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ABSTRACT  
 
Tree-shaped Nanosheet FETS (NSFET) is the most dependable way to scale down the gate lengths deep. This paper 
investigates the 12nm gate length (LG) n-type Tree-shaped NSFET with the gate having a stack of high-k dielectric (HfO2) 
and SiO2 using different spacer materials, which can be done using TCAD simulations. The Tree-shaped NFET device with 
T(NS) = 5 nm, W(NS) = 25 nm, WIB = 5 nm, and HIB = 25 nm has high on-current (ION) and low off-current (IOFF). The 3D 
device with single-k and dual-k spacers are compared and its DC characteristics are shown. It is noted that the dual-k device 
achieves the maximum ION/IOFF ratio, which is 109, compared to 107 because the fringing fields with spacer dielectric 
lengthen the effective gate length. Additionally, the impact of work function, interbridge height, width, gate lengths, and 
temperature, along with the device's analog/RF and DC metrics, is also investigated in this paper. Even at 12 nm LG, the 
proposed device exhibits good electrical properties with DIBL = 23 mV/V and SS = 62 mV/dec and switching ratio 
(ION/IOFF) = 109. The device's performance confirms that Moore's law holds even for lower technology nodes, allowing for 
further scalability. 
 
INDEX TERMS:  Single-k spacer; dual-k spacer; Tree-shaped NSFET, Nanosheet; Spacer engineering. 

I. INTRODUCTION 
The electronic industry has worked continuously 

for the last 60 years to meet the ever-increasing demand for 
electronic gadgets used in many applications. This is 
because electronic devices perform better at every 
technological level in compactness, cost-effectiveness, 
good performance, and less power consumption [1]. The 
fundamental components of many electronic gadgets in 
today’s market are the transistors, which are applied in 
many circuits. Because of Moore's law, it is necessary to 
incorporate more transistors into the single integrated 
circuit (IC) to support the many electronic applications [2]. 
Because of scaling down the device's dimensions, the 
conventional MOSFETs are affected by short channel 
effects (SCE) [3]. FinFETs have enabled the scaling of the 
CMOS to allow the lower technology node, maintaining 
Moore's law. However, when dimensions decrease below 
the 5-nm node, FinFETs encounter several issues. The 
electric field at the sidewall is always enhanced compared 

to the corner's electric field, decreased device performance, 
decreased electrostatics, and significant process variability 
[4] – [8]. 
    To reduce SCEs, it is crucial to have an innovative 
device whose channel has more control over the gate, so the 
gate should surround the channel. A gate-all-around (GAA) 
Nanowire and Nanosheet structure with vertical channels 
was recently introduced to allow scaling toward sub-5-nm 
technological nodes [5-8]. Multiple stacked channels are 
present in the NW and NS structures, which can 
significantly enhance the on-state current and output 
characteristics. Additionally, NW FETs are currently 
regarded as one of the best substitutes for Fin-FETs due to 
their improved gate control. Further, due to the more 
control of the gate and very thin Nanowire, the SCEs in the 
NW FETs have significantly dropped compared to the 
FinFETs, whose device performance is depreciated in the 
lower node [9], [10]. This has improved electrostatic 
integrity. Regarding layout efficiency, power consumption, 
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and scalability in CMOS design, vertical GAA Nanowire 
FETs outperform FinFETs and even horizontal GAA 
Nanowires [11]. Several channels can be used in GAA 
FETs, which are silicon nanowires/nanosheets stacked 
vertically, to achieve the necessary performance in 
applications like DC, analog, and RF [12], [13].  
In NW-FET, it is necessary to have a wide gap between 
two adjacent NWs, which poses problems in the 
fabrication, and the aspect ratio of the channel stack is 
increased. It has decreased drive currents, higher parasitics, 
and lesser channel widths [14]. An excellent option for 
effectively suppressing the short-channel effects and 
achieving fantastic current drivability is the Nanosheet-FET 
(NSFET) with gate wrapping on all four sides. [15]. 

