
Results in Physics 52 (2023) 106753

A
2
n

Contents lists available at ScienceDirect

Results in Physics

journal homepage: www.elsevier.com/locate/rinp

An efficient method for the fractional electric circuits based on Fibonacci
wavelet
Shahid Ahmed a, Kamal Shah b, Shah Jahan a,∗, Thabet Abdeljawad b,c,d,e,∗

a Department of Mathematics, Central University of Haryana, Mahendergarh 123029, India
b Department of Mathematics and Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia
c Department of Medical Research, China Medical University, Taichung 40402, Taiwan
d Department of Mathematics Kyung Hee University,26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
e Department of Mathematics and Applied Mathematics, School of Science and Technology, Sefako Makgatho Health Sciences University, Ga-Rankuwa, South Africa

A R T I C L E I N F O

MSC:
26A33
65D15
65T60
97M50

Keywords:
Fractional calculus
Caputo fractional derivatives
Fibonacci wavelets
Numerical methods
Electrical circuits

A B S T R A C T

In this article, we provide effective computational algorithms based on Fibonacci wavelet (FW) to approximate
the solution of fractional order electrical circuits (ECs). The proposed computational algorithm is novel and has
not been previously utilized for solving ECs problems. Firstly, we have constructed the operational matrices
of fractional integration (OMFI). Secondly, we transform the given initial value problems into algebraic
equations, we used the Riemann–Liouville (R–L) fractional integral operator. The proposed approach is capable
of handling a wide range of fractional order dynamics in ECs. To validate the effectiveness of the method,
four models of electrical circuits with fractional order parameter are considered. The numerical results are
compared with exact solutions and absolute errors are calculated to demonstrate the accuracy and efficiency
of the approach. The proposed method provides a valuable tool for analyzing and designing fractional order
systems in electrical engineering, offering improved accuracy and capturing the intricate behavior of complex
systems.
Introduction

Fractional calculus is an extension of classical calculus, originally
developed by Newton and Leibnitz. Over the past two decades, various
aspects of fractional calculus have gained significant attention, leading
to a growing interest among researchers in this field. Particularly, the
applications of fractional calculus, especially in simulating physical
problems, have become increasingly popular. There are several ap-
proaches for generating fractional order derivatives, including Caputo,
Riemann–Liouville(RL), Baleno fractional, Grünwald–Letnikov. Among
these methods, Caputo’s approach stands out due to its ability to handle
initial conditions defined in terms of field coordinates and their integer
order. To maintain clarity and avoid confusion, we will use fractional
derivatives (FDs) in the sense of Caputo throughout the remainder of
this article. Some applications of fractional derivatives are found in [1,
2]. Also fractional differential equation with biological application [3]
and water borne disease [4]. For further studies on fractional operators
we refer [1,2,5–7].
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Definition 1 ([1]). The RL fractional operator of order 𝛼 > 0 for the

function 𝜃(𝓁) is defined as:

𝜉𝛼𝜃(𝓁) = 1
𝛤 (𝛼) ∫

𝓁

0

𝜃(𝜏)
(𝓁 − 𝜏)1−𝛼

𝑑𝜃, 𝓁 > 0,

where the gamma function 𝛤 (.) is involved, some properties of the

operator 𝜉𝛼 are: 𝜉𝛼𝜉𝛽𝑔(𝓁) = 𝜉𝛼+𝛽𝑔(𝓁), 𝛼, 𝛽 > 0, and

𝜉𝛼𝓁𝛽 =
𝛤 (1 + 𝛽)

𝛤 (1 + 𝛼 + 𝛽)
𝓁𝛼+𝛽 , 𝛽 > −1.

Definition 2 ([1]). The definition of the Caputo derivative 𝐷𝛼 for the

function 𝜃(𝓁) is as follows:

𝐷𝛼𝜃(𝓁) = 1
𝛤 (𝑛 − 𝛼) ∫

𝓁

0

𝜃𝑛(𝜏)
(𝓁 − 𝜏)𝛼−𝑛+1

𝑑𝜏, 𝑛 − 1 < 𝛼 ≤ 𝑛, 𝑛 ∈ N,
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𝐷

below are some properties of 𝐷𝛼

𝛼𝓁𝛽 =
𝛤 (1 + 𝛽)

𝛤 (1 + 𝛽 − 𝛼)
𝓁𝛽−𝛼 , 0 < 𝛼 < 𝛽 + 1, 𝛽 > −1;

𝜉𝛼𝐷𝛼𝜃(𝓁) = 𝜃(𝓁) −
𝑛−1
∑

𝑘=0
𝑓𝑘(0+) 𝓁

𝑘

𝑘!
, 𝑛 − 1 < 𝛼 ≤ 𝑛, 𝑛 ∈ N;

𝐷𝛼𝐶 = 0, 𝐶 is a constant.

