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This study introduces a new fractional order Fibonacci wavelet technique proposed for solving the frac-
tional Bagley-Torvik equation (BTE), along with the block pulse functions. To convert the specified initial
and boundary value problems into algebraic equations, the Riemann–Liouville (R-L) fractional integral
operator is defined, and the operational matrices of fractional integrals (OMFI) are built. This numerical
scheme’s performance is evaluated and examined on particular problems to show its proficiency and
effectiveness, and other methods that are accessible in the current literature are compared. The numer-
ical results demonstrate that the approach produces extremely precise results and is computationally
more decisive than previous methods.
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1. Introduction

Over the past decades, scientists, geologists, technicians, math-
ematicians, and statisticians have been paying close attention to
fractional calculus. It has been noted that fractional derivatives
can also be used to simulate a variety of transdisciplinary issues.
Fractional type differential equations [37–43,46,50] have sparked
lots of interest because of their capacity to simulate complicated
processes, such as continuum and statistical mechanics, viscoelas-
tic materials, and solid mechanics [48,49]. The dynamics of a vis-
coelastic rod with the fractional derivative type of dissipation
under time-dependent loading have also been studied by Atanack-
ovic and Stankovic [24]. Khan [25] used fractional calculus to
investigate the fluxes in an Oldroyd-B fluid. He calculated the
velocity field for an incompressible generalized Oldroyd-B fluid
by a fractional derivative framework inside an infinite edge using
Laplace and Fourier sine transforms. Khan and Wang [26]
employed the fractional calculus technique in a non-Newtonian
fluid and a fundamental normative framework in a generalized
second-grade fluid to get accurate analytic solutions for the flow
of fluid between two side walls that are perpendicular to the plate.
The authors of [23] are the ones who initially suggested the BTE,
which excels in its capacity as a simulation of the motion of a
structural element arising in a Newtonian fluid.

Bagley and Torvik [23], have investigated the movement of a
submerged plate that has been bound in a Newtonian fluid and a
gas in a fluid, respectively, and established one of the earliest prob-
lems of this sort. The frequency-dependent damping materials
have been effectively modelled using fractional order(order 1/2
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or 3/2) derivatives. BTE has been solved by several authors, both
numerically and analytically. The BTE is defined as below:

KD2z nð Þ þ bD3=2z nð Þ þ cz nð Þ ¼ h nð Þ n 2 0;U½ �ð Þ; ð1Þ

with conditions

z 0ð Þ ¼ z0 and z Uð Þ ¼ z1; ð2Þ

where the displacement of the plate is defined by the function z nð Þ.
The constant coefficients (K;b; c) are dependent upon the viscosity,
fluid density, stiffness of the spring, and area of the plate. The exter-
nal force denoted by h nð Þ is a known function, the constant input
represented by U lies within the interval 0;U½ �, the constants z0
and z1 are with K– 0.

The BTE has been proposed in several areas of physics and
applied mathematics and carried out in this manner. For example,
the fractional Taylor expansion method [4], the computational
intelligence algorithms [13], the generalized Taylor collocation
method [7], the Adomian decomposition method [21], the frac-
tional iteration method [5], variational iteration method [20]. By
matrix method and successive approximation, the problem (1)
has been meticulously examined by Podlubny [11]. Additionally,
in order to solve the BTE(1) some methods have been developed
based on the orthogonal basis function. For instance, Chebyshev
and Laguerre functions, the sinc and Bessels functions, Jacobi and
Legendre polynomials, and the block-pulse functions. The wavelet
functions are a recent addition to these orthogonal functions.
Wavelets are mathematical operations that can find information
throughout the whole computational domain at various sizes and
locations. These functions are capable of providing bases, which
are created by enlarging and translating the mother wavelet, a
fixed function. Currently, the OMFI for the Bernoulli wavelets
[1,3,10,14], the Spline wavelets [22], the Chebyshev wavelets
[15,19], the Legendre wavelet [8,47], the Haar wavelets [6,33–36]
and many more [2,9,12] been developed to resolve several types
of fractional order differential equations.