 

 
 
 

FIGURE 1. Schematic of (a) FinFET (b) NSFET (c) Tree shaped NSFET’s 
channel cross-sections. 
 
Additionally, NSFETs offer improved channel effective 
width (Weff), allowing for increased current drivability in 
the same footprint while maintaining better electrostatics 
[16]-[18]. To further increase the on current, the researchers 
designed the FETs with different channel shapes [19] – 
[21]. The tree-shaped channel geometry has gained much 
attention in the semiconductor industry, especially among 
these channel shapes [22]-[24]. As shown in Fig.1, the 
Tree-shaped NSFET channel combines Nanosheet FET and 
Fin-FET. The channel is constructed by linking the two 
nanosheets by an inter-bridge (IB), which is in the shape of 
a fin to form the Tree-shaped NS-FET. 
Without additional space, this inter-bridge provides an extra 
drive current for the vertically stacked MOSFETs [22]. 
However, in sub-10 nm devices, the space between the 
source and channel or the drain and channel is less and 
suffers from charge-sharing phenomena. SCEs are caused 
by the rise in the drain potential effect on the channel. Thus, 
spacers are added, increasing the gate control and the space 
between the source and drain to lessen the adverse effects. 
However, spacers raise the series resistance and have an 
impact on the flow of the carriers, which reduces the ION. 
High-k spacers, which increase ION, are presented to address 
this issue. However, using a high-k spacer introduces 
several problems, such as gate capacitance associated with 
the fringe that delays the circuit and forms the traps, which 
will lower the carrier mobility because of Coulomb 
scattering. To solve this problem, a dual-k spacer that 
combines the low-k in the outer region and high-k in the 

inner region is introduced. This work investigates the 
single-k and dual-k spacer effects on the Tree-shaped NS-
FET. 
 

 
 
FIGURE 2. (a) 3D view of Tree-shaped NSFET (b) calibration of NSFET. 

II.  DEVICE STRUCTURE AND SIMULATION DETAILS: 
Fig. 2(a) shows the 3-D portraits of Tree-shaped NSFET. 
The interbridge, which acts as a channel, is formed in the 
NSFET structure to increase channel conduction. The 
device details of Tree-shaped NSFET are shown in Table I. 
Gate length (LG), width of Nanosheet WNS, thickness of 
Nanosheet TNS, width of the interbridge (WIB), and height 
of interbridge (HIB) are the critical design parameters. The 
main primary Tree-shaped NSFET parameters, Lg, WNS, 
and TNS, are fixed at 12, 25, and 5 nm, respectively. Tree-
shaped NSFET’s WIB and HIB are 5 and 25 nm, 
respectively, and the channel material used is silicon, the 
gate oxide consists of a stack of SiO2 and HfO2 with the 
effective oxide thickness (EOT) of 0.9 nm, and the single 
spacer of HfO2 is used. The gate's work function (φm) is 
4.746 eV and the channel doping (n-type) is fixed to 1019 to 
design the Tree-shaped device. The experimental data [30] 
is calibrated and confirmed to correspond with the 
simulated data to achieve the device simulations with 
accuracy, as shown in Fig. 2(b). Figures 3 (a) and 3(b) 
show the three-dimensional view of a single and dual 
spacer, respectively. Fig. 3(c) and 3(d) show the two-
dimensional view of single and dual spacers. Models like 
the Slot boom bandgap narrowing model, band-to-band 
auger model, and many other simulation models are also 
included. The detailed Tree-shaped NSFET design's 
fabrication flow is seen in Fig. 4. 
(a) 
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(b) 

 

 
(c) 

 
 
(d) 

 
FIGURE 3. Architecture of Tree-shaped NSFET (a) 3-dimensional view of 
the single-k spacer, (b) 3-dimensional view of dual-k spacer, (c) 2-
dimensional view with single-(k) spacer (d) 2-dimensional view with dual-
(k) spacer. 

 

 
FIGURE 4. Fabrication flow of Tee-shaped NSFET. 