The derivative and integral operators of fractional order have gained
significant attention due to their valuable properties. These proper-
ties include non-locality, memory, and a higher degree of freedom
compared to classical derivative and integral operators. These useful
properties make it possible to create more precise and sensitive mod-
els of important systems in engineering and science [1,5]. In recent
years, many new models have been created using fractional operators
including simulation of fractional differential equation using numerical
Laplace transform [2,6], electrical applications [8], fractal–fractional
tobacco models [9], nonlinear pantograph equations [10]. However, it
is important to acknowledge that the main challenge in working with
fractional models lies in obtaining their analytic solutions, which often
becomes a difficult task. Consequently, researchers have predominantly
focused on exploring approximation methods for addressing such prob-
lems. In recent years, interest in fractional order dynamics in electrical
circuits has grown as a potential area of study. This is because it allows
for detailed modeling and analysis of complex processes that standard
integer-order models cannot effectively represent. Several papers have
discussed the solution of fractional ECs using various mathematical
methods. Arora et al. [11] applied the Legendre wavelet method, while
Atangana et al. [7] studied the ECs model using a FDs without a
singular kernel. Gómez et al. [6] employed the Caputo derivative and
Laplace transform to solve  ECs. Shah et al. [12] addressed 
ECs by utilizing the Laplace transform of the FDs in the Caputo sense.
Gill et al. [13] obtained solutions for the  circuit by utilizing
the Sumudu transform and expressing them in terms of the Mittag-
Leffler function. Alsaedi et al. [14] explored fractional ECs equations
using different fractional definitions. Furthermore, Gómez et al. [15]
focused on analytical and numerical solutions for ECs described by FDs.
More recently, Sene et al. [16] derived analytical solutions for ECs
while considering certain generalized FDs. Wavelet-based numerical
methods have found applications in various areas, including signal and
image processing, data compression, scientific computing, and solving
lumped and distributed parameter system [17], also solving differential
and integral equations [18,19]. They offer advantages over traditional
methods by allowing for adaptive and multiscale analysis, which can
capture both global and local features of the problem. These approaches
have been carefully examined and applied in a wide range of scientific
and engineering fields, offering a powerful and flexible framework for
numerical analysis and computation. Wavelets are widely employed in
finding numerical solutions for various differential and integral equa-
tions. In recent years, wavelet techniques have been widely employed
by researchers to solve fractional-order differential equations. Various
types of wavelets have been explored in the literature, including Haar
wavelets [17,20], Legendre wavelets [11], Fibonacci wavelets,[21,22]
and Gegenbaur wavelets [19]. The Fibonacci polynomials has gained
significant attention due to its superior characteristics compared to
Legendre polynomials. The FW consist of fewer terms as compared to
other polynomial wavelets which accelerates computation and reduces
the chances of errors occurring. As a result, numerous studies have been
conducted on Fibonacci wavelets. The key features of the Fibonacci
wavelet method (FWM) are as follows:

• The FW is a function that can be defined at various scales and
has a wide range of uses because of its characteristics, including
compact support and vanishing moments.

• FWM is effective when analyzing solutions that involve discon-
tinuities and abrupt changes. To apply this technique to under-
standing a function, we first create a window for it at the point
2

of discontinuity and sharp edge.
• This approach does not appear to have any significant weak-
nesses. However, this approach only works in a limited domain,
not a broad one. We require the employment of transformations
to operate throughout the wide domain.

This polynomial based wavelet method has been used to resolve
the Fredholm integral equation [18], fractional order logistic growth
model [21], Bagley-Torvik equation [22]. It is evident that Fibonacci
wavelets are well-suited for approximating smooth and piecewise
smooth functions. Despite the increasing interest in this field, the
number of articles specifically focusing on dynamics of ECs remains
relatively limited. One recent development by Altaf et al. [23] in-
volves the utilization of the Haar wavelet for solving fractional ECs.
Chouhan [24] solved the fractional  circuit by utilizing Legendre
multiwavelet. Recently Adel et al. [25] numerically discussed the
analysis and simulation of electric  circuit. Fibonacci wavelets
produced by Fibonacci polynomials are a new addition to the field
of wavelet families. It has added an advantage in contrast with the
other wavelet methods [26]. The Fibonacci polynomials, typically have
fewer terms compared to the Legendre polynomials. This disparity
in the number of terms can contribute to reduced CPU time during
computations [27,28]. Error components in the operational matrix
of integration representing Fibonacci polynomials are less than those
of Legendre polynomials [29,30]. Using the Mathematica command
Fibonacci [m,x], the coefficient of the Fibonacci polynomials can be
easily obtained in computer programmes. Motivated with the nice
properties and advantages of FW over the other wavelet methods, we
have solved fractional electric circuit models. We use Caputo fractional
derivatives and Fibonacci wavelet-based methods to understand and
analyze fractional order dynamics in ECs. In this paper, we consider the
fractional order models of ECs because they enhance the understanding
of complex electrical systems, improve modeling accuracy, enable
control strategies, and stimulate innovation in electrical engineering.
The behavior of electrical circuits cannot be accurately described by
traditional integer-order models. By addressing these topics, the study
independently has implications for circuit design, control strategies,
and the broader field of fractional calculus. The proposed approach of-
fers a comprehensive framework for accurately modeling and analyzing
the behavior of circuit variables, such as currents and voltages, while
considering the fractional order dynamics of the system. Considering
the importance of fractional ECs in modern technology, which are
crucial for designing various complex systems such as signals systems,
mechanical, dynamical, aerospace, industrial, control, computer, com-
munication, and electronic, as well as consumer products, it becomes
essential to have a solid understanding of the mathematical model
that describes them as fractional differential models, such as electrical
circuit of non integer order via fractional derivatives [31]. In [32],
a new collection of real world applications of fractional calculus in
science and engineering is given. Analytical solution for the electric
circuit model in fractional order is studied in [12,22]. By studying these
models, one can gain a deeper insight into the behavior of different
types of linear time ECs.

The remaining sections of the paper will be discussed as: In Sec-
tion ‘‘Formulation of fractional order models’’ contains the formulation
of fractional order models. Section ‘‘Fibonacci wavelet’’ provides a
brief about FW and its function approximation. In Section ‘‘OMFI of
Fibonacci wavelets’’, the operational matrix of fractional order using
the FW and the block pulse functions (BPF) are examined. Section ‘‘Er-
ror estimation and numerical results’’ focuses on error analysis and
numerical problems, showcasing the efficiency and precision of the
proposed approach. Finally, a concise conclusion is presented.

