

2.1. Antineoplastic compounds

In present, cancer is the 2nd leading disease at world level. The population of new cancer incidence increasing at very high rate every year. Antineoplastic compounds are a class of pharmaceutical compounds which are used as a chemotherapy agent for the treatment of neoplastic or cancer disease. These are organic compounds that inhibit the proliferation in rapidly dividing cells or abnormal growth of any cell in tissue that potentially acts like a cancer cell. The classification of cytostatic drugs is mainly based on their structure or chemical activity during cell cycle which may be either phase-specific or non-specific. In general, cytostatic compounds are classified in two major group *i.e.* antineoplastic and endocrine (hormone) therapy compounds, while antineoplastic compounds are classified mainly in five groups on the basis of their mode of action or their chemical origin *i.e.* (i) L01A- alkylating agents (ii) L01B- antimetabolites (iii) L01C- plant alkaloids) (iv) L01D- cytotoxic/antitumor antibiotics (v) L01X- other antineoplastic compounds and L02- endocrine therapy compounds (L02A and L02B) as indicating in Fig. 2.1 (Nassour et al., 2019; Toolaram et al., 2014).

Fig. 2.1. Classification of antineoplastic agents

2.1.1. Alkylating agents (L01A)

Alkylating agents are responsible for inhibition of DNA replication during cell division. These form intra or inter cross linking with DNA strands, mismatch base pairing and strand breaking when bind with DNA strand. Alkylating agents are further divided into six sub-groups based on their chemical groups i.e. (1) Nitrogen mustards, includes compounds such as cyclophosphamide, chlorambucil, ifosfamide (IF), melphalan, trofosfamide and mechlorethamine. (2) Nitrosoureas, includes compounds such as carmustine, stramustine, lomustine, streptozocin. (3) Alkyl sulfonates, includes compound such as busulfan. (4) Triazines, includes compounds such as dacarbazine, procarbazine and temozolomide. (5) Ethylenimines, includes compounds such as altretamine and thiotepa. (6) Platinum drugs, includes compounds such as cisplatin, carboplatin and oxaliplatin (Ferrando Climent, 2016). These agents are commonly used in oncology wards for the treatment of leukaemia and lymphoma patients.

2.1.2. Antimetabolites (L01B)

Antimetabolites are false metabolites and interfere with RNA and DNA synthesis during cell division. They indicate similarity in structure with pyrimidine bases and block DNA replication during S-phase of cell cycle. These agents are divided into four sub-groups *i.e.* (1) Pyrimidine antagonist, includes compounds such as cytarabine, tegafur, floxuridine, azatadine, 5-flurouracil (5-FU), ftorafur (tegafur/uracil) and gemcitabine. (2) Purine antagonists, includes compounds such as thioguanine, azathioprine, mercatopurine and cladribine. (3) Adenosine antagonists, includes compounds such as fludarabine and pentostatine. (4) Folic acid antagonist, includes compounds such as methotrexate, trimetrexate and raltitrexed (Ferrando Climent, 2016). Antimetabolites shows specificity towards somatic cell division for their mode

of action. They are commonly used for treatment of leukaemia, lymphoma, pancreatic and colorectal cancer patients.

2.1.3. Plant alkaloids (L01C)

Plant alkaloids are responsible for mitotic arrest and blocking of the cell division. These compounds act by binding with microtubules protein (tubulin – globular protein) in metaphase of cell cycle. They block the assembly of mitotic spindle with kinetochore and stop cell cycle. Plant alkaloids are divided into two sub-groups which are (1) Topoisomerase inhibitor (2) Mitotic inhibitors. The topoisomerase inhibitor further divided into two sub-groups which are (i) Camptothecin, includes compound such as topotecan and irinotecan. (ii) Podophyllotoxin, includes compounds such as etoposide and teniposide. Mitotic inhibitor also divided into two sub-groups which are (i) Taxanes, includes compounds such as paclitaxel and docetaxel. (ii) Vinca alkaloid, includes compounds such as vinblastine, vincristine and vinorelbine (iii) Colchicine derivatives (Ferrando Climent, 2016; Dubey et al., 2017). Plant alkaloids are used for treatment of lymphoma, ovarian and lung cancer patients.