 

TABLE I  
DETAILS OF TREE-SHAPED NSFET 

 

III. ANALYSIS OF RESLUTS: 

A. ELECTRICAL CHARACTERISTICS OF TREE-SHAPED 
NSFET: 

This section shows the electrical properties of Tree-
shaped NSFET and NSFET at the following dimensions: LG 
= 12 nm, T(NS) = 5 nm, W(NS) = 20 nm, HIB = 15 nm, WIB = 
3 nm. Fig. 5 displays the Id –Vg characteristics of Tree-
shaped NSFET and NSFET. At VGS = 0.7 V and VDS = 0.7 
V, Tree-shaped NSFET has an on current ID of 2.4 x 10-5A,  
OFF current IOFF of 1.12 x10-14 A, and NSFET has an on 
current ID of 1.78 x 10-5A and OFF current IOFF of 1.20 x10-

14 A. The Tree-shaped NSFET exhibits a higher drive 
current than the NSFET and almost same off current. The 
Ion/Ioff ratio increases by 33% from NSFET to Tree-shaped 
NSFET. 

Device Parameter Symbol TREE-SHAPED 
  NSFET 

Length of the gate  LG 12nm 
Width of the device  W(NS) 15-20nm 
Thickness of the device  T(NS) 3-5nm 
Channel material   - Silicon 
Width of the interbridge  WIB 3 – 5 nm 
Height of the interbridge  HIB 15 – 25 nm 
Gate oxide thickness (TOX) SiO2 0.6nm 
Gate high-(k) dielectric 
thickness  

HfO2 1.7nm 

Effective Oxide Thickness  EOT 0.9nm 
Gate work function φm 4.76ev 
Single-(k) spacer length   - 5nm 
Dual-(k) spacer length   - 6nm 
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FIGURE 5. ID VS VGS characteristics of NSFET and Tree-shaped NSFET. 

The ID vs VGS and ID vs VDS for different VDS and VGS are 
shown in Figures 6(a) and 6(b). Transconductance assesses 
the device's potential for high-speed circuits.  Fig.6(c) 
displays the quantified change in drain current with a 
change in the gate voltage, and the expression is given as 
gm=ID/VGS. The gm for the Tree-shaped NSFET is 3 x10-4 S. 
To accommodate applications like high frequency, the gm 
peak has to be high at the bias point. The amount of 
transconductance that can be obtained for each amp of 
output current is identified as the transconductance 
generation factor (TGF = gm/ID). A higher TGF value 
ensures reduced maximum power dissipation in capacitive 
load circuits and improved input drivability. A higher TGF 
value ensures reduced maximum power dissipation in 
capacitive load circuits and improved input drivability. The 
TGF obtained for the Tree-shaped NSFET is around 45 V-

1as shown in Fig.6 (d). Fig.6 (e) shows the output 
conductance, which shows the change in drain current with 
the change in Drain voltage VDS at a VGS = 0.7 V. A lower 
gds is advantageous as it means that the channel control by 
the drain reduces and lessens the channel length modulation 
effects, which guarantees the device's suitability for the 
applications like a constant current source. The saturation 
region is used for operating the devices in analog circuits. 
Usually, ID operates in the saturation area independent 
of VDS. However, because of short-channel behavior, VDS's 
impact on channel electrostatics leads ID to vary. Thus, 
output conductance gds is analyzed to determine how much 
ID impacts due to VDS. The device exhibits decent gds. 

Additionally, as seen in Fig. 6(f), an increase in gm 
enhances the intrinsic gain of NSFET, which is an 
important metric for analog circuits.  Tree-shaped NSFET 
has a very good intrinsic gain. Without any parasites, the 
intrinsic capacitance is the gate to oxide capacitance (Cox). 
Any device's power consumption and dynamic power are 
determined using the Cox. Fig. 6(g) illustrates the intrinsic 
capacitance. A crucial parameter for assessing a device's 
viability for radio frequency applications is the Cgg, whose 
fluctuation with VGS is shown in Fig. 6(h). The sum of the 
Cgs and Cgd is the total gate capacitance (Cgg). The Gain  

 
Bandwidth can be evaluated from the below equation (1), 
and GBW changes with VGS are shown in Fig. 7(a). 