Formulation of fractional order models

Here, we will present the construction of models for conventional
electrical ,,, and  circuits. To derive the corresponding
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fractional forms of each model using a series of straightforward steps
guided by the following principles: Ohm’s law: The voltage drop across
a resistor, denoted as , is directly proportional to the current passing
through it, represented as 𝑞(𝓁). The constant of proportionality is the
resistance , measured in Ohm’s. Therefore, the voltage drop across a
resistor can be calculated as  = 𝐽 . Law of inductance: The principle
of inductance states that through empirical observations, a connection
has been established between the voltage decrease across an inductor
and the instantaneous rate of change of the electric current, denoted
as 𝑞(𝓁). This relationship is expressed mathematically as 𝛥 = ( 𝑑𝑞

𝑑𝓁
),

here 𝛥 represents the voltage drop across the inductor,  denotes
he inductance (a constant of proportionality), and (

𝑑𝑞
𝑑𝓁

) represents the
instantaneous rate of change of the electric current.
Kirchhoff’s voltage law in a closed loop: The total voltage supplied 𝐸 is
qual to the sum of voltage drops across the other components in the
oop.

There are two main laws:

• Kirchhoff’s Current Law (KCL): KCL states that the sum of currents
entering a node (or junction) in an electrical circuit is equal to the
sum of currents leaving that node.

• Kirchhoff’s Voltage Law (KVL): KVL states that the sum of voltage
drops (or potential differences) around any closed loop in a circuit
is equal to zero.

• Kirchhoff’s laws are used to analyze and solve complex electrical
circuits by writing and solving a set of simultaneous equations
based on the laws.

Fractional  circuit model: An  circuit, is a simple ECs consist-
ng of an inductor  and a capacitor  connected in parallel or series.
he  circuit has several important characteristics such as resonance,
nergy storage, oscillations. To derive the fractional  circuit, we start
ith the classical differential equation for an  circuit as:

𝑑𝑞(𝓁)
𝑑𝓁

+ 1


𝑞(𝓁) = 𝐹

. (1)

To obtain the fractional version, applying the FDs operator of order 𝛼
to Eq. (1), involving fractional inductor  and fractional capacitor 
we have:

𝐷𝛼
(

𝑑𝑞(𝓁)
𝑑𝓁

)

+ 1


𝑞(𝓁) = 𝐹

. (2)

Simplifying further, we obtain the fractional  circuit equation in the
form:

𝐷𝛼[𝑞(𝓁)] + 𝜁2𝑞(𝓁) = (𝓁), (3)

where 𝜁2 = 1


, and (𝓁) = 𝐹


. This Eq. (3) represents the fractional

 circuit, where  is the inductance,  is the capacitance, 𝐹 is
electomotive force, 𝑞(𝓁) is the charge, (𝓁) is the external input, and
𝐷𝛼 denotes the FDs of order 𝛼.

Fractional circuit model: In an  circuit, the voltage drop across
a capacitor with capacitance  is given by 1


𝑞(𝓁). Therefore, applying

the second law of Kirchhoff’s, we obtain:

𝐽 (𝓁) + 1

𝑞(𝓁) = (𝓁). (4)

Since 𝐽 (𝓁) and 𝑞(𝓁) are related by 𝐽 (𝓁) =
𝑑𝑞(𝓁)
𝑑𝓁

, so Eq. (4) can be
rewritten as:

𝑑𝑞(𝓁)
𝑑𝓁

+ 1

𝑞(𝓁) = (𝓁).

he equation can be represented in its fractional form as:

𝐷𝛼𝑞(𝓁) + 1

𝑞(𝓁) = (𝓁), 𝓁 ∈ [0, 1], 0 < 𝛼 ≤ 1, (5)

with initial condition (IC) 𝑞(0) = 𝑞0 Fractional order  circuits have
ained attention in recent years due to their ability to model and
3

epresent certain complex systems more accurately. They have been
sed in various applications such as signal processing, control systems,
nd biomedical engineering.
ractional  circuit model: The classical  model refers to a
ircuit model that includes a resistor  and an inductor  as its main

components. By applying Kirchhoff’s law and consider  = 𝑟 + 𝑙.
The mathematical representation of the model is expressed through a
differential equation as:

𝑑𝑞(𝓁)
𝑑𝓁

+𝑞(𝓁) = (𝓁), 𝑞(0) = 𝑞0, 𝓁 ∈ [0, 1]. (6)

By incorporating the resistance  and inductance  into the circuit
configuration, either in series or in parallel, the differential equa-
tion for an electrical circuit can be expressed in the fractional-order
(Liouville–Caputo sense) for 0 < 𝛼 ≤ 1. The Eq. (6) will adopt the form:

𝐷𝛼𝑞(𝓁) +𝑞(𝓁) = (𝓁), 𝓁 ∈ [0, 1], 0 < 𝛼 ≤ 1, (7)

with IC 𝑞(0) = 𝑞0.

Fractional circuit model: In accordance with Kirchhoff’s law, the
applied voltage (𝓁) within a closed loop should be equivalent to the
otal sum of voltage drops across the components of the  circuit.
dditionally, it is known that the current 𝐽 (𝓁) is related to charge 𝑞(𝓁)
n capacitor through a relationship:

(𝓁) =
𝑑𝑞(𝓁)
𝑑𝓁

,

so by summing the three voltage drops 𝑑𝐽 (𝓁)
𝑑𝓁

= 𝑑2𝑞(𝓁)
𝑑𝓁2

, 𝐽 (𝓁) =
𝑑𝑞(𝓁)
𝑑𝓁

, 1

𝑞(𝓁). By adding the sum of the voltage drops across the

components of the  circuit and equating it to the impressed volt-
age, we derive second-order differential equation as:

 𝑑2𝑞
𝑑𝓁2

+ 𝑑𝑞
𝑑𝓁

+ 1

𝑞(𝓁) = (𝓁). (8)

he fractional version of the equation will take the form:

𝐷𝜆𝑞(𝓁) +𝐷𝛿𝑞(𝓁) + 1

𝑞(𝓁) = (𝓁), 𝓁 ∈ [0, 1],

0 < 𝛿 ≤ 1, and 1 < 𝛼 ≤ 2, (9)

with 𝑞(0) = 𝑞0 and 𝑞′(0) = 𝑞1.
We have, if 𝜆 = 2 and 𝛿 = 1, Eq. (9) becomes the classical equation

for  circuit. A classical  circuit, also known as a series 
ircuit is a basic electrical circuit that consists of a resistor (), an
nductor (), and a capacitor () connected in series. It is a fundamental
ircuit configuration used to study the behavior of electrical compo-
ents and systems. The  circuit can exhibit different characteristics
ased on these factors, including resonance, damping, and frequency-
ependent impedance. Analysis and design of  circuits involve
echniques such as Kirchhoff’s laws, differential equations, complex
mpedance, and transfer functions.

ibonacci wavelet

The FW offers distinct characteristics that contribute to its utility
n various signal processing and analysis applications. It demonstrates
elf-similarity, enabling it to retain its shape when scaled or translated
o different positions. This allows for the analysis of signals at different
cales or resolutions. The FW also has good localization properties,
hat is concentrated in both time and frequency domains. The FW is
type of wavelet function that is derived from the Fibonacci sequence
r polynomials, a series of numbers in which each number is the sum of
he two preceding numbers (e.g., 0, 1, 1, 2, 3, 5, 8, 13, and so on). The
ecurrence relation defines the Fibonacci polynomials for any positive
eal number 𝓁 ∈ R+,
𝑄𝑚+2(𝓁) = 𝓁𝑄𝑚+1(𝓁) +𝑄𝑚(𝓁) (𝑚 ≥ 0). (10)
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The Fibonacci polynomials, which satisfy the initial conditions 𝑄0(𝓁) =
and 𝑄1(𝓁) = 1 [33], can also be represented using a general formula

𝑚(𝓁) =

⎧

⎪

⎨

⎪

⎩

0, if 𝑚 = 0,
1, if 𝑚 = 1,
𝓁𝑄𝑚−1(𝓁) +𝑄𝑚−2(𝓁), if 𝑚 > 1,

(11)

nd the closed-form is

𝑚−1(𝓁) =
𝛼𝑚 − 𝛽𝑚

𝛼 − 𝛽
(𝑚 ≥ 1).

The roots of polynomial 𝑥2 − 𝓁𝑥 − 1 associated with the recursion
are denoted by 𝛼 and 𝛽. Additionally, the Fibonacci polynomials can be
epresented in a power-form as:

𝑚(𝓁) =
⌊𝑚∕2⌋
∑

𝑖=0

(

𝑚 − 𝑖
𝑖

)

𝓁𝑚−2𝑖 (𝑚 ≥ 0). (12)

The notation ⌊⋅⌋ represents the commonly known floor function. Al-
ternatively the Fibonacci polynomials 𝑄𝑚(𝓁) are represented in matrix
form as:

𝑄(𝓁) = 𝑃𝐿(𝓁), (13)

where the equation

𝑄(𝓁) =

⎛

⎜

⎜

⎜

⎜

⎝

𝑄0(𝓁)
𝑄1(𝓁)
𝑄2(𝓁)
⋮

⎞

⎟

⎟

⎟

⎟

⎠

𝐿(𝓁) =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1
𝓁
𝓁2

𝓁3

⋮

⎞

⎟

⎟

⎟

⎟

⎟

⎠

and

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 0 0 0 0 0 0 …
0 1 0 0 0 0 0 …
1 0 1 0 0 0 0 …
0 2 0 1 0 0 0 …
1 0 3 0 1 0 0 …
0 3 0 4 0 1 0 …
1 0 6 0 5 0 1 …
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

he Fibonacci polynomials have the following notable properties:

∫

𝓁

0
𝑄𝑚(𝑠) 𝑑𝑠 =

1
𝑚 + 1

[

𝑄𝑚+1(𝓁) +𝑄𝑚−1(𝓁) −𝑄𝑚+1(0) −𝑄𝑚−1(0)
]

, (14)

∫

1

0
𝑄𝑚(𝓁)𝑄𝑛(𝓁) 𝑑𝓁 =

⌊𝑚∕2⌋
∑

𝑖=0

⌊𝑛∕2⌋
∑

𝑗=0

(

𝑚 − 𝑖
𝑖

)(

𝑚 − 𝑗
𝑗

)

1
𝑚 + 𝑛 − 2𝑖 − 2𝑗 + 1

.

(15)

The Fibonacci wavelets represent a unique set of compactly-supported
wavelets that are derived from the Fibonacci polynomials and defined
on [0, 1] as follows:

𝛹𝑛,𝑚(𝓁) =

⎧

⎪

⎨

⎪

⎩

2(𝑘−1)∕2

𝑤1∕2
𝑚

𝑄𝑚
(

2𝑘−1𝓁 − 𝑛 + 1
)

if 𝑛 − 1
2𝑘−1

≤ 𝓁 < 𝑛
2𝑘−1

,

0 otherwise,
(16)

here 𝑄𝑚(𝓁) represents the Fibonacci polynomial of degree 𝑚 defined
n Eq. (12), while 𝑘 and 𝑛 correspond to the level of resolution, with 𝑘
aking values from Z+ and 𝑛 representing the translation parameter,

ranging from 1 to 2𝑘−1. The coefficient 𝑤1∕2
𝑚 in Eq. (16) serves as a

normalization factor and calculated using Eq. (15) as:

𝑤𝑚 = ∫

1

0
(𝑄𝑚(𝓁))2𝑑𝓁, 𝑚 = 0, 1,… ,𝑀 − 1.