2.1.4. Antitumour antibiotics (L01D)

Antitumour antibiotics are not specific to cell cycle for mode of action and interference with DNA/RNA (ribonucleic acid). They can block the topoisomerase activity and base pair binding to stop the DNA replication. Antitumour antibiotics are divided into two sub-groups which are (1) Anthracyclines, includes compounds such as daunorubicin, doxorubicin, epirubicin, idarubicin, mitoxantrone, pirarubicin and amsacrine. (2) Other antibiotics, includes compounds such as actinomycin-D, bleomycin, mitomycin-C and ciprofloxacin (Ferrando Climent, 2016). These cytostatic antibiotics are used for the treatment of acute leukaemia by induction therapy and lymphoma by combination therapy. Antitumor antibiotics are also highly effective chemotherapeutic treatment for solid tumour.

2.1.4. Other antineoplastic compounds (L01X)

This group of antineoplastic drugs act as like alkylating agent but due to their square planner form, they do not interact through electrophile alkyl group. These agents can block DNA activity by induction of inter-strand cross-linking to disrupt transcription when bind with DNA. These compounds divided in sub-groups which are (1) Platinum compounds includes carboplatin, cisplatin, oxaliplatin (2) Methylhydrazine compounds etc. These drugs are used for the treatment of ovarian and lung cancer patients by inhibition of cell division (Dehghanpour et al., 2020; Mukherjee et al., 2020).

2.1.5. Hormones and antagonists (L02)

Hormone and antagonists are responsible to block the cell cycle by changing the internal and external environment in the cell. These compounds are non-specific for any phase of cell cycle. Hormone and antagonist are divided into five sub-groups which are (1) Anti-estrogens, includes compounds such as fulvestran, tamoxifen and toremifene. (2) Aromatase inhibitors includes compounds such as anastrozole, exemestane and letrozole. (3) Progestins, includes compounds such as megestrol acetate. (4) Anti-androgens, includes compounds such as bicalutamide, flutamide and nilutamde. (5) Gonadotropin-releasing hormone, includes compounds such as leuprolide and goserelin (Ferrando Climent, 2016). These are using in oncological hospitals for the suppression or treatment of prostate, breast and ovarian cancer, so they mainly act on estrogen and androgen responsive cancers.

2.2. Antineoplastic occurrence in the aquatic environment

The worldwide average of 18.07 million new cases and about 36 new types of cancers were reported in the year 2018 (Bray et al., 2018) (Fig. 2.2) and it is expected to increase up to 29.5 million in the year 2040 (IARC, WHO [GCO]. Therefore, the use of antineoplastic compounds

will also continue to increase in the coming years and subsequently, the risk of water pollution due to antineoplastic contaminants will also continue to increase. Chemotherapy is a slow, but reliable treatment technique to treat cancer cells even after surgery or radiation therapy to remove any leftover cancer cells. The level of antineoplastic compounds reported in different environmental samples in concentration range 0.1 to 86200 ng.L⁻¹. Azuma, (2018) described occurrence of bicalutamide and a total of six drugs were detected in the Yodo river of Japan, out of which the highest concentration was found to be 254 ng.L⁻¹. The domestic wastewater discharged from hospitals usually makes their way to the sewage treatment plants and further to the water bodies. In many Asian countries, the hospitals are not well equipped with adequate WWTPs to treat/remove these pollutants. In conventional STPs, different treatment trains combining physicochemical and biological processes are used to treat wastewater. These methods only partially degrade antineoplastic compounds, while a majority of the non-treated pollutant is discharged to water bodies.

Fig. 2.2. Comparison of worldwide new cancer incidence of year 2012 and 2018

After the release of antineoplastic drugs into water bodies, both the parent compounds and their derivatives may further undergo physical and chemical interactions in water through the process of hydrolysis, photolysis, dilution, adsorption, chemical/biological accumulation, etc. among others. Due to the very low vapour pressures, most of these antineoplastic drugs are present in the liquid or solid forms in activated sludge or suspended solids. The low value of octanol-water partition coefficient ($K_{ow}=10^{-3}$) suggests that the compound will have low adsorption onto the solids present in water. Besides, the high value of carbon-water partition coefficient (K_{oc}) provides information about the compounds mobility in solids in comparison to water. The value of K_{ow} and K_{oc} for each antineoplastic compound varies significantly, for example, the K_{ow} value of cyclophosphamide is 0.630 and IF is 0.860 (Table 2.1). The antineoplastic drugs will also be degraded by photolysis, while high values of bioconcentration factor (BCF) indicate their accumulation in organic matter. Based on the physiochemical properties of a particular antineoplastic drug, they are present in different water environments (e.g. surface water, groundwater, rivers, lakes, oceans), at varying concentrations, including WWTPs (Table 2.2). Their degradation profiles should be monitored periodically in aquatic environments. These compounds are not degraded easily and have a long half-life; besides, their metabolites can pass from one food chain to another through aquatic species such as fish and seafood (El-Kady and Abdel-Wahhab, 2018) (Fig. 2.3).

