323 3621.10 0.681 1864.93 0.889 1418.54 1.079 1161.15
ii‘w 0.557 2122.17 0.778 1488.72 0.683 1739.61 0.804 1457.48 0.322 3621.20 0.679 1866.25 0.887 1421.23 1.076 1164.79
7 Vma 10.186 100.00 10.191 100.00 17.793 100.00 18.342 100.00 10.736 100.00 15.731 100.00 16.189 100.00 16.552 100.00
V. 0.871 1169.15 1.130 901.76 1.845 964.16 2.187 838.54 0.617 1738.68 0.623 2524.04 0.793 2040.52 0.962 1720.92
Vot 0.472 2167.16 0.689 1479.82 1.185 1501.98 1.405 1305.71 0.401 2674.66 0.408 3855.39 0.527 3071.35 0.635 2608.47
?iw 0.470 2168.00 0.687 1481.19 1.182 1505.83 1.399 1311.03 0.400 2674.70 0.407 3858.66 0.526 3077.55 0.633 2616.84
8 Ve 10.573 100.00 10.465 100.00 10.08 100.00 10.057 100.00 10.743 100.00 13.896 100.00 14.867 100.00 15.763 100.00
Ve 0.965 1095.42 1.199 872.79 1.284 785.24 1.504 668.84 0.645 1664.70 1.071 1297.26 1.418 1048.46 1.774 888.76
Vot 0.521 2030.43 0.732 1432.45 0.823 1225.23 0.964 1043.17 0.421 2559.18 0.703 1976.62 0.944 1574.05 1.173 1343.50
)‘ziw 0.520 2031.11 0.730 1433.76 0.821 1228.46 0.960 1047.49 0.420 2559.22 0.702 1978.01 0.943 1577.03 1.170 1347.70

Table 3
Population characteristics for various domains in data set 1.

Domains N, Y, X, Z, S S

a a a a Ya X, Sz, Py, Py,z, Px,z,
1 48 2971.10 29.17 1658.71 3334.66 35.05 2145.20 0.96 0.97 0.99
2 32 2498.75 23.94 1317.03 2040.72 20.91 1410.55 0.95 0.93 0.95
3 41 2175.32 20.98 1099.76 1693.82 17.35 1010.17 0.98 0.98 0.99
4 15 3648.47 26.60 1533.87 2410.56 24.12 1482.13 0.84 0.84 0.99

Table 4
Direct estimators’ MSE and PRE for data set 1.
Domains ¥y, Vra Tk Vipa
Estimators MSE PRE MSE PRE MSE PRE MSE PRE

880332.20 100.00 1438946.00 61.18 55735.76 1579.47 54653.96 1610.74
563945.70 100.00 1163415.00 48.47 51340.73 1098.44 51017.86 1105.39
288651.80 100.00 472259.40 61.12 12866.29 2243.47 12546.50 2300.66
1549549.00 100.00 6607974.00 23.45 461387.00 335.85 440619.30 351.68

A w N

5.3. Main findings of real data applications

The main findings of real data applications have been interpreted in pointwise format to provide a thorough grasp of the merits
of the suggested estimators.

10
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Table 5

Synthetic estimators’ MSE and PRE for data set 1.