Recently, the author [28], defined the transformation n ¼ xa

(a > 0) for shifted Legendre polynomials to obtain better findings
for the solution of fractional order differential equations. The
author [29] used the same transformation for the generalized
Laguerre polynomials to approximate fractional differential equa-
tions. Moreover, the papers [30,31,14] used Bernstein polynomials,
Legendre functions, and Bernoulli wavelets to obtain numerical
solutions to fractional differential equations. This motivates us to
extend the Fibonacci wavelet [32] to fractional order Fibonacci
wavelet by using the transformation n ¼ xa (a > 0) to obtain the
numerical solutions of the fractional BTE.

Fibonacci polynomials [44], which are used to generate the
Fibonacci wavelets, are a relatively new addition to the wavelet
family category, these Fibonacci polynomials contain fewer terms
than the shifted Legendre polynomials, which speed up the compu-
tation and reduce the likelihood of creating an error. The opera-
tional matrix of integration in Fibonacci polynomials has less
error compared to the Legendre polynomials. Individual term coef-
ficients in Fibonacci polynomials are smaller, corresponding to the
Legendre polynomials, which provide a lower computational error
of Fibonacci polynomials. These special types of Fibonacci wavelets
are based on nonorthogonal functions. Though, the operational
matrix of integration is constructed. Inspired by the superior char-
acteristics of the Fibonacci wavelet over other existing wavelets,
many researchers have studied the Fibonacci wavelets. For approx-
imating smooth and piecewise smooth functions, we suggest that
Fibonacci wavelets are suitable. This polynomial based wavelet
method has been used to resolve Stratonovich Volterra integral
equations [16], fractional optimal control problems [17], delay
problems [18], bioheat transfer equations [45], Fredholm integral
2

equations [51]. In retrospect, the pleasant properties of the Fibo-
nacci wavelets led us to solve the fractional type equations such
as BTE by the fractional Fibonacci wavelet approach using the
block pulse function. For the Fibonacci wavelet, Chen and Haiso
[19] technique is taken into account to build the OMFI.

The goal of this study is to develop a new fractional Fibonacci
wavelet approach based on an operational matrix of integration
(OMI) for solving the BTE arising in fluid mechanics. Firstly, the
unknown function z nð Þ is approximated by the linear combination
of the fractional Fibonacci wavelet and then its fractional deriva-
tives Daz nð Þ by truncating at optimal levels. Further, the OMI of
fractional Fibonacci wavelets for the given problem is introduced
and then transformed into a system of algebraic equations. Fur-
thermore, two cases of fractional BTE are discussed with valid
examples, and to show the efficiency and novelty of the present
scheme, a comparison is made with the existing literature. Pre-
sently, there is no such methodology in the literature as our pre-
sented technique. The proposed methodology has not shown any
significant drawbacks, but this present scheme only works in a lim-
ited domain.

This paper is designed as: Section 2 contains the preliminaries
of the fractional calculus, wavelets, and Fibonacci wavelet, which
are used in further sections. Section 3 contains the block pulse
functions and the construction of the fractional Fibonacci wavelet
of fractional order integration. The description of the method to
solve the fractional BTE for particular cases by a fractional Fibo-
nacci wavelet is given in Section 4. By demonstrating the four test
problems, Section 5 illustrates the precision of the currently sug-
gested technique. Finally, Section 6 gives a brief conclusion.
2. Preliminaries

Several definitions exist in the literature to calculate fractional
derivatives and integrations. In this paper, Caputo fractional
derivatives and R-L fractional integration are used for calculations.
When the starting specifications are considered in the form of the
field variables and their integer order, as is the case for the bulk of
physical processes, the Liouville-Caputo technique has the advan-
tage of being more appropriate for initial-value problems.