There are various ways in which antineoplastic drugs multiply in the environment (Besse et al., 2012; Habibzadeh et al., 2018). Low vapour pressure of antineoplastic compounds leads to non-volatile nature under normal conditions; this property increases the solubility of antineoplastic drugs in water. The excretion product of the patient may be one of the reasons for the dispersion of the drugs in the surroundings because of the high solubility of antineoplastic drugs (Pruijn and De-Witte, 2004). It is noteworthy to mention that, depending on the mode of excretion, patient's gender and improper management practices during urine

accession can simply disperse the antineoplastic drugs in the environment. Nevertheless, anticancer drugs are excreted in a stable form along with urine (Polovich and Martin, 2011; Santana-Viera et al., 2016). The results of a recent contamination survey done at a hospital indicated the presence of anticancer drugs on the toilet seat and floor (Nakano et al., 2013; Sato et al., 2014). Many other surveys have also mentioned that hospital staffs and family members have more chances to be exposed to these drugs via unanticipated contact with the patient's body fluids. Besides, there are numerous pathways for antineoplastic drugs to reach the nearby water environments (Fig. 2.3). As discussed previously, hospitals are the main source of antineoplastic drugs pollution in the aquatic environment. It also depends on the persistency of the parent compound, its physiochemical property and administration mode. The consumption rate of antineoplastic drugs varies from country to country every year according to the population of cancer patients.

Fig. 2.3. Possible life cycle and negative effect of antineoplastic compounds after release into environment

Name of the	Applications	Chemical	Molecular	pK _a	Solubility	Log	Log	BCF	UV _{max}
Compounds		class	weight (g.mol ⁻¹)		(mg.ml ⁻¹ in	Kow	Koc		(nm)
					water)				
Cyclophosphamide	• Lymphomas	Alkylating	261.08	2.84	40	0.63	59	2.1	200
	• Brain cancer	agent							
	• Neuroblastoma								
	• Leukaemia								
	• Some solid tumours								
Ifosfamide	• Testicular cancer	Alkylating	261.08	1.45	3.8	0.86	62	2.2	<290
	• Breast cancer	agent							
	• Lymphoma (Hodgkin								
	and Non-Hodgkin)								
	• Soft tissue sarcoma								
	• Osteosarcoma or bone								
	tumour								

Table 2.1. Physiochemical properties of some commonly used antineoplastic drugs

	• Lung cancer								
	• Cervical cancer								
	• Ovarian cancer								
Etoposide	• Lung cancer	Plant	588.57	9.8	Insoluble	0.60	51	3	283/22
	• Testicular cancer	alkaloid							9
	• Lymphoma								
	• Nonlymphocytic								
	leukaemia								
	• Glioblastoma multiforme								
Paclitaxel	• Ovarian	Plant	853.93	11.9	Insoluble	3.95	335	591	227/
	• Breast and lung	alkaloid		9			5		273
	• Bladder								
	• Prostate								
	• Melanoma								
	• Oesophageal								

	• Other types of solid								
	tumour cancers								
5- Fluorouracil	Anal cancers	Antimetabol	130.08	8.02	11.1	-	8	3	266
	• Breast cancers	ite				0.89			
	• Colorectal cancers								
	• Oesophageal cancers								
	Pancreatic cancers								
	• Skin cancers								
Tamoxifen	Breast cancer	Hormonal	371.515	8.87	0.167	7.88	DN	827	205
		antagonist					F		
Methotrexate	• Uterus cancer	Antimetabol	454.44	4.7	>1	-	1	3.2	244/29
	• Lung cancer	ite				1.85			0
	• Breast cancer								
	• Leukaemia								
	• Head and Neck cancers								

