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ABSTRACT This work investigates the effect of single and dual-k spacer materials consisting of different 
dielectric constants (k) in optimized nano-channel gate-stack nanosheet (NS-FET) employing hafnium oxide 
and silicon dioxide as gate insulator to improve its sub-threshold performance. The effect of the external low-
k spacer modification in the dual-k spacer has been shown by adjusting the inner high-k spacer. The drain-
induced barrier lowering (DIBL) in this modification with dual-k spacer is 14 mV/V, which is a significant 
improvement above single spacer NS-FET. The Visual TCAD 3D Cogenda tool is used to examine the 
performance of the developed NS-FET with air, single, dual-k, and hybrid spacers. The CADENCE platform 
is used to perform circuit aspects. Additionally, a comparison of the device architecture's performance study 
with respect to DC characteristics is made. DC parameters of the proposed device are established: ION to IOFF 
ratio of approximately 105, DIBL of approximately 14 mV/V, sub-threshold swing (SS) of approximately 62 
mV/dec, and low threshold voltage (Vth) of 0.38 V. The analysis on power consumption for advanced NS-
FET is also analyzed with single-k and dual-k spacers. The performance of single-k and dual-k spacer 
dielectric variation for CMOS inverter is also shown. Furthermore, low power consumption by this NS-FET 
ensures improved device performance suitable for nanoscale semiconductor industries. 

INDEX TERMS CMOS Inverter, DIBL, Dielectric Material, Gate-all-round (GAA), Power Consumption, 
Nanosheet (NS) FET, Silicon on Insulator (SOI). 

I. INTRODUCTION 

According to technical advancements, when an 
electronic gadget gets smaller, its complexity rises, and its 
performance improves. The development of transistors 
towards nanometer technology has improved its working 
performance while maintaining the benefit of mobility at 
smaller dimensions. As per the International Road map for 
Devices and Systems (IRDS), devices close to the 
nanometer range are most appropriate for low-power as 
well as high frequency applications [1]. 

The FinFETs have developed vastly during the past 
decade as transistor size has drastically decreased. 
Considering their height/width ratio, FinFETs may operate 
efficiently on nanometer technologies ranging from below 

32 nm to 10 nm [2]. FinFET is a multigate device that uses 
dual or multi-gates wrapped around the channel on a 
substrate to reduce short-channel effects (SCE) and provide 
better control on an electrostatic channel. FinFETs are 
particularly suitable for low-power integrated circuits. 
Furthermore, FinFETs demonstrate a notable proficiency in 
promoting vertical tunneling as opposed to corner 
tunneling. This achievement is attributed to the integration 
of a vertical-tunnel FET designed with negative 
capacitance. Since of its creative design, the transistor 
switch operates more efficiently since it creates a powerful 
vertical electric field [3]. 

Tri-gate construction is used to enclose all the three 
sides of the channel. FinFETs still have a variety of design, 
device performance, structural, and cost-effectiveness 
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issues that hinder further scaling down despite this 
advancement [4]. Fin architectures must be able to maintain 
optimal performance even when device dimensions are 
reduced. Furthermore, SCEs can be restricted by having a 
robust channel control structure regulating the channel 
from all directions, which is essential for technology nodes 
smaller than 10 nm. 