                                                                              (1) 
 The device effectiveness for the RF application is greatly 
influenced by the cutoff frequency (fT). The cutoff 
frequency can be evaluated from the below equation (2).          

                                                             (2) 
 
The cutoff frequency value is very good for Tree-shaped 
NSFET as displayed in Fig.7(b), making it more 
appropriate for RF applications. This is because there has 
been a substantial increase in gm than the decrease in Cgg. 
The Gain Frequency Product is illustrated in the Fig 7(c).  
The two main parameters used to assess the short-channel 
nature of the nano regime are SS and DIBL, which can be 
obtained using equations 3 and 4.   

                                                (3) 

                                                              (4) 
 

The device has a very decent subthreshold swing which is 
62.9 mV/dec, and a good drain-induced barrier lowering 
(DIBL), which is advantageous; the Tree-shaped NSFET 
exhibits excellent performance. Because there is more 
tunnel space between the source and channel areas, the ION 
performs better in Tree-shaped NSFET [29]. The stacked 
nanosheets are separated by an interbridge (IB), which acts 
as a channel that facilitates a larger flow of electrons in that 
region. The tree-shaped NSFET was found to have a higher 
ION/OFF ratio. Because Tree-shaped NSFET has an ION/OFF 
ratio greater than 109, it can be utilized in many 
applications like digital circuits. The equation 5 represents 
the proposed device's effective width (Weff) [29]. 

ܹ݂݂݁ = 2݊( ܹܰܵ + ܶܰ ܵ) + ܤܫܪ)2 −  (5)                            (ܤܫܹ
Where n, in this case 2, is the number of NSs.  Furthermore, 
the influence of spacers like single-(k) and dual-(k) on the 
characteristics of Tree-shaped NSFET are also explored in 
this paper.  
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FIGURE 6. (a) The transfer characteristics (ID-VGS) of device at VDS = 0.7 V (b) output characteristics (ID–VDS) (c) Transconductance (gm) (d) 
Transconductance generation factor (TGF) (e) output conductance (gds) (f) intrinsic gain (g) Cox (h) Cgd and Cgg.
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FIGURE 7. (a) Gain Band Width Product (GBW)  (b) Cut-off Frequency (fT) (C) Gain Frequency Product (GFP)

B. EFFECT OF SPACER MATERIALS ON TREE-
SHAPED NSFET: 
The study includes various materials for spacers with 
various dielectric constants (k) to examine the effect on 
device performance. The dielectric constant (k) of different 
single-(k) spacer materials Air, SiO2, Si3N4, and HfO2 
are 1,3,5,4.9 and 25, respectively. The single-(k) spacer 
effect is depicted in Fig. 8(a), and the dual-(k) spacer is 
shown in Fig.8(b), which indicates that a rise in the spacer 
dielectric the leakage current is reduced; usually leakage 
current is influenced by the electric field across the gate 
oxide. Increasing the spacer dielectric value can enhance 
the vertical electric field in the off-state. A higher electric 
field helps to control the depletion region better, reducing 
the probability of carriers (electrons or holes) tunneling 
through the gate oxide. As a result, sub-threshold leakage 
current tends to decrease. As the spacer dielectric value 
grows, the drive current (ID) remains nearly constant 
However, low-(k) decreasing performance and employing 
only high-(k) will lead to many problems, including 
formations of the traps and delay of the circuits due to 
fringe capacitance and will limit the mobility of the 
carriers. To address the aforementioned problems, a high-
(k) spacer is added in the restricted area close to the gate 
region where the density of the carriers will be high, and a 
low-(k) spacer is introduced in the area left to reduce IOFF. 
As a result, dual-(k) spacers are used. The combinations of 
Air and HfO2, SiO2 and HfO2, Si3N4, and Air, which are 
hybrid, and Si3N4 and HfO2 are evaluated in this paper. 
Table II shows that important metrics like ION, IOFF, ION/OFF, 
SS, and DIBL greatly improve as the spacer dielectric 
value increases. For any spacer combination at LG = 12 
nm, the device displays an ION/OFF ratio of more than 108, 
which is suitable for all logic applications. The lowest SS 
of around 62 mV/dec with dual-(k) (Si3N4 + HfO2) and  
(SiO2 +HfO2) spacer is possible at 12 nm nanostructure. 
The HfO2 beats other single-(k) spacers in successfully 