	• Lymphoma								
Capecitabine	• Colon or rectal cancer	Antimetabol	359.354	1.9	26	0.6	4.5-	1.3-	310
	• Metastatic breast cancer	ite					8.0	3.0	
	• Ovarian cancer								
	• Fallopian tube cancer								
Gemcitabine	• Lung cancer	Antimetabol	263.198	3.6	.546	-	DN	DN	232
	Pancreatic cancer	ie				2.01	F	F	
	• Bladder cancer								
Vincristine	• Thyroid cancer	Plant	824.958	11.9	.0227	2.82	DN	DN	252/29
	• Brain tumour	alkaloid		9			F	F	3/218/2
	• Acute leukaemia								85
	• Multiple myeloma								
Doxorubicin	• Lung cancer	Antitumour	543.52	8.22	26	1.27	600	0.5	290
	• Breast cancer	antibiotic					0		
	• Leukaemia								

	• Ovarian cancer								
	• Stomach cancer								
Docetaxel	• Breast cancer	Plant	807.90	12.0	.00274	2.83	1.9	19	283
	• Head and Neck cancer	alkaloid		2			\times		
	• Stomach cancer						10 ⁶		
	• Prostate cancer								
	• Lung cancer								

Note: pK_a (Acid dissociation constant), BCF (Bioconcentration factor), DNF (Data not found)

A study conducted by Kümmerer et al. (2016) has shown that the consumption of different antineoplastic drugs differs from one country to another (unit: mg.d⁻¹.P⁻¹), e.g. 0.013 in France, 0.012 in Germany, 0.003 in Austria, 0.56 in Switzerland and 0.002 in Denmark respectively. In Germany, the total consumption of these drugs was 22000 kg in the year 2001, 42000 kg in the year 2008 and 50000 kg in the year 2012. Cristóvão et al. (2020) has reported the consumption of several antineoplastic drugs in cancer hospitals of Portugal, Belgium and India and their predicted environmental concentration (PEC) values. According to this study, the consumption rate in Portugal was 177.2 kg in 2012 and 260.9 kg in 2016 of 101 antineoplastic drugs in the hospitals, respectively. However, in Belgium, the value was 2897.4 kg in 2012 and 3004.2 kg in 2015 for 99 antineoplastic drugs, while in India it was 6364 kg in 2016 for 33 antineoplastic drugs. These statistics clearly indicate that most of the antineoplastic drugs administered to cancer patients at hospitals are also excreted in hospital wastewater.

Verlicchi et al. (2020) reviewed the literature data for the presence of ~ 35 antineoplastic drugs in different water compartments, from the year 1990 to 2017, in eighteen different countries. According to this literature information, Aherne et al. (1990) monitored the levels of bleomycin in wastewater samples from the UK, while Steger-Hartmann et al. (1996), reported cyclophosphamide as well as IF levels in the hospital wastewater samples of Germany. On the other hand, ~ 28 antineoplastic drugs were detected in hospital wastewater, with their concentrations ranging from 2 to 266000 ng.L⁻¹. These included alkylating agents (0.85 to 266,000 ng.L⁻¹), antimetabolites (0.24 to 124000 ng.L⁻¹), plant alkaloids (2.75 to 99.70 ng.L⁻¹), hormonal agents (0.2 to 133.40 ng.L⁻¹) and antitumor antibiotics (5 to 21000 ng.L⁻¹), respectively. The following drugs were also reported: cyclophosphamide, IF, 5-FU, azathioprine, capecitabine, gemcitabine, methotrexate, tegafur, epirubicin, etoposide, irinotecan, docetaxel, paclitaxel, vincristine, tamoxifen, anastrozole, letrozole, erlotinib, etc., among others. Table 2.2. Occurrence of antineoplastic compounds in samples of aquatic environmentof different countries

Antineoplastic	Country	Hospital	WWTP	WWTP	Surface	References
compounds		effluent	influent	effluent	water	
		(ng.L ⁻¹)	(ng.L ⁻¹)	(ng.L ⁻¹)	(ng.L ⁻¹)	
Ifosfamide	Germany	6-1914	6-29	6-43	-	(Kümmerer
						et al.,
						1997)
		-	14.6	-	0.05-	(Buerge et
					0.014	al., 2006)
		-	-	10-	<10	(Ternes,
				2900		1998)
		-	-	-	-	(Ternes et
						al., 2005)
	Spain	Nd-228	Nd-130	-	-	(Ferrando
						Climent,
						2016)
		-	Nd-27.9	Nd-	-	(Negreira
				15.9		et al.,
						2014a)
		-	3.5	1.2	-	(Martín et
						al., 2011)
	China	4-10647	-	-	-	(Yin et al.,
						2010)