Definition 2.1. A real function h nð Þ; n > 0, is said to be in the
space Cl;l 2 R, if there is a real number k(k > l) such that

h nð Þ ¼ nkh0 nð Þ, where h0 nð Þ 2 C 0;1½ Þ, and h nð Þ 2 Cm
l if

h mð Þ nð Þ 2 Cl;m 2 N.[16].
Definition 2.2. The R-L fractional integral operator Ja of

aorder a P 0ð Þ for a function h nð Þ 2 Cc c P �1ð Þ is defined as [16]

Jah
� �

nð Þ ¼
1

C að Þ
R n
0 n� tð Þa�1h tð Þdt; a > 0;

h nð Þ; a ¼ 0:

(

Definition 2.3. The Caputo fractional derivative operator Da of
aorder a P 0ð Þ for a function h nð Þ 2 Cm

1 is defined as[16]

Dah
� �

nð Þ ¼
h mð Þ nð Þ; a ¼ m 2 N;

1
C m�að Þ

R n
0

h mð Þ tð Þ
n�tð Þaþ1�m dt; m� 1 < a < m:

8<:
Here, R–L fractional integral operator and the Caputo fractional
derivative operator have relation shown below:

� DaJah nð Þ ¼ h nð Þ,
� DbJah nð Þ ¼ Ja�bh nð Þ; a > b,

� JaDah nð Þ ¼ h nð Þ �Pm�1
k¼0 h

k 0þ� �
nk

k! ; l > 0; m� 1 < a 6 m.
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3. Fractional order Fibonacci wavelet

In order to define the fractional order Fibonacci wavelet, we
covered the fundamental ideas of wavelets and the Fibonacci
wavelet in this part. Additionally, the construction of the OMFI of
the fractional Fibonacci wavelet with the block-pulse function is
explained.

3.1. Wavelets and Fibonacci wavelet

A signal function known as the mother wavelet is translated
and dilated to produce a family of functions known as wavelets.
When the dilation parameters u, v fluctuate continuously, the
given equation below is defined for the continuous wavelet family.
[18]

wu;v nð Þ ¼ juj�1
2w

n� v
u

� �
; u; v 2 R; u – 0;

If we choose u ¼ u�p
0 ;v ¼ gu�p

0 v0;u0 > 1;v0 > 1, and g;p 2 Zþ, and
discrete wavelets family is introduced by

wp;g nð Þ ¼ u0j jp2w up
0n� gv0

� �
;

in which wavelet basis wp;g nð Þ is in L2 Rð Þ.
For any n 2 Rþ, the recurrence relation defines the Fibonacci

polynomials as follows:fW sþ2 nð Þ ¼ nfW sþ1 nð Þ þ fW s nð Þ s P 0ð Þ;

with initial conditions(ICs) fW 0 nð Þ ¼ 0;fW 1 nð Þ ¼ 1 [18].
Following generic formula is used to define the Fibonacci

polynomials

fW s nð Þ ¼
1; s ¼ 0;
n; s ¼ 1;

nfW s�1 nð Þ þ fW s�2 nð Þ; s > 1:

8><>:
and further the formula in closed form represented as:

fW s�1 nð Þ ¼ qs � vs

q� v s P 1ð Þ;

where q , v represent the roots of the recursion’s partner polyno-
mial, y2 � ny� 1.

Additionally, the Fibonacci polynomials power-form represen-
tation appears as follow [18]:

fW s nð Þ ¼
Xbs=2c
i¼0

s� i

i

� �
ns�2i s P 0ð Þ;

where b�c stands the well recognised floor function.
The Fibonacci polynomial has the following properties:Z n

0

fW s tð Þdt ¼ 1
sþ 1

fWsþ1 nð Þ þ fW s�1 nð Þ � fW sþ1 0ð Þ þ fW s�1 0ð Þ
h i

;

Z 1

0

fW s nð ÞfW r nð Þdn ¼
Xbs=2c
i¼0

Xbr=2c
j¼0

s� i

i

� �
r� j

j

� �
1

sþ r� 2i� 2jþ 1
:

ð3Þ
The following is how we define Fibonacci wavelets:

wr;s nð Þ ¼ 2
k�1
2 cW s 2k�1b� rþ 1

� �
; r�1

2k�1 6 n < r
2k�1 ;

0; otherwise:

(
ð4Þ

with

cW s nð Þ ¼ 1ffiffiffiffiffiffi
xs

p fW s nð Þ;
3

and

xs ¼
Z 1

0

fW 2
s nð Þdn:

where xs; s ¼ 0;1; . . . ;M � 1, are obtained using property given by
(3), the order of Fibonacci polynomials is represent by

r; r ¼ 1;2; . . . ;2k�1 where k 2 Zþ.

