TABLE OF CONTENTS

Title			Page No.	
Char	oter 1:	An introduction to <i>N</i> -heterocyclic carbene (NHC) catalysis	1-62	
1.1.	Introd	uction	1	
1.2.	Histor	ical background of carbenes	2	
1.3.	Organ	ometallic carbene chemistry	4	
1.4.	Develo	opment of NHC-organocatalysis	5	
1.5.	Impor	tant action modes of NHC	9	
	1.5.1.	Reactions involving NHC-bound Breslow intermediate	11	
	1.5.2.	Reactions involving NHC-bound homoenolate intermediate	36	
	1.5.3.	Reactions involving NHC-bound enolate intermediate	45	
	1.5.4.	Reactions involving NHC under oxidative conditions	45	
	1.5.5.	Reactions involving NHC-bound azolium dienolates	46	
	1.5.6.	Reactions involving NHC-bound allenoate intermediate	48	
	1.5.7.	Reactions involving NHC-bound <i>deoxy</i> -Breslow intermediate	49	
	1.5.8.	Reactions involving single electron transfer pathways	52	
	1.5.9.	Miscellaneous reactions	53	
1.6.	Conclusion and central theme of the present work		55	
1.7.	Refere	ences	57	
Chapter 2: A facile access to 3,6-disubstituted α -pyrones via carbene catalyzed formal [4+2] annulation of α -				
Deed	A . T	chloroaldehydes and γ-keto sulfones	63-157	
		oduction to α -pyrone and preparation of starting reagent		
2.1.	Introd		63	
2.2.		w of literature	65	
		General methods for the synthesis of α -pyrone	65	
	2.2.2.	NHC-catalyzed synthesis of α -pyrone	69	

Title			Page No.		
2.3.	Statement of the problem				
2.3.		ration of starting materials and NHC-precatalyst	70 71		
2.4.	-	Synthesis of α -chloroaldehydes	71		
			71		
		Synthesis of γ -ketosulfones			
2.5		Synthesis of NHC-precatalyst	72		
2.5.	Conclu	usion	73		
Part 1		oduction to NHC-bound enolate intermediate and its	74-157		
26	••	ication to access 3,6-disubstituted α -pyrone			
2.6.		bound enolate intermediate-an introduction	74		
2.7.		s and discussion	80		
		Optimization studies	80		
		Scope of the reaction (Substrate scope)	84		
		Proposed reaction mechanism	87		
	2.7.4.	Synthetic utility of 3,6-disubstituted α -pyrone	87		
2.8.	Conclusion		88		
2.9.	Experimental section		89		
2.10.	References				
2.11.	NMR spectra of new compounds				
Chap	oter 3:	A highly efficient NHC-catalyzed aerobic oxidation of aldehydes to carboxylic acids	158-217		
3.1.	Introdu		158		
3.2.		roduction to NHC under oxidative conditions	159		
0.2.		NHC-catalyzed reaction using inorganic oxidant	160		
		NHC-catalyzed reaction using oxygen as oxidant	161		
		NHC-catalyzed reaction using organic oxidant	164		
	3.2.4.	NHC-catalyzed reaction via α,β -unsaturated acylazolium	101		
	<i>3.2</i> .т.	intermediate	166		
	3.2.5.	Reactions via α,β - γ,δ -unsaturated acylazolium intermediate	178		
3.3.	Some	selected methods for the synthesis of carboxylic acids	179		

Title		Page No.
3.4.	Statement of the problem	185
3.5.	Results and discussion	186
	3.5.1. Optimization studies	186
	3.5.2. Aerobic oxidation of aldehydes (Substrate scope)	188
	3.5.3. Plausible reaction mechanism	191
3.6.	Conclusion	192
3.7.	Experimental section	192
3.8.	References	203
3.9.	NMR spectra of compounds	207
Sum	218-222	
List	223	