	Slovenia	48-6800	-	-	-	(Česen et
						al., 2015)
Tamoxifen	China	0.2-8.2	0.28	-	-	(Liu et al.,
						2010)
	U.K.	-	-	-	27-212	(Roberts
						and
						Thomas,
						2006)
	Spain	-	110-147	Nd-	-	(Negreira
				180.6		et al.,
						2014a)
		26-170	Nd-58	11-42	25-38	(Ferrando
						Climent,
						2016)
	France	-	-	<102	<25	(Coetsier et
						al., 2009)
Methotrexate	Spain	Nd-19	Nd-26	Nd-6	-	(Ferrando
						Climent,
						2016)
	China	2-4689	-	-	-	(Yin et al.,
						2010)
Cyclophosphamide	Spain	5300	13100	-	-	(Gómez-
						Canela et
						al., 2012)

	-	Nd-43.8	Nd-25	-	(Negreira
					et al.,
					2014a)
	Blq-	Nd-26	7-25	-	(Ferrando
	200.7				Climent,
					2016)
Germany	146	-	-	-	(Steger-
					Hartmann
					et al.,
					1996)
	19-4500	6-143	6-17	-	(Steger-
					Hartmann
					et al.,
					1997)
	-	-	10-20	<10	(Ternes,
					1998)
	-	-	-	-	(Ternes,
					1998)
Switzerland	-	2-11	-	0.05-	(Buerge et
				0.17	al., 2006)
Slovenia	14-	19-27	17	-	(Česen et
	22000				al., 2015)
China	6-2000	-	-	-	(Yin et al.,
					2010)

	France	30-900	-	300	-	(Catastini
						et al.,
						2008)
Cytarabine	Spain	-	9.2	14	13	(Martín et
						al., 2011)
Etoposide	Spain	-	15	3.4	-	(Martín et
						al., 2011)
		Nd-714	Nd-175	-	-	(Ferrando
						Climent,
						2016)
	China	5-380	-	-	-	(Yin et al.,
						2010)
Gemcitabine	Spain	-	9.3	7.0	2.4	(Martín et
						al., 2011)
	Switzerland	<0.9-38	-	-	-	(Kovalova
						et al.,
						2009)
5-Flourouracil	Austria	20000-	-	-	-	(Mahnik et
		122000				al., 2007)
	Switzerland	<5-27	-	-	-	(Kovalova
						et al.,
						2009)
	Slovenia	35-92	4.7-14	-	-	(Kosjek et
						al., 2013)

Bleomycin	France	<30	-	-	-	(Catastini
						et al.,
						2008)
Oxaliplatin	Iran	170000	-	-	-	(Ghafuria
						et al.,
						2018)
Doxorubicin	Spain	-	4.5	-	-	(Martín et
						al., 2011)
-	Austria	-	260-	-	-	(Mahnik et
			1350			al., 2007)
Platinum compounds	Austria	3000-	-	-	-	(Lenz et
		250000				al., 2007)
		1700	-	-	-	(Hann et
						al., 2005)
-	France	350	-	-	-	(Goullé et
						al., 2012)
-	UK	-	-	20-	-	(Vyas et
				140000		al., 2014)
		-	-	30-	-	_
				100000		
Daunorubicin	Austria	<60	-	-	-	(Mahnik et
						al., 2007)
Docetaxel	Spain	Nd-98	Nd-219	-	-	(Ferrando
						Climent,
						2016)

Epirubicin	Spain		-	24800	-	(Gómez-
						Canela et
						al., 2012)
2', 2'-	Switzerland	<9-840	-	-	-	(Kovalova
difluorodeoxyuridine						et al.,
						2009)
Doxorubicinol	China	<10	-	-	-	(Yin et al.,
						2010)
Azathioprine	Spain	Blq-188	Nd-20	-	-	(Ferrando
						Climent,
						2016)
	China	15	-	-	-	(Yin et al.,
						2010)
Capecitabine	Spain	-	8.2-27	-	-	(Negreira
						et al.,
						2013)
		-	Nd-72.6	Nd-36	-	(Negreira
						et al.,
						2014a)
Anastrozole	China	0.3-3.7	0.12-	0.3	-	(Liu et al.,
			0.32			2010)
Vincristine	Spain	Nd-49	Nd-23	-	-	(Ferrando-
						Climent et
						al., 2014)