managing SCEs and achieves the highest ION/IOFF ratio. 
Furthermore, the dual(k) spacers Si3N4 + HfO2 and SiO2 + 
HfO2 exhibit higher performance in dual-(k) spacers with a 
109 ION/IOFF ratio, lower IOFF, and basic scaling benefit. The 
enlargement of fringing fields through the use of spacers is 
deliberately employed to reduce parasitic bipolar junction 
transistor (BJT) action and, consequently, lower off-state 
current, Digital performance is improved by effective use 
of the high-(k) (HfO2) at the inner region in the dual-(k) 
(Si3N4+ HfO2) and (SiO2+ HfO2) spacer. Additionally, the 
dual-(k) (Si3N4 + HfO2) spacer reduces direct source to 
drain tunneling, improving switching (ION/IOFF) and many 
electrical characteristics at lower technology nodes. To 
determine the drive current deterioration brought on by 
trap-assisted recombination, the SRH model incorporates 
deep-level faults.  
 

Moreover, unlike other dielectric materials, TiO2 
suffers from various traps. For this reason, TiO2 has not 
been used in experiments as a gate dielectric. High electric 
field devices lower device dependability. In nanoscale 
geometric devices, the electric field is typically stronger 
toward the drain side, which causes the electrons to reach 
higher energies, known as hot carriers. The impact 
ionization that these hot carriers produce close to the drain 
terminal leads to a drain-to-body current. Nonetheless, the 
suggested device's SOI structure and spacer gap between 
the drain and gate potential terminals guarantee decreased 
hot carrier effects, electric field, and leakage currents in 
the off-state. 
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FIGURE 8. Effect of (a) single-(k) spacer (b) dual-(k) spacer of Tree shaped-NSFET.  
 

TABLE II 
ELECTRICAL CHARACTERISTICS OF SINGLE-(K) AND DUAL-(K) SPACERS 

 
 

Single-(k)/dual-(k) 
spacers 

Vth at 
VDS=0.7V 

Vth at 
VDS= 0.05V 

DIBL 
(mV/V) 

SS (mV/dec) ION (A) IOFF(A) ION/OFF 

Single-(k) 
Air 

 
0.304 

 
0.312 

 
74 

 
69.5 

 
3.68 x 10-5 

 
5.31 x 10-13 

  
8.5 x 107 

SiO2 0.298 0.340 65.9 67.7 3.60 x 10-5 3.04 x 10-13 3.40 x 108 
Si3N4 0.312 0.353 58.16 66.4 3.68 x 10-5 1.01 x 10-13 3.64 x 108 
HfO2 0.370 0.391 41 63 3.69 x 10-5 1.09 x 10-14 3.3 x 109 
Dual-(k)        
Air + HfO2 0.33 0.35 33 65 4.01 x 10-5 9.26 x 10-14 4.33 x 108 

Hybrid (Si3N4 +Air) 0.349 0.351 52 67 3.86 x 10-5 4.11 x 10-13 9.39 x 107 
SiO2 + HfO2 0.371 0.387 23 62.1 3.01 x 10-5 9.80 x 10-15 3.07 x 109 

Si3N4+ HfO2 0.382 0.391 38 63 3.24 x 10-5 8.90 x 10-15 3.64 x 109 
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FIGURE 9. ID-VGS graph with various (a) interbridge widths (WIB) (b) interbridge heights (HIB) (c) Gate lengths (LG), (d) work function (e) Temperatures. 