The potential of gate-all-around (GAA) NS-FET is 
greater when compared to current FinFET technology due 
to better gate controllability [5]. While scaling is 
continuous, the gate is enclosed by the channel from all 
sides. The most suitable alternatives to update FinFET in 
the sub-10-nm zone are GAA devices like nanowires and 
nano-sheets. SOI technology involves an insulator substrate 
like SiO2 (silicon dioxide) being coated by a thin layer of 
active region [6]. FDSOI technology is best used in enhanced 
versions of next-generation wireless applications operating at 
high frequency and low power [7]. Junctionless transistors 
(JLTs) can be designed with nano-sheet devices in mind by 
guaranteeing consistent doping in the channel material, which 
prevents the formation of junctions between the drain/source 
and channel [8]. Eunseon et. al. highlighted that adopting 
inverted-T Bulk FinFET technology has various benefits, 
including lower wafer costs, reduced occurrence of defects, 
and ineffective change in thermal energy [9]. However, there 
may be an issue with the substrate leaking hindrance. By 
combining two gate insulators above an un-doped substrate, 
gate-stack technology may significantly reduce leakage. 
Chiang et. al. inferred that the investigations on JLT 
technology can boost the ON current (ION) as it has a larger 
channel volume, broader width of the Fin, and low thickness 
[10]. 

The single, dual, or GAA FET, lightly doped drain (LDD) 
implantation, designed gate, or bulk FET are employed in the 
existing literature. Every method that has been developed has 
improved switching times between devices or SS. The authors 
of this work tackled the difficulties by designing a Junction-
less NS gate-stack SOI FinFET and evaluating its performance 
on spacer regions using a variety of dielectric materials, 
highlighting the shortcomings of current technologies in terms 
of practicality and dependability. 

The proposed device structure, physical model description, 
simulation result calibration, and possible fabrication steps to 
realize the device are explained in section II. The DC analysis 
results are demonstrated and the physics behind it are 
discussed in section III. The power analysis and circuit 
performance are presented in section IV and section V 
respectively. Finally, concluding remarks on the manuscript 
are given in Section VI. 

II. DEVICE STRUCTURES AND SIMULATION METHOD 
The three-dimensional (3D) device structure of the NS-

FET is based on 10 nm technology node [11]-[14]. Fig. 1 
depicts the front and side view of the device wherein the 

NS-FET is designed with gate length, fin width, and 
channel height of 10 nm each. NS-FET is designed to have 
two channels with 15 nm channel spacing on both sides. 
The device parameters are presented in Table I. 

The FinFET is implemented with two evenly doped 
channels with donor doping concentrations of 1018 cm-3. 
Both Source and Drain have a consistent donor doping level 
of 1020 cm-3. The Gate contact is made of polysilicon with 
a work function of 4.5 eV. HfO2 and SiO2 are used to make 
the FinFET gate oxide [6], [15]. As the dimensions of 
transistors shrink, the gate oxide thickness also needs to 
decrease to maintain proper control over the channel. The 
trend of reducing the gate oxide thickness in traditional 
SiO2-based devices increases gate leakage and power 
consumption. High-k dielectric material is used for this 
purpose along with SiO2. The channel is insulated using 
low- and high-k materials with a total thickness of 2 nm. 
This inhibits the gate current from evading into the channel 
and ensures insulator sealing. The device functions more 
efficiently when a dielectric material is placed in between 
the channel’s source and drain [11]. 

The source and drain are directly connected to the gate 
for creating an NS-FET, as shown in Fig. 1. Insulators are 
used in the spacing area to reduce parasitic capacitance, 
which increases resistance. To achieve this, single and dual 
dielectric spacer materials are used to fill the region created 
between the gate and source/drain [16-18]. These regions 
contribute to reducing SCE and improving device 
performance. The spacing area can be deposited with a low 
k dielectric material like air and SiO2 as shown in Fig. 1(a) 
and 1(b). The dual-spacer arrangement of high and low 
dielectric materials in the spacer region can be observed in 
Fig. 1(c) and 1(d). The length and width of each side are 15 
nm and 20 nm respectively in a single spacer arrangement. 
In the dual spacer case, a high-k, and low-k insulator 
combination of length 5 nm adjacent to the gate and 10 nm 
adjacent to the source/drain region are considered 
respectively with a width of 20 nm [19]. The Cogenda 
Visual TCAD device simulator was used to simulate these 
devices [20]. The Lombardi mobility model, Shockley-
Read-Hall (SRH), and Auger recombination models are all 
used in the simulation to represent minority carrier 
recombination. Additionally, the simulation uses the 
QDDM model from Visual TCAD, which will consider the 
quantum effects at lower nodes.  
The physical models are determined upon calibration of 
simulation results obtained from transfer characteristics 
with experimental results [14]. The calibrated transfer 
characteristics obtained by normalizing IDS with Wfin are 
demonstrated in Fig. 2, demonstrating an excellent match 
and justifies the consideration of appropriate physical 
models during TCAD simulation. 
 