3.2. Fractional order Fibonacci wavelets

Fractional order Fibonacci polynomial is defined as:

fW a
s nð Þ ¼

1; s ¼ 0;
na; s ¼ 1;

nafW a
s�1 nð Þ þ fW a

s�2 nð Þ; s > 1:

8><>:
The Fractional Fibonacci polynomials power-form representation
appears as follow:

fW a
s nð Þ ¼

Xbs=2c
i¼0

s� i
i

� �
na s�2ið Þ s P 0ð Þ;

where b�c stands the well recognised floor function.
Fractional order Fibonacci polynomial for n = 3 are.fW a

0 nð Þ ¼ 1, fW a
1 nð Þ ¼ na, fW a

2 nð Þ ¼ n2a þ 1, fW a
3 nð Þ ¼ n3a þ 2na.

Using properties, we obtainZ 1

0

fW a
s nð ÞfW a

r nð Þna�1dn ¼
Xbs=2c
i¼0

Xbr=2c
j¼0

s� i

i

� �
r� j

j

� �
1

a sþ r� 2i� 2jþ 1ð Þ :

ð5Þ
By changing the variable n to na, (a > 0) on the Fibonacci wavelet,
we build fractional order Fibonacci wavelet which is a new class
of fractional functions, let the fractional Fibonacci wavelets
wr;s nað Þ be denoted by wa

r;s nð Þ.
The following equation define the fractional order Fibonacci

wavelet

wa
r;s nð Þ ¼

2
k�1
2ffiffiffiffiffi
xs

p cW s 2k�1na � rþ 1
� �

; r�1
2k�1 6 na < r

2k�1 ;

0; otherwise:

8<: ð6Þ

The coefficient 1ffiffiffiffiffi
xs

p in (6) is a normalised factor that may be calcu-

lated using (5)

xs ¼
Z 1

0

fW 2a
s nð Þna�1dn;
3.3. Function approximation

In form of the fractional order Fibonacci wavelet, any function
h 2 L2 0;1½ Þ may be extended as

h nð Þ �
X2k�1

r¼1

XM�1

s¼0

qr;sw
a
r;s nð Þ; ð7Þ

where

qr;s ¼ h;wa
r;s

D E
¼
Z 1

0
h nð Þwa

r;s nð Þna�1dn;

are the coefficients of Fibonacci wavelet. The matrix equivalent of
(7) is written as follows:

h nð Þ ¼ QTWa nð Þ; ð8Þ
where Q is the row vector defined below:
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Q ¼ q1;0; q1;1; . . . ; q1;M�1; q2;0; q2;1; � � � ; q2;M�1; . . . ; q2k�1 ;0; q2k�1 ;1; . . . ; q2k�1 ;M�1

h iT
:

ð9Þ

The matrix Wa nð Þ in (8) is of order 1� 2k�1M Fibonacci wavelet
matrix and is given by

Wa nð Þ ¼ wa
1;0;w

a
1;1; � � � ;wa

1;M�1;w
a
2;0;w

a
2;1; . . . ;w

a
2;M�1; . . . ;w

a
2k�1 ;0;w

a
2k�1 ;1 ; . . . ;w

a
2k�1 ;M�1

h iT
:

ð10Þ

By defining the collocation points as:

ni ¼
2i� 1

2kM
1 6 i 6 2k�1M
� �

;