The FW (16) can be represented as:

𝛹𝑛,𝑚(𝓁) =
2(𝑘−1)∕2

1∕2
𝑄𝑚

(

2𝑘−1𝓁 − 𝑛 + 1
)

𝜒𝐼𝑛,𝑘 (𝓁), (17)
4

𝑤𝑚
The characteristic function 𝜒𝐼𝑛,𝑘 (𝓁) is defined on the interval 𝑛−1
2𝑘−1 ≤ 𝓁 <

𝑛
2𝑘−1 . When selecting 𝑘 = 2 and 𝑀 = 3, we obtain the following set of
FW:

𝛹1,0(𝓁) =
√

2,

𝛹1,1(𝓁) = 2
√

6𝓁,

𝛹1,2(𝓁) =
√

15
14

(

1 + 4𝓁2) ,

𝛹1,3(𝓁) =
√

960
38

(

2𝓁3 + 𝓁
)

,

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

0 ≤ 𝓁 < 1
2
, (18)

𝛹2,0(𝓁) =
√

2,

𝛹2,1(𝓁) =
√

6(2𝓁 − 1),

𝛹2,2(𝓁) =
√

30
7

(

2𝓁2 − 2𝓁 + 1
)

,

𝛹2,3(𝓁) =
√

480
304

(

8𝓁3 − 12𝓁2 + 10𝓁 − 3
)

,

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

1
2
≤ 𝓁 < 1. (19)

The FW representation allows for expressing any function 𝑓 ∈ 𝐿2[0, 1)
in terms:

𝑓 (𝓁) ≈
2𝑘−1
∑

m=1

𝑀−1
∑

n=0
𝐺m,n𝛹m,n(𝓁), (20)

here

m,n =
⟨

𝑓, 𝛹m,n
⟩

= ∫

1

0
𝑓 (𝓁)𝛹m,n(𝓁)𝑑𝓁.

he coefficients of the FW correspond to the matrix representation
f Eqs. (20), which can be expressed as follows:

(𝓁) = 𝐺𝑇𝛹 (𝓁). (21)

he matrix 𝛹 (𝓁) in Eq. (21) represents a FW matrix and has an order
f 1 × 2𝑘−1𝑀 . It can be written as:

(𝓁) =
[

𝛹1,0, 𝛹1,1,… , 𝛹1,𝑀−1, 𝛹2,0, 𝛹2,1,… , 𝛹2,𝑀−1,… , 𝛹2𝑘−1 ,0, 𝛹2𝑘−1 ,1,… , 𝛹2𝑘−1 ,𝑀−1
]𝑇 ,

(22)

here 𝛹𝑛,𝑚 represents the entry at the 𝑛th row and 𝑚th column of the
W matrix. Similarly, the row vector 𝐺 is defined as follows:

=
[

𝐺1,0, 𝐺1,1,… , 𝐺1,𝑀−1, 𝐺2,0, 𝐺2,1,… , 𝐺2,𝑀−1,… , 𝐺2𝑘−1 ,0, 𝐺2𝑘−1 ,1,… , 𝐺2𝑘−1 ,𝑀−1
]𝑇 .

(23)

inally, it is important to consider the collocation points, which provide
he specific locations at which the function values are evaluated.

𝜇 =
2𝜇 − 1
2𝑘𝑀

, 𝜇 = 1, 2,… , 2𝑘−1𝑀. (24)

MFI of Fibonacci wavelets

Here, we focus on the construction of OMFI and their applications
n solving fractional differential equations. Contrary to conventional
rthogonal function-based operational matrix techniques, we exploit
he unique properties of FW to construct a generalized OMFI [22,33,34]

lock pulse function
The BPF, defined on the interval [0, 1), can be expressed as follows:

𝑣(𝓁) =

{

1, if 𝑣𝜂 ≤ 𝓁 < (𝜂 + 1)𝑣,
0, otherwise,

(25)

here 𝑣 = 1
𝑁 and 𝑁 is a positive integer. The variable 𝜂 takes values

in the range 𝜂 = 0,… , 𝑁 − 1. And 𝑓 (𝓁), belonging to 𝐿2[0, 1), can be
stimated using the block-pulse functions:

(𝓁) ≃ 𝑓𝑁 (𝓁) =
𝑁−1
∑

𝑎𝜂𝑏𝜂(𝓁) = 𝐴𝑇𝑆𝑁 . (26)

𝜂=1
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Here, 𝐴 = [𝑎0, 𝑎1, 𝑎2,… , 𝑎𝑁−1] and 𝑆𝑁 = [𝑆0, 𝑆1, 𝑆2,… , 𝑆𝑁 ]𝑇 . By
ntegrating 𝑆𝑁 (𝓁), we have:

𝓁

0
𝑆𝑁 (𝑥)𝑑𝑥 ≃ 𝛥𝑆𝑁 (𝓁).

hus, the operational matrix of integration for BPF can be derived as:

=
𝑞
2

⎛

⎜

⎜

⎜

⎜

⎝

1 2 2 … 2
0 1 2 … 2
⋮ ⋮ ⋮ ⋯ ⋮
0 0 0 ⋯ 1

⎞

⎟

⎟

⎟

⎟

⎠

.

y utilizing BPF, the OMFI are obtained as:
(

𝐼𝛼𝑆𝑁
)

(𝓁) ≃ 𝐹 𝛼𝑆𝑁 (𝓁),

here

𝛼 = 1
𝑁𝛼𝛤 (𝛼 + 2)

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 𝓁1 𝓁2 𝓁3 … 𝓁𝑁−1
0 1 𝓁1 𝓁2 … 𝓁𝑁−2
0 0 1 𝓁1 … 𝓁𝑁−3
⋮ ⋮ ⋮ ⋮ … ⋮
0 0 … 0 1 𝓁1
0 0 0 … 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (27)

where, the 𝓁𝜂 ’s in (27) have been defined as:

𝓁𝜂 = (𝜂 + 1)𝛼+1 − 2𝜂𝛼+1 + (𝜂 − 1)𝛼+1. (28)

ractional operational matrix of Fibonacci wavelet
By integrating Eq. (22), we have the approximation:
𝓁