 

TABLE I 
10 NM TECHNOLOGY: NS-FET AND FINFET DIMENSIONS 
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Region Dimension 
NS-FET designed 

in this work 
Fin FET considered 
for comparison [11] 

Gate length  10 nm 10 nm 
Gate Oxide thickness 

(High-k) 
1 nm 3 nm 

Gate Oxide thickness 
(Low-k) 

1 nm 0.5 nm 

Spacing Oxide (Low-k) 10 nm 7 nm 
Spacing Oxide (High-k) 5 nm 2 nm 

EOT 0.75 nm 0.75 nm 
S/D doping concentration 1x1020 /cm3 1x1019 /cm3 

Fin Pitch 20 nm - 
Channel height 10 nm 30 nm 
Channel width 30 nm 10 nm 
Work function 4.5eV 4.8eV 

BOX 45 nm 50 nm 

 
  

   

  
 
 
 

FIGURE 1. Front view of 10 nm NS-FET structure with (a) air (b) SiO2 (c) Nitride+HfO2 (d) HfO2+SiO2 spacer material (e) Side view of proposed NS-FET 
structure. 
 
 

III. RESULTS AND DISCUSSION 
The global temperature of operation of NS-FET is set at 

300K. Fig. 4 shows the distribution of surface potential of the 
devised NS-FET at VGS = 0.7V, VDS = 0.75V, and doping of 

1018 cm-3. The application of VDS left little potential in the 
channel and source regions while producing a highly 
concentrated potential on the drain side. The source and drain 
areas of the NS-FET donor distributions are heavily doped. 

(a) 
(b) 

(c) (d) (e) 
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The channel region is also doped with donor dopant, as shown 
in Fig. 4.  

 
 

 

 
FIGURE 2. Calibration of simulated transfer characteristics with 
Experimental results [14]. 

 
FIGURE 3. Potential distribution/ Potential difference of NS-FET at VGS = 

0.7V, VDS = 0.75V. 

 
FIGURE 4. Doping Concentration (Nd) of Two-channel NS-FET. 

The drain current is considered in Fig. 5 to illustrate the 
transfer characteristics in linear and logarithmic scales. For 
estimating the device's performance, the calculation of 
variables such as Vth, ION/IOFF ratio, SS, and DIBL are crucial. 
For air, SiO2, HfO2+SiO2, and HfO2+nitride, the transfer 
characteristics are demonstrated. A crucial metric for 
evaluating the electrical performance of FET devices is the 
ratio of ION to IOFF. The ION stands for the ON-state current 

and measures the device’s ability to handle power when the 
FET is turned on. The IOFF, on the other hand, depicts off-
state current and shows how well FETs work to block current 
while it is in OFF condition. The on current, off current, and 
their ratio can be used to determine the switching 
characteristics and power efficiency of the device [3]. The 
ON and OFF currents and their ratio for the 10 nm NS-FET 
and FinFET technologies are shown and compared in Tables 
II and III, respectively. The values listed here represent 
different dielectric materials utilized to fill the voids. 

 

 
FIGURE 5. Transfer characteristics of the proposed NS-FET with single-k 
and dual-k spaces in linear and logarithmic scale. 
 

 
FIGURE 6. The Comparison of ION/IOFF ratio for the NS-FET and FinFET 
with single-k and dual-k spacers. 
 