The following Fibonacci wavelet matrix Wa is defined

Wa ¼ Wa 1

2kM

� �
;Wa 3

2kM

� �
; � � � ;Wa 2kM � 1

2kM

 !" #T
2k�1M�2k�1M

: ð11Þ

In particular, when a=1, k = 2 and M = 3, the matrix obtained is:

W1
6�6 ¼

1:4142 1:4142 1:4142 0 0 0
0:4082 1:2247 2:0412 0 0 0
1:0638 1:2939 1:7539 0 0 0

0 0 0 1:4142 1:4142 1:4142
0 0 0 0:4082 1:2247 2:0412
0 0 0 1:0638 1:2939 1:7539

0BBBBBBBB@

1CCCCCCCCA
:

ð12Þ
3.4. Fractional Fibonacci wavelets OMFI

In terms of block-pulse function, any function h 2 L2 0;1½ Þ, can
be extended as

h nð Þ �
X̂m�1

i¼0

hibi nð Þ ¼ hTB xð Þ;

here the block-pulse function coefficients are denoted by hi. Now,
block-pulse functions could be extended into m̂-set in terms of frac-
tional order Fibonacci wavelet as

Wa nð Þ ¼ Wa
m̂�m̂B nð Þ; m̂ ¼ 2k�1M

� �
;

The fractional integral of the vector of the block-pulse function may
be expressed as

JdB
� �

nð Þ ¼ Fd
m̂�m̂B nð Þ;

as Fd
m̂�m̂ is defined in[27] we obtain

Pa;d
m̂�m̂ ¼ Wa

m̂�m̂F
d Wa

m̂�m̂

� ��1
:

The fractional order Fibonacci wavelet OMI Pa;d
m̂�m̂ of fractional order

d is developed for various a and then these are utilized to solve dif-
ferential equations.

Particularly, with a=1, k = 2, M = 3, d=0.5, the fractional order
integration of the Fibonacci wavelet operational matrix P1;0:5

6�6 is
given by

W1;0:5
6�6 ¼

0:2742 �0:4953 0:3151 �0:1488 0:4353 �0:1723
0:4567 �0:9543 0:5916 �0:2028 0:5929 �0:2339
0:7332 �1:6013 0:9622 �0:2777 0:8096 �0:3211

0 0 0 0:2742 �0:4953 0:3151
0 0 0 0:4567 �0:9543 0:5916
0 0 0 0:7332 �1:6013 0:9621

0BBBBBBBB@

1CCCCCCCCA
:

ð13Þ
4

4. Description of Fractional Fibonacci Wavelet Scheme

Here, the fractional BTE problem is solve by using fractional
Fibonacci wavelet OMI to demonstrate the proposed wavelet
effectiveness.

Here, we discussed the following fractional BTE problem.
Problem 1. Initial value problems

KD2z nð Þ þ bD
3
2z nð Þ þ cz nð Þ ¼ h nð Þ; 0 6 n 6 1;

z 0ð Þ ¼ z0; z0 0ð Þ ¼ z00:

(
ð14Þ

Problem 2. Boundary value problems

KD2z nð Þ þ bD
3
2z nð Þ þ cz nð Þ ¼ h nð Þ; 0 6 n 6 1;

z 0ð Þ ¼ z0; z 1ð Þ ¼ z1:

(
ð15Þ

The fractional order Fibonacci wavelets is used for solving Problem
1 and Problem 2. For the given problem, the highest-order term
D2y tð Þ is extended in Fibonacci wavelet terms wa

r;s tð Þ shown by (6).
Thus,

D2z nð Þ ¼
XM�1

r¼0

X2k�1

s¼1

qr;sw
a
r;s nð Þ ¼ QTWa nð Þ: ð16Þ

Similarly, the following terms are expressed as below:

Dz nð Þ ¼
XM�1

r¼0

X2k�1

s¼1

qr;s J1wa nð Þ
r;s

� �
þ z00 ¼ QTP1;aWa nð Þ þ z00; ð17Þ

z nð Þ ¼
XM�1

r¼0

X2k�1

s¼1

qr;s J2wa
r;s nð Þ

� �
þ z00nþ z0

¼ QTP2;aWa nð Þ þ z00nþ z0; ð18Þ

D3=2z nð Þ ¼
XM�1

r¼0

X2k�1

s¼1

qr;s J1=2wa
r;s nð Þ

� �
¼ QTP1=2;aWa nð Þ; ð19Þ

Now, substituting the Eqs. (16), (18), and (19) into Eq. (14), we now
get a system of algebraic equations given below:

QT KWa nð Þ þ bP1=2;aWa nð Þ þ cP2;aWa nð Þ
h i
¼ h nð Þ � c z00nþ z0½ �: ð20Þ

By collocating the system of algebraic Eqs. (20), we take:

ni ¼
2i� 1

2kM
i ¼ 1;2; . . . ;2k�1M
� �

:

we get the unknown vector Q. Furthermore, the required Fibonacci
wavelet solution for the Eq. (14) is given by:

Z ¼ QTP2;a
m�mW

a
m�m þ z00Im�m þ z0Im�m: ð21Þ

For Problem 2, we obtain: z00 ¼ z1 � QTP2;aWa 1ð Þ þ z0
� �

.

5. Convergence analysis

Theorem 1. Any square integrable function h 2 L2 0;1½ � can be
expanded as an infinite series of fractional-order Fibonacci wave-
lets, and the series converges uniformly to h, i.e.,:

h nð Þ ¼
X1
r¼1

X1
s¼0

qrsw
a
rs nð Þ;

Next, truncate the fractional order Fibonacci wavelet series approx-
imates a system’s solution, hence the following is the error function
E xð Þ for h nð Þ:



Table 1
Analytical and approximate solution at k = 2, M = 4.

n Analytical solution Approximate solution Absolute error

0.0625 1.0625 1.0625 0.0000
0.1875 1.1875 1.1875 0.0000
0.3125 1.3125 1.3125 0.0000
0.4375 1.4375 1.4375 0.0000
0.5625 1.5625 1.5625 0.0000
0.6875 1.6875 1.6875 0.0000
0.8125 1.8125 1.8125 0.0000
0.9375 1.9375 1.9375 0.0000

Fig. 1. Chebyshev wavelet of second kind, analytical solution and approximate
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E nð Þ ¼ h nð Þ �
X2k�1

r¼1

XM�1

s¼0

qrsw
a
rs nð Þ

					
					;

where setting n ¼ nj 2 0;1½ �; nj can be determined which is the abso-
lute error value. The next theorem provides the approximate solu-
tion’s error bound obtained by utilising fractional Fibonacci
wavelet series.

Theorem 2. Suppose z 2 QMa 0;1½ Þ and YMa ¼ span wa
0 nð Þ;wa

1



nð Þ; :::;wa

M�1 nð Þg. If zM nð Þ ¼ ATbFa nð Þ is the best approximation of

z nð Þ from YM on r�1
2k�1 ;

r
2k�1

h i
, by using Fibonacci wavelet on interval

0;1½ Þ the error bound of the approximate solution z� nð Þ would be
obtained in the following form:

ke nð Þk2 ¼ z� z�k k2 6 R
Ma!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Maþ 1

p ;

Proof. Define the function,

ẑ nð Þ ¼
XM�1

r¼0

zr 0ð Þnr
r!

;

From the expansion of Taylor series, we obtain

jz nð Þ � ẑ nð Þj 6
nMasupt2Ik;s jzMa tð Þj

Ma!
;

As, zM nð Þ ¼ ATbF nð Þ is the close approximation of z nð Þ from YM on the

interval s�1
2k�1 ;

s
2k�1

h i
and

PM�1
s¼0

zs 0ð Þns
s! 2 YM . Therefore,

jz� z�j jj2L2 0;1½ �;¼ jz� QTWa
			 			j2

L2 0;1½ �
;

¼ P2k�1

s¼1
jz� AT F̂ a
				 				j2

Is;k

;

6
P2k�1

s¼1
kz� ẑk2Is;k 6

P2k�1

s¼1

R
Is;k

z nð Þ � ẑ nð Þ½ �2dn;

6
P2k�1

s¼1

R
Is;k

nMasup
t2Is;k

zMa tð Þj j
Ma!