0
𝛹 (𝑥)𝑑𝑥 ≈ 𝑈𝛹 (𝓁). (29)

ere, 𝑈 represents the integration operational matrix for a FW of order
𝑘−1𝑀 × 2𝑘−1𝑀 . Utilizing BPFs to represent the FW we have:

(𝓁) = 𝛹m,n𝑆𝑁 (𝓁). (30)

o find OMFI of order 𝛼 we define:

𝛼𝛹 (𝓁) = 𝑈𝛼
m,n𝛹 (𝓁). (31)

ere, the matrix 𝑈𝛼
m,n embodies OMFI for FW. By taking Eqs. (30), and

31), we have

(𝐷𝛼𝛹 ) (𝓁) ≈
(

𝐷𝛼𝛹m,n𝑆𝑁
)

(𝓁) = 𝛹m,n
(

𝐷𝛼𝑆𝑁
)

(𝓁) ≈ 𝛹m,n𝐹
𝛼𝑆𝑁 (𝓁). (32)

herefore, from (31) and (32), we get the following:

𝛼
m,n𝛹 (𝓁) = 𝑈𝛼

m,n𝛹m,n𝑆𝑁 (𝓁) = 𝛹m,n𝐹
𝛼𝑆𝑁 (𝓁).

his leads to the derivation of the required OMFI of FW for arbitrary
rder.

𝛼
m,n = 𝛹m,n𝐹

𝛼 [𝛹m,n
]−1 .

pecifically, when considering 𝑘 = 2, 𝑀 = 3, and 𝛼 = 0.7, we calculate
he OMFI 𝑈0.7

6×6 as follows:

0.7
6×6 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0.2781 0.4872 −0.3112 0.4426 −0.2191 0.2527
−0.5224 0.0947 0.7290 0.3752 −0.2523 0.3088
−0.0845 0.3015 0.1813 0.4247 −0.2405 0.2857

0 0 0 0.2781 0.4872 −0.3112
0 0 0 −0.5224 0.0947 0.7290
0 0 0 −0.0845 0.3015 0.1813

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

rror estimation and numerical results

Here, we discuss theorems on convergence analysis and study the
5

stimation of error for Fibonacci wavelets method. 𝐺
heorem 1 ([18]). Assume that 𝛷 ∈ 𝐶𝑀 [0, 1) and 𝑊𝑀 = span{𝛹0(𝓁),
𝛹1(𝓁),… , 𝛹𝑀−1(𝓁)}. If 𝛷𝑀 (𝓁) = 𝐻𝑇𝐹 (𝓁) represents the best approxima-
tion of 𝛷(𝓁) from 𝑊𝑀 over the interval [ u−1

2𝑘−1 ,
u

2𝑘−1 ], the error bound for the
approximate solution 𝛷∗(𝓁) by FW on [0, 1) can be expressed as:

‖𝐸(𝓁)‖2 = ‖

‖

𝛷 −𝛷∗
‖

‖2 ≤
𝑅

𝑀!
√

2𝑀 + 1
.

heorem 2 ([33]). Suppose that 𝜙(𝓁) is a smooth function defined on [0,1)
and is square integrable. If 𝜙(𝓁) is bounded by a constant 𝐾, then it is
possible to express 𝜙(𝓁) as a summation of Fibonacci wavelet. Furthermore,
this series convergence to 𝜙(𝓁) uniformly, ensuring that the approximation
becomes increasingly accurate for all values of 𝓁 in the interval [0,1). i.e,

𝜙(𝓁) =
2𝑘−1
∑

m=1

𝑀−1
∑

n=0
𝜙m,n𝛹m,n(𝓁),

where

𝑔m,n =
⟨

𝜙(𝓁), 𝛹m,n(𝓁)
⟩

.

The precision of the Fibonacci wavelets collocation method is mea-
ured by the absolute error 𝐿2 and maximum absolute errors 𝐿∞ by
sing the formulas given as

2 = ‖𝜇(𝓁) − 𝜇∗(𝓁)‖,

∞ = 𝑚𝑎𝑥|𝜇(𝓁) − 𝜇∗(𝓁)|,

here 𝜇(𝓁) and 𝜇∗(𝓁) are the exact and approximate solutions respec-
ively. The whole computational work is done on (Matlab–R2022a).

umerical simulation

The approximation of fractional derivatives can be computationally
hallenging when modeling circuits of fractional order, which is crucial
o recognize. Since accuracy and computing efficiency must coexist,

balance between the two should be sought in the numerical tech-
iques used for simulation. Simulating these circuits involves solving
he differential equations or difference equations that describe the
ehavior of the fractional order elements and analyzing the response
f the circuit to different input signals. The goal of this section is
o understand the unique dynamics and characteristics exhibited by
ractional order circuits and study their impact on system performance
nd behavior. All the simulation and graphical results are obtain by
sing MatlabR2022a.

 Circuit: The fractional order equation of an  circuit represents
combination of a charged capacitor and an inductor. Assume that
=
√

1
 and (𝓁) = 0, Eq. (3) becomes

𝐷𝛼[𝑞(𝓁)] + 𝜁2𝑞(𝓁) = 0, 𝛼 ∈ (1, 2], (33)

ith ICs 𝑞(0) = 𝑞0, and 𝐷𝛼[𝑞(0)] = 0. The exact solution for 𝛼 = 2 is

(𝓁) = 𝑞0 cos(𝜁0𝓁).

o find the numerical solution of Eq. (33) by using FW, expressed the
erm containing fractional derivative as
𝛼[𝑞(𝓁)] = 𝐺𝑇

𝑚𝛹𝑚(𝓁). (34)

ntegrate (34) twice w.r.t 𝓁, with order 𝛼 we have

(𝓁) = 𝐺𝑇
𝑚𝑈

𝛼𝛹𝑚(𝓁) + 𝓁𝐷𝛼[𝑞(0)] + 𝑞(0).