 
 
 
 

TABLE II 
ON AND OFF CURRENT ANALYSIS FOR VARYING SPACER MATERIALS: NS-

FET TECHNOLOGY 
Spacer 

Material 
NS-FET 

ION/IOFF Ratio 
NS-FET ION 
current (A) 

NS-FET IOFF 
current (A) 

Air 3.74E+04 1.11E-07 2.97E-12 
SiO2 5.12E+04 1.04E-07 2.03E-12 

Nitride+HfO2 1.38E+05 1.27E-07 0.919E-12 
HfO2+SiO2 1.06E+05 1.15E-07 1.09E-12 

 
TABLE III 
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ON AND OFF CURRENT ANALYSIS FOR VARYING SPACER MATERIALS: 
FINFET TECHNOLOGY [11] 

Spacer 
Material 

FinFET 
ION/IOFF Ratio 

FinFET ION 
current (A) 

FinFET IOFF 
current (A) 

Air 3.31E+04 8.08E-5 2.44E-9 
SiO2 1.35E+05 8.10E-5 5.98E-10 

Nitride+HfO2 1.30E+04 8.13E-5 6.24E-10 
HfO2+SiO2 8.81E+05 8.14E-5 9.24E-11 

All the NS-FETs with different spacers have ION and IOFF 
currents in the range of 10-7 and 10-12, respectively. FinFETs 
with different spacers have ION and IOFF currents ranging 
from 10-5 to 10-11. In contrast, NS-FET for single-k spacer 
outperforms FinFET regarding ION/IOFF ratio calculation, 
improving by 10.55% for air and 73.5% for SiO2. Fig. 6 
compares ION/IOFF ratio for the NS-FET and FinFET with 
single-k and dual-k spacers.  

 
FIGURE 7. The threshold voltage of 10 nm node NS-FET and FinFET 
with different spacers. 
 

It is necessary to decrease the Vth of NS devices to maintain 
satisfactory performance. It has been demonstrated that the 
NS-FET device can operate at a lower gate voltage by 
lowering Vth. As a result, the gate oxide layer experiences less 
electrical stress. This not only leads to lower power 
consumption but also improves the switching speed of the 
device [21]. Fig. 7, along with Table IV, demonstrates the 
threshold voltage for NS-FET and FinFET devices using 
single and dual-k dielectric materials. 

The DIBL and SS are crucial short-channel parameters that 
determine the performance of devices. In these devices, drain 
potential has a significant influence on the energy band 
diagram in the channel region [18]. The drain bias 
unintentionally lowers the barrier between the source and 
drain, resulting in a subthreshold current, and the effect is 
commonly referred to as DIBL. DIBL and SS can be 
expressed through (1) and (2) respectively [2]. Table V depicts 
the DIBL values of NS-FET and FinFET for various spacer 
materials. 

𝐷𝐼𝐵𝐿	(𝑚𝑉/𝑉) 	= 	 , !!"#"!!"$
!%&#"!%&$

,  (1) 

𝑆𝑆	(𝑚𝑉/𝑑𝑒𝑐) 	= 	 1#$%&#'((%&)
#!()

2
"*

  (2) 

TABLE IV 
THRESHOLD VOLTAGE FOR NS-FET AND FINFET FOR VARYING SPACER 

MATERIALS 
Spaces Material NS-FET (Vth) in volts FinFET (Vth) in volts 

Air 0.35 0.145 
SiO2 0.36 0.175 

Nitride+HfO2 0.38 0.235 
HfO2+SiO2 0.37 0.225 

TABLE V 
DIBL FOR NS-FET AND FINFET WITH VARYING SPACER MATERIALS 

Spaces Material NS-FET DIBL 
(mV/V) 

FinFET DIBL 
(mV/V) [11] 

Air 42 121.1 
SiO2 40 98.48 

Nitride+HfO2 14 75.75 
HfO2+SiO2 14 83.33 

 
FIGURE 8. DIBL of NS-FET and FinFET for 10 nm technology node. 