0@ 1A2

dn;

6
R 1
0

nMa sup
t2 0;1½ Þ

zMa tð Þj j
Ma!

0@ 1A2

dn;

¼ R2

Ma!ð Þ2 2Maþ1ð Þ :

Where bFa nð Þ ¼ eFa0 nð Þ; . . . ; eFaM�1 nð Þ
h iT

and R ¼ supt2 0;1½ Þ z
Ma tð Þ		 		. Con-

sequently, asM ! 1 the ke nð Þk ! 0 andM defined as maximal level
of resolution.

6. Numerical examples

In this part, we use the Fibonacci wavelet OMFI to solve the
fractional BTE that results from simulating the motion of a rigid
plate submerged in a Newtonian fluid. To demonstrate the effec-
tiveness and application of the suggested strategy, a few particular
examples of Eq. (1) are taken into consideration with initial condi-
tions (ICs) and boundary conditions (BCs).These conditions are
taken into account either because analytical solutions are known
for them or because other numerical techniques have also been
used to resolve them. This makes it possible to compare the out-
comes of the present approach with those of other approaches or
the analytical solution. The MATLAB (R2020a) software is used to
calculate all findings.

Example 1. Considering the Eq. (1) having the conditions:
5

K ¼ b ¼ c ¼ 1; h nð Þ ¼ 1þ n 0 6 n 6 1ð Þ; ð22Þ
with ICs

z 0ð Þ ¼ 1; z0 0ð Þ ¼ 1:

Analytical solution of (22) is z nð Þ ¼ 1þ n. The proposed scheme dis-
cussed in Section 4 is used to solve the problem using a fractional
Fibonacci wavelet. Table 1 presents the numerical values obtained
at k = 2, M = 4, a ¼ 1. And Fig. 1 plots compares the Chebyshev
wavelet of second kind[15], analytical solution and current method
at a ¼ 1, k = 2 and M = 4. The outcomes make it abundantly evident
that the current technique solution and the analytical solution are
in excellent accord.

Example 2. Considering the fractional BTE (1) having conditions

K ¼ b ¼ c ¼ 1; h nð Þ

¼ n3
� �þ 6nþ 8

C 1=2ð Þn3=2 0 6 n 6 1ð Þ; ð23Þ

with ICs

z 0ð Þ ¼ 0; z0 0ð Þ ¼ 0:

Analytical solution of (23) is z nð Þ ¼ n3. The given problem is solved
by using a fractional Fibonacci wavelet and its operational matrices
of integration with initial conditions. Table 2 presents the compar-
ison of the present method’s approximate solution obtained by
k = 3, M = 4 and k = 2, M = 4 at a ¼ 1 with analytical solution and
approximate solution of [11]. And Fig. 2 plots the comparison of
the analytical solution and the current approach at k = 2, M = 4
and a ¼ 0:5.

Example 3. Considering the fractional Eq. (1) with following
conditions
solution.



Table 2
Approximate solutions, analytical solution at k = 3, M = 4 and k = 2, M = 4.

n Approximate
solution

Approximate
solution

[11] Analytical
Solution

k = 2,M = 4 k = 3, M = 4
0.0 0.000000 0.000000 0.000000 0.000000
0.1 0.001000 0.001000 0.001000 0.001000
0.2 0.008000 0.008000 0.008000 0.008000
0.3 0.027000 0.027000 0.027000 0.027000
0.4 0.064000 0.064000 0.064000 0.064000
0.5 0.125000 0.125000 0.125000 0.125000
0.6 0.216000 0.216000 0.216000 0.216000
0.7 0.343000 0.343000 0.343000 0.343000
0.8 0.512000 0.512000 0.512000 0.512000
0.9 0.729000 0.729000 0.729000 0.729000

Fig. 2. Approximate and analytical solution.