tilizing the ICs, we obtain

(𝓁) = 𝐺𝑇
𝑚𝑈

𝛼𝛹𝑚(𝓁) + 𝑞0. (35)

ubstituting Eqs. (34) and (35) in (33) we have
𝑇𝛹 (𝓁) + 𝜁2[𝐺𝑇𝑈𝛼𝛹 (𝓁) + 𝑞 ] = 0. (36)
𝑚 𝑚 𝑚 𝑚 0
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Table 1
Absolute error of  at 𝛼 = 2.
𝓁 Exact FWM Absolute error

0.1 0.009995 0.009993 1.6238e−06
0.2 0.009878 0.009876 1.5668e−06
0.3 0.009761 0.009760 1.5102e−06
0.4 0.009414 0.009413 1.3426e−06
0.5 0.008921 0.008920 1.1063e−06
0.6 0.008288 0.008287 8.0752e−07
0.7 0.007526 0.007525 4.5413e−07
0.8 0.006646 0.006646 5.5483e−08
0.9 0.006167 0.006167 1.5751e−07

This is the system of algebraic equations. Solving this system using
Newton method yields the unknown coefficients. After substituting the
coefficients into Eq. (35), we obtain the approximate solution. The
numerical simulation was carried out for  = 1,  = 1, and 𝑞0 = 0.01.
ig. 1(a) depicts the comparison between the exact and approximate
olutions at 𝛼 = 2. In Fig. 1(b), the absolute error is shown graphically.
ig. 1(c) illustrates the behavior of the numerical solution at various
alues of the fractional parameter 𝛼 = 2, 1.95, 1.90, 1.85, 1.75, 1.70 for
he  circuit. Table 1, presents the exact and approximate solutions,
nd absolute error at 𝛼 = 2 for a resolution of 𝑘 = 2 and 𝑀 = 3. After
alculating the absolute error of an  circuit, at each time step, we
easure the difference between the two solutions.
6

E

 circuit: Consider the fractional  circuit with resistance and a
harged capacitor. Let 𝜇 = 1


and (𝓁) = 0. The associated fractional

order differential equation (5) becomes

𝐷𝛼[𝑞(𝓁)] + 𝜇𝑞(𝓁) = 0, where 0 < 𝛼 ≤ 1 (37)

ith IC 𝑞(0) = 𝑞0. The exact solution of (37) for 𝛼 = 1 is

(𝓁) = 𝑞0𝑒
−𝜇𝓁 .

o find the approximate solution we expanding the fractional deriva-
ives in (37) using FW as
𝛼[𝑞(𝓁)] = 𝐺𝑇

𝑚𝛹𝑚(𝓁). (38)

ntegrate Eq. (38) w.r.t. 𝓁, we obtain

(𝓁) = 𝐺𝑇
𝑚𝑈

𝛼𝛹𝑚(𝓁) + 𝑞(0).

tilizing ICs we have

(𝓁) = 𝐺𝑇
𝑚𝑈

𝛼𝛹𝑚 + 𝑞0. (39)

ubstituting Eqs. (38), (39) into Eq. (37) we have
𝑇
𝑚𝛹𝑚 + 𝜇[𝐺𝑇

𝑚𝑈
𝛼𝛹𝑚 + 𝑞0] = 0.

he above equation is solved by using Newton method to find the
avelet coefficients vector 𝐺𝑇

𝑚. After substituting the coefficient in
q. (39) we obtain the approximate solution.
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Table 2
Absolute error at 𝛼 = 1.
𝓁 Exact FWM Absolute error

0.1 19.937597 19.937694 9.7149e−05
0.2 19.689928 19.690023 9.5141e−05
0.3 19.445336 19.445429 9.3168e−05
0.4 19.203782 19.203873 9.1230e−05
0.5 18.965229 18.965318 8.9325e−05
0.6 18.847066 19.847154 8.8385e−05
0.7 18.612944 18.613030 8.6529e−05
0.8 18.381730 18.381815 8.4706e−05
0.9 18.267203 18.267286 8.3807e−05

The numerical results are obtain for  = 10  = 1 with 𝑞0 = 20
at 𝛼 = 1, with resolution 𝑘 = 3 and 𝑀 = 4. Table 2 shows the
numerical solutions for the  circuit when 𝛼 = 1. Fig. 2 provides
graphical representations of the exact and approximate solutions, as
well as the behavior of the approximate solution for various values of
𝛼 = 1.0, 0.95, 0.90, 0.85, 0.80, 0.75, while maintaining a resolution level
f 𝑘 = 3 and 𝑀 = 4, along with the absolute error. The figures clearly
emonstrate that when 𝛼 = 1.0 and 𝑘 = 2, 𝑀 = 3, the behavior of the
ractional  circuit closely resembles with the exact solution.

 circuit: The  circuit is an important component in many elec-
ronic systems and is used in various applications, including filters,
7

𝑞

scillators, and power supplies. The  fractional circuit equation (7)
for 𝜅 = 


and 𝜌 = 𝐸


becomes

𝐷𝛼[𝑞(𝓁)] + 𝜅𝑞(𝓁) = 𝜌, 0 < 𝛼 ≤ 1, (40)

with ICs 𝑞(0) = 𝑞0.
The exact solution is 𝑞(𝓁) = [𝑞0 −

𝐸


]𝑒−𝜅𝓁 + 𝐸


.
Expanding the fractional derivatives in (40) using FW we have

𝐷𝛼[𝑞(𝓁)] = 𝐺𝑇
𝑚𝛹𝑚(𝓁). (41)

Integrate Eq. (41) w.r.t. 𝓁, we obtain

(𝓁) = 𝐺𝑇
𝑚𝑈

𝛼𝛹𝑚(𝓁) + 𝑞(0).

tilizing ICs we have

(𝑡) = 𝐺𝑇
𝑚𝑈

𝛼𝛹𝑚 + 𝑞0. (42)

ubstituting Eqs. (41), (42) into Eq. (40) we have
𝑇
𝑚𝛹𝑚 + 𝜅[𝐺𝑇

𝑚𝑈
𝛼𝛹𝑚 + 𝑞0] = 𝜌. (43)

he system of Eq. (43) can be solved using Newton method to find
he wavelet coefficients vector 𝐺𝑇

𝑚. After substituting the coefficient
n Eq. (42) we obtain the approximate solution (see Fig. 3).