Heliyon 10 (2024) e33839

Domains Ima Vra Tk Fipa
Estimators MSE PRE MSE PRE MSE PRE MSE PRE
1 334172.80 100.00 953072.60 35.06 14950.62 2235.18 12819.51 2606.75
2 657827.60 100.00  674117.90 97.58 10574.73  6220.75 8924.72 7370.85
3 1136826.00  100.00  510899.40 222.51 8014.36 14184.87  6658.16 17074.17
4 648822.30 100.00  1437180.00  45.15 22544.69  2877.94 19616.01 3307.62
Table 6
Population characteristics for various domains in data set 2.
Domains N, 7Y, X, Z, S, S, S, Py, Py Px,
1 18 224.11 237.88  234.27 106.62  100.91 102.68  0.95 0.90 0.95
2 32 106.41 112.16  115.16  64.57 68.28 69.91 0.99 0.97 0.98
3 24 87.32 88.44 89.32 58.59 58.01 59.12 0.99 0.96 0.97
4 36 111.39 109.17 109.78 86.05 82.50 80.34 0.96 0.97 0.98
Table 7
The direct estimators’ MSE and PRE for data set 2.
Domains 7, Tra Vika Vipa
Estimators MSE PRE MSE PRE MSE PRE MSE PRE
1 2210.49  100.00  1885.22 117.25  209.45 1055.40 189.17  1168.54
2 564.67 100.00  586.76 96.23 10.79 5235.47  6.58 8583.23
3 389.40 100.00  379.02 102.74  9.12 4269.97 5.14 7573.83
4 852.08 100.00 798.07 106.77 39.95 2132.73 35.64 2391.12
Table 8
The synthetic estimators’ MSE and PRE for data set 2.
Domains Vna Via Tk Fipa
Estimators MSE PRE MSE PRE MSE PRE MSE PRE
1 9478.01 100.00  559.56  1693.82 18.22  52018.71 16.95  55926.06
2 643.50 100.00 126.14 510.14 4.11 15666.83  3.85 16702.09
3 1821.49 100.00  84.95 2144.09 277 65846.74  2.60 69963.71
4 455.82 100.00 138.23 329.75 4.50 10126.99 4.22 10803.70

(i). Tables 4-5 present, respectively, the MSEs and PREs of the direct and synthetic estimators consisting of data set 1. Table 4’s

(ii).

findings exhibit that the direct logarithmic estimator y‘;pya achieves the lowest MSEs and highest PREs among the conventional
direct estimators, including direct unbiased estimator J‘zj’nﬂ, direct ratio estimator y;{a, and direct logarithmic estimator y‘;k,a.
Hence, the proposed direct estimator yzp’a surpasses the usual direct estimators. The findings shown in Table 5 exhibit that
the suggested synthetic estimator J_)fcp,a achieves the lowest MSEs and highest PREs among the current synthetic estimators like
synthetic unbiased estimator y, , synthetic ratio estimator y, ,, and synthetic logarithmic estimator j;, . Hence, the proposed

synthetic estimator y;p , surpasses the classical synthetic estimators. Additionally, Corollary 2.1 makes it easier for the suggested

synthetic estimator y;;p_a to surpass the proposed direct estimator yi ,a in every domain.

Tables 7-8 present, respectively, the MSEs and PREs of the direct and synthetic estimators consisting of data set 2. The findings
of Table 7 exhibit that the suggested direct estimator ,\'/Zp’a achieves the lowest MSEs and highest PREs out of the conventional
direct estimators, including direct unbiased estimator j/f’n @ direct ratio estimator y;{a, and direct logarithmic estimator y‘bik’a.
Hence, the proposed direct estimator yzp,a surpasses the available direct estimators. The findings summarized in Table 8 exhibit
that the suggested synthetic estimator J_}}ch,a achieves the lowest MSE and highest PRE among the current synthetic estimators like
synthetic unbiased estimator y, , synthetic ratio estimator y; , and synthetic logarithmic estimator yikﬂ. Hence, the suggested
synthetic estimator yim outperforms the traditional synthetic estimators. Additionally, Corollary 2.1 makes it easier for the

suggested synthetic estimator yf{p , to outperform the proposed direct estimator y;jp , in every domain.

6. Conclusions

In the present article, we have suggested efficient direct and synthetic logarithmic type estimators for the domain mean under the

SRS framework. The suggested estimators’ MSEs are calculated, compared with the current estimators, and efficiency conditions are

11
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devised. Additionally, a simulation that employed an artificially created normal population supported the theoretical findings. The
findings of simulation are demonstrated with MSEs and PREs in Tables 1-2. The key results of the simulation analysis are summarized
in Subsection 4.1, from which we conclude that the offered direct and synthetic estimators are more efficient than direct and synthetic
estimators currently in practice, respectively. Furthermore, real data sets from municipalities of Sweden and the area planted with
paddy in Mohanlal Ganj tehsil, Uttar Pradesh, India, were used to illustrate the uses of the suggested methodologies. Tables 4, 5, 7,
and 8 present the outcomes of the direct and synthetic estimators based on real populations and also demonstrate the supremacy of
the suggested estimators over the traditional estimators. As a consequence, we may suggest using the direct and synthetic estimators
to estimate the domain means of small regions.
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