TABLE VI 
SS FOR NS-FET AND FINFET WITH VARYING SPACER MATERIALS 
Spaces Material SS in NS-FET 

(mV/dec) 
SS in FinFET 

(mV/dec) 
Air 67 70.63 

SiO2 65 65.6 
Nitride+HfO2 62 62.01 
HfO2+SiO2 61.2 62.86 

 

       Vth1 at VDS1 = 0.75V (high drain voltage) and Vth2 at VDS2 
= 0.04V (low drain voltage) are vital parameters required 
while calculating the DIBL as indicated in (1). DIBL in case 
of FinFET with Air spacer (single-k) is measured to be 121.21 
mV/V, and this value decreased by 65.34% to 42 mV/V in the 
case of NS-FET. Similarly, the DIBL value for FinFET with 
SiO2 spacer (single-k) is 98.48 mV /V, decreasing by 59.37% 
to 40 mV/ V with NS-FET. For FinFET with Nitride+HfO2 
spacer layers (dual-k), the DIBL value is 75.75 mV/V, and it 
is decreased by 81.43% to 14 mV/V with NS-FET. Lastly, the 
DIBL value for FinFET with HfO2+SiO2 spacers (dual-k) is 
83.33 mV/V, and it is decreased by 83.19% to 14 mV/V with 
NS-FET, as shown in Table V and Fig. 8. 
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The subthreshold swing is a parameter claiming to improve 
when the short channel effects in the device are low [2]. The 
SS value obtained in NS-FET is 67 mV/dec witnessing an 
improvement of 5.28% compared to the single-k (air) FinFET. 
Compared to NS-FET, the SS has improved by 0.92% for the 
spacer material SiO2. Likewise, as mentioned in Table VI and 
illustrated in Fig. 9, the SS for dual-k (Nitride+HfO2) for either 
of the devices remained unaltered but displayed an 
improvement in SS compared to the former materials. Similar 
improvement can be seen in dual-k (HfO2+SiO2), where the 
SS almost meets its ideal value of 60mV/Dec [3]. The 
dielectric fringing fields reduce leakages as spacer materials 
change from air to low-k to high-k. This lowers the SCEs and 
thus enhances the device's SS and DIBL characteristics. NS-
FET, built with the concept of multiple channels, gathers an 
advantage when compared to FinFET in improving the SS and 
DIBL. 

 
FIGURE 9. SS of NS-FET and FinFET for 10 nm technology. 

 
TABLE VII  

PERFORMANCE COMPARISON  
Devices Vth 

(V)  
ION/IOFF 
Ratio 

SS in 
(mV/dec) 

DIBL 
(mV/V) 

NS-FET with spacers 
HfO2+SiO2 

0.37 1.2E5 61.2 14 

NS-FET with spacers 
Nitride+HfO2 

0.38 1.1E6 62 
14 

JL NS-FET [22] 
  
   

0.38 3.54E7 63.7 
51.55 

INV NS-FET [23] 
   

0.38 5.03E7 61.48 
34.29 

Multi-Channel-Multi-
Gate-Based Junction-less 

FET [24] 

0.86 9.6E12 61.51 
22 

Heterojunction Si1‑xGex 
FinFET [25] 

0.86 4.5E12 58.67 
52.37 

 
Additionally, Table VII contrasts the DC characteristics of the 
proposed NS FETs with those of the Junction-less NSFET, the 
Heterojunction Si1-xGex FinFET, and the Multi-Channel-
Multi-Gate-Based Junction-less Field Effect Transistor that 
have been reported in the literature [22]– [25]. As Table VII 
makes abundantly evident, NS-FETs with different space 

charge region materials have comparable [22], [23], or much 
lower threshold voltages [24], [25], as well as reasonable SS 
and DIBL, all of which greatly reduce SCE and make them 
perfect for low power applications. 
 