The numerical simulation was carried out at  = 10  = 1,
= 10 at 𝛼 = 1. Table 3 provides the numerical solutions for the 
0
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Table 3
Absolute error of  at various values of 𝛼 = 1.
𝓁 Exact FWM Absolute error

0.1 0.275700 0.275241 4.5900e−04
0.2 0.792484 0.793041 5.5706e−04
0.3 0.940545 0.940263 2.8200e−04
0.4 0.998601 0.998827 2.2530e−04
0.5 0.999251 0.999385 1.3403e−04
0.6 0.999599 0.999678 7.8776e−05
0.7 0.999785 0.999831 4.5851e−05
0.8 0.999885 0.999911 2.6473e−05
0.9 0.999938 0.999953 1.5181e−05

circuit at 𝛼 = 1 with resolution level 𝑘 = 3 and 𝑀 = 4 of Fibonacci
wavelet. Additionally, Fig. 2 presents graphical analysis of exact and
approximate solutions and behavior of numerical solution for various
values of 𝛼 = 1.0, 0.95, 0.90, 0.85, 0.80, 0.75, while keeping 𝑘 = 2 and

= 3 resolution level. It is evident from the figures that when 𝛼 = 1
nd 𝑘 = 2,𝑀 = 3, the behavior of the fractional  circuit closely
esembles the exact solution.

 circuit The dynamics of a fractional  circuit are governed by
ractional order differential equations (9). Consider the fractional 
ircuit with resistance, inductance, and charged capacitance of 
8

c

ircuit for 𝛾 = 2𝛼, 𝛿 = 𝛼, 𝛽 = ∕, 𝜅 = 1∕, and (𝓁) = 0 we have:
(2𝛼)[𝑞(𝓁)] + 𝛽𝐷[𝑞𝛼(𝓁)] + 𝜅𝑞(𝓁) = 0, where 0 ≤ 𝛼 ≤ 1, (44)

ith ICs 𝑞(0) = 𝑞0 and 𝐷𝛼[𝑞(0)] = 0. The exact solution at 𝛼 = 1 is

(𝓁) = 𝑞0𝑒
−𝛽𝓁∕2 cos

(√

𝑘 −
𝛽2

4
𝓁

)

.

pplying FW to expand the term with highest derivatives as:
2𝛼[𝑞(𝓁)] = 𝐺𝑇

𝑚𝛹𝑚. (45)

ntegrate Eq. (45) w.r.t 𝓁, we have
𝛼[𝑞(𝓁)] = 𝐺𝑇

𝑚𝑈
𝛼𝛹𝑚 + 𝑞𝛼(0). (46)

gain integrate Eq. (46) w.r.t 𝓁, we obtain

(𝓁) = 𝐺𝑇
𝑚𝑈

2𝛼𝛹𝑚 + 𝓁𝑞𝛼(0) + 𝑞(0). (47)

tilizing ICs equation (47) becomes

(𝓁) = 𝐺𝑇
𝑚𝑈

2𝛼𝛹𝑚 + 𝑞0. (48)

ubstituting Eqs. (45), (46) and (48) in Eq. (44) we have system of
lgebraic equation as
𝑇
𝑚𝛹𝑚 + 𝛽[𝐺𝑇

𝑚𝑈
𝛼𝛹𝑚] + 𝜅[𝐺𝑇

𝑚𝑈
2𝛼𝛹𝑚 + 𝑞0] = 0. (49)

olving the system (49) for FW coefficient 𝐺 and after substituting the
oefficient in Eq. (47) we have the approximate solution.
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Fig. 4. (a) Comparison of exact and approximate solution (b) Absolute error at 𝛼 = 1.
Table 4
CPU time of ,,, and  circuits at k = 3, M = 4.

   

CPU time (s) 0.324 0.336 0.362 0.314

Fig. 4, shows the comparison of FW solutions with exact solution of
 fractional model at resolution level 𝑘 = 2,𝑀 = 4 for 𝛼 = 1. Also
e plotted the graph of absolute error at 𝛼 = 1 depicts that the FW
ethod give more precise solutions for these models.

In Table 4, we have shown the computation time for ,,,
nd  circuits at resolution level k = 3, M = 4 of FWM.

onclusion

We have developed an effective numerical method based on FW
or solving fractional order ECs models such as ,,, and .
y constructing the operational matrices of integration of the FW, the
implification was achieved, and the problems were reduced to a sparse
ystems of linear equations, which are computed by Newton iteration
ethod. Four cases of ECs at different values of the parameters are
sed to illustrate how well the FW collocation approach works. The out-
omes are presented in the form of tables and figures and also compared
ith exact solutions. The absolute error is calculated to demonstrate the
ccuracy and efficiency of the approach. The findings indicate that the
W method offers improved accuracy and efficiency in analyzing and
esigning fractional order systems. Moreover, it successfully captures
he intricate behavior of complex systems. The fractional parameter

significantly impacts the dynamics and control of fractional ECs,
nderstanding and appropriately selecting the fractional order are vital
or designing and analyzing such circuits in modern technology appli-
ations. Tables and figures presenting the numerical solutions allow us
o see how well the FW solutions coincide with exact solutions. The
indings of this study indicate that the combination of Caputo frac-
ional derivatives and FW-based methods offers a reliable and robust
umerical approach for investigating fractional order dynamics in ECs.
his method offers physicists a strong and useful choice for effectively
nalysing these kinds of differential equations and can be applied to
imilar physics problems.
9
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