C. EFFECT OF SCALING, TEMPERATURE AND WORK 
FUNCTION: 
The impact of IB width (WIB) on tree-shaped NSFET is 
discussed in this subsection. Fig.9 (a) illustrates the 
interbridge width variation with WIB= 3-5 nm in steps of 1 
nm at LG = 12 nm and height of interbridge HIB = 25 nm 
and it shows the ID -VGS characteristics for various WIB. It 
is noticed that when the WIB rises, the drain current (ID) 
rises monotonically as a result of the rise in the device's 
effective width (Weff). As we increase WIB from 3 to 5 nm, 
ION is seen to improve by a good percentage. In addition, 
the leakage currents increase as the width of the interbridge 
(WIB) increases. As the interbridge width increases, the rise 

in leakage currents will cause the device's OFF currents to 
grow, resulting in a high IOFF.  

The impact of IB height (HIB) on Tree-shaped NSFET is 
discussed in this subsection. Fig.9 (b) illustrates the 
interbridge height variation for tree-shaped NSFET with 
HIB= 15 – 25 nm in steps of 5 nm at LG = 12 nm and width 
of interbridge WIB = 5 nm. Compared to HIB = 15 and 20 
nm, HIB = 25 nm provides a greater drive current. The 
tunneling area has grown, raising the effective width (Weff) 
and boosting the drive current. As HIB increases from 15 to 
25 nm, ION is seen to improve. 

The LG fluctuation at VDS = 0.7 V and VGS = 0.7 V is 
shown in Fig.9(c).  As LG increases, the control of the gate 
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becomes more effective and reduces the leakage current. 
Due to the decrease in gate length LG, the SCEs rise 
because of the various effects like charge sharing, so the 
IOFF rises due to decreased gate power through the channel. 

As shown in Fig.9 (d), a rise in the work function causes 
the leakage current (IOFF) to decrease significantly and the 
ION to drop considerably. Increased gate work function 
ensures better performance of the device when the device is 
in the off state. Additionally, a rise in the electron tunneling 

barrier causes a decrease in the gate-to-source and gate-to-
drain extension tunneling in the off-state and a reduction in 
the gate-to-channel tunneling with the rise in work function 
[31]. In addition, overall performance of the device 
increased [34], [35]. According to Fig.9 (e), as temperature 
rises, IOFF rises as well, while ION varies only slightly. 
Diffusion current and SRH recombination, two 
temperature-dependent processes, are responsible for a rise 
in IOFF with rising temperatures. 

                                                                                                                                       
                                                                                                                                         TABLE V 

 COMPARISON OF PROPOSED RESULTS WITH EXISTING RESULTS 
 
 

Device LG Work Function 
(eV) 

EOT (nm)/oxide 
thickness 

SS (mV/dec) ION/OFF 

  NSFET[32] 
  JL-NSFET[33] 

16nm 
16nm 

4.456 
4.8 

0.78nm 
0.7nm 

62.2 
76 

3.30 x 107 

1.94 x 107 

 Dual(k) Tree shaped NSFET[proposed] 12nm 4.76 0.9nm 62.1 3.64 x 109 
 
IV. CONCLUSION 
This study examines Tree-shaped NSFET with a 12 nm 
gate length that can scale beyond to assess the digital and 
analog/RF performance parameters. The ION/IOFF ratio is 
high in the proposed Tree-shaped NSFET, making it 
acceptable for digital applications. The proposed tree-
shaped NSFET has better ION, IOFF, ION/IOFF ratio, 
transconductance gm, output conductance gds, and cut off 
Frequency fT. This paper also analyses the influence of 
single-(k) and dual-(k) spacers on Tree shaped NSFET. 
Due to the limited high-(k) usage in the surrounding area 
of the gate region and the low-(k) in the remaining portion, 
the spacer with dual-(k) materials performs better than any 
other spacer dielectric materials at 12 nm gate length. The 
dual-(k) spacer SiO2+HfO2 and Si3N4+HfO2 surpass all 
previous spacer dielectrics. 
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