IV. POWER ANALYSIS 
When determining if low power consumption will be attained, 
a device's power consumption measurement is essential. Thus, 
assuming Vdd = 0.7V and gate work function of 4.8 eV the 
following formula is used to compute the dynamic and 
average power [26], [28], [29]. The COX represents the 
equivalent oxide capacitance obtained by the series 
combination of capacitance due to spacer oxide layers [27]. 
The variation of capacitances with varying gate voltage is 
presented in Fig. 10. Upon multiplication of maximum COX 
with Vdd2 and 0.5Vdd2, dynamic and average power are 
obtained as per (3) and (4), respectively.  

𝐷𝑦𝑛𝑎𝑚𝑖𝑐	𝑝𝑜𝑤𝑒𝑟 = 	𝐶%+ . 𝑉,,-   (3) 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒	𝑃𝑜𝑤𝑒𝑟 = 	 *
-
𝐶%+ . 𝑉,,-   (4) 

 
 

FIGURE 10 COX~VGS Characteristics for FinFET vs NS-FET structures. 

 
 
FIGURE 11 COX~VGS Characteristics for FinFET vs NS-FET structures. 
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Figure 11 depicts the total capacitance (Cgg=Cgs+Cgd) of 
various FETs. The rise in Cgs and Cgd results in rise in the 
total capacitance with increase in dielectric permittivity. 
Thus, Cgg is low for FinFET combination followed by SiO2 

and HfO2+SiO2 and Nitride+HfO2.   
 
 
 

 
 
FIGURE 12 Power consumption in attoJoule for NS-FET. 

The variation of dynamic and average power of FinFET, 
proposed NS-FET with single dielectric SiO2 and with 
diverse space charge regions including HfO2+SiO2, and 
Nitride+HfO2, are shown in Fig. 12. Compared to a 
traditional FinFET, the NS-FET with Nitride+HfO2 as the 
space charge region consumes a relatively little amount of 
average and dynamic power. 
 

 
 

 
FIGURE 13 (a) Transfer characteristics for PMOS and NMOS inverters 
and (b) CMOS inverters. 

V. CIRCUIT PERFORMANCE 
The CADENCE tool is used to examine the device's 
efficiency towards the circuit for different spacer materials. 
The performance of the CMOS inverter is shown in Fig. 13. 
Fig. 13(a) displays the PMOS and NMOS transfer 
characteristics of the NS-FET at VDS = 0.7V. The Si3N4's 
strong fringing fields cause it to have lower IOFF and greater 
ION. The VOUT with VIN fluctuation is shown in Fig. 13(b). 
There are slight differences in the transfer characteristics 
between SiO2, Air, and Si3N4 dielectrics. 

VI. CONCLUSION 
The developed 10 nm technology FINFET and NS-FET has 
two channels with uniform NS-FET doping concentrations 
for a variety of spacer region materials with single-k (Air and 
SiO2), dual-k (HfO2+SiO2 and Nitride+HfO2) spacers. The 
device is designed with GAA and FDSOI technology. The 
3D devices are thoroughly investigated for factors such as 
transfer characteristics, threshold voltage, ION to IOFF ratio, 
DIBL, and SS. In comparison to FinFET, the DIBL of the 
NS-FET’s changing dielectric spacer materials like Air, 
SiO2, HfO2+SiO2, and Nitride+HfO2 is improved by 65.34%, 
59.37%, 81.43%, and 83.19%, respectively, while the SS is 
decreased by 5.28%, 0.92%, 0.02%, and 2.68%. The ION/IOFF 
ratio for a single-k spacer is better. From this result, it can be 
concluded that subthreshold leakage is decreasing for NS-
FET in comparison to FinFET by changing the spacer 
materials. Furthermore, the power consumption is 
comparably very small for NS FET with diverse space 
charge regions. The leakage current reduction implies and 
assures improved device performance for low-power 
nanoscale applications. 
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