Table 3
Approximate solution, analytical solution and absolute error at k = 3, M = 4.

n Analytical solution Approximate solution Absolute error

0.00 1.00000 1.00000 0.000000
0.10 1.10000 1.10000 0.000000
0.20 1.20000 1.20000 0.000000
0.30 1.30000 1.30000 0.000000
0.40 1.40000 1.40000 0.000000
0.50 1.50000 1.50000 0.000000
0.60 1.60000 1.60000 0.000000
0.70 1.70000 1.70000 0.000000
0.80 1.80000 1.80000 0.000000
0.90 1.90000 1.90000 0.000000
1.00 2.00000 2.00000 0.000000

Table 4
Absolute error, approximate solution and analytical solution at k = 2, M = 3.

n Analytical solution Approximate solution Absolute error

0.0833 1.0833 1.0833 2.2204e� 16
0.2500 1.2500 1.2500 4.4409e� 16
0.4167 1.4167 1.4167 2.2204e� 16
0.5833 1.5833 1.5833 4.4409e� 16
0.7500 1.7500 1.7500 4.4409e� 16
0.9167 1.9167 1.9167 2.2204e� 16

Fig. 3. Comparison of approximate and analytical solution.
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K ¼ b ¼ c ¼ 1; h nð Þ ¼ 1þ n 0 6 n 6 1ð Þ; ð24Þ
with the BCs

z 0ð Þ ¼ 1; and z 1ð Þ ¼ 2:

Analytical solution of Eq. (24) is z nð Þ ¼ 1þ n. We acquire the
numerical answers for Eq. (24) by using the suggested strategy that
is discussed in Section 4. Fig. 3 compares the approximate solution
and analytical solution for the parameters a ¼ 0:5; k ¼ 3 and M ¼ 4.
Table 3 shows the present method’s approximate values for k ¼ 3
and M ¼ 4 and the analytical values of the defined problem. Simi-
larly, Table 4 for k ¼ 2;M ¼ 3. This shows that the level of Fibonacci
polynomial degree increases, better results are obtained.

Problem 4. Finally, considering the Eq. (1) with following
conditions

K ¼ 0; b ¼ c ¼ 1; h nð Þ ¼ 2
ffiffiffi
n

p
C 3=2ð Þ þ n n� 1ð Þ 0 6 n 6 1ð Þ; ð25Þ

with the BCs

z 0ð Þ ¼ 0; z 1ð Þ ¼ 0:

Analytical solution of (25) is z nð Þ ¼ n2 � n. The proposed scheme
discussed in Section 4 is used to solve the problem using a fractional
6

Fibonacci wavelet. In Fig. 4, the analytical and present method’s
approximate solutions are compared at k = 2, M = 4 and a ¼ 2.
The results make it abundantly evident that the current technique
solutions are in excellent accord.
7. Conclusion

In this article, the fractional order Fibonacci wavelet based on
the Fibonacci polynomial is used to solve the fractional BTE that
is emerging in the study of fluid mechanics, along with utilising
block-pulse functions. Firstly, the OMFI of a fractional Fibonacci
wavelet is obtained. Further, by reducing the fractional BTE within



Fig. 4. Approximate and analytical solution comparison.
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the algebraic equation and collocating them at defined points, we
obtained the approximate solution. To illustrate the applicability
of the suggested strategy, two cases are discussed. The figures
are plotted to show the results of the current approach compared
to the exact solutions and existing methods. The acquired findings
demonstrate that a more accurate solution is produced as the level
degree of the Fibonacci polynomial grows, as indicated in the
tables. The fractional Fibonacci wavelet technique is widely appli-
cable and may be used to address a variety of issues, including sin-
gular perturbation problems, optimization problems, and problems
of nonlinear and linear systems with different conditions.

In the future, one can extend the methodology proposed in this
paper for approximating the solution of fractional Riccati and frac-
tional Pantograph differential equations and higher order frac-
tional differential equations arising in various areas of biological
and physical sciences.
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