-	China	<20	-	-	-	(Yin et al.,
						2010)
Hydroxy-tamoxifen	Spain	-	-	Nd-5.8	-	(Negreira
						et al.,
						2014a)
Vinorelbine	Spain	-	-	9.1	-	(Martín et
						al., 2011)
4-hydroxy-N	Spain	-	-	91.6	-	(Negreira
desmethyltamoxifen						et al.,
						2014a)
Paclitaxel	Spain	Blq-100	Nd-18	-	-	(Ferrando
						Climent,
						2016)
Letrozole	China	0.20-	0.28-0.8	0.27-	-	(Liu et al.,
		2.38		0.60		2010)
Carboplatin	Iran	280000	-	-	-	(Ghafuria
						et al.,
						2018)
Procarbazine	China	<5	-	-	-	(Yin et al.,
						2010)
Irinotecan	Spain	-	Nd-21.3	Nd-	-	(Negreira
				16.8		et al.,
						2014a)

Hydroxy-paclitaxel	Spain	-	Nd-18.5	Nd-3.7	-	(Negreira
						et al.,
						2014a)
Cisplatin	Slovenia	35.2	2.33	1.28	-	(Vidmar et
						al., 2015)
-	Iran	193500	-	-	-	(Ghafuria
						et al.,
						2018)

Note: Blq = below limit of quantification; Nd = not detected

Besides, some of these patients who were receiving treatment at home (outpatients) contributed to the release of these drugs in household effluents. In France, about 86.2 % of the antineoplastic drugs were released from household effluent, while the rest (~ 13.8 %) were from the hospitals (Besse et al., 2012). Based on the review done by Verlicchi et al. (2020), 25 antineoplastic drugs were also reported to be present in municipal wastewaters and 22 in WWTP effluents, in concentration range from 0.12 to 144000 ng.L⁻¹ (Steger-Hartmann et al., 1996; Kümmerer et al., 1997; Mahnik et al., 2004; Tauxe-Wuersch et al., 2005; Mahnik et al., 2006; Mahnik et al., 2007; Lenz et al., 2007; Catastini et al., 2008; Weissbrodt et al., 2009; Liu et al., 2010; Yin et al., 2010; Verlicchi et al., 2012; Ferrando-Climent et al., 2013; Kosjek et al., 2013; Ferrando-Climent et al., 2014; Gómez-Canela et al., 2014; Negreira et al., 2014a; Vyas et al., 2014; Azuma et al., 2016; Isidori et al., 2016a). As expected, the concentration of these drugs in hospital wastewater was higher when compared to municipal wastewater. On the other hand, the WWTPs effluent contained higher concentration of these drugs when compared to WWTPs influents.

2.3. Toxicity of antineoplastic compounds

Antineoplastic drugs have an adverse effect on the genetic makeup and cell cycle of aquatic flora and fauna because of chronic exposure (Johnson et al., 2008; Rowney et al., 2009; Booker et al., 2014). Many authors acknowledge the fact that these drugs are pseudo-persistent pollutants (Jones, 2005; Hernando et al., 2006). A recent study has suggested that a lower concentration of antineoplastic drugs in the pollutant mixture will have the same toxic effect as a single dose in higher concentration (Elersek et al., 2016). The bioaccumulation and biomagnification processes may lead to high levels of antineoplastic drugs in the aquatic environment. Several studies have reported the toxicity of various antineoplastic drugs on different aquatic organisms and cell lines. The results are usually reported in the form of lowest observed effect concentration (LOEC), effective concentration (EC₅₀), lethal dose (LD₅₀) and inhibitory concentration (IC₅₀) values (Zounková et al., 2007). The mixture of antineoplastic drugs causes more potent DNA damage to non-target cells, even at low concentrations, when compared with the parent drug itself (Novak et al 2017). EC₅₀ value of bleomycin and vincristine was found to be $<10 \text{ mg.L}^{-1}$ and in the range of 10 to 100 mg.L⁻¹, respectively (Jureczko and Przystaś, 2019). Platinum based drugs such as cisplatin and carboplatin are commonly present in hospital effluents and they are considered to be highly toxic to aquatic organisms (Ghafuria et al., 2018; Aldossary, 2019). Similarly, cyclophosphamide and 5-FU have reported to cause mutagenic effects in tadpoles (da Costa Araújo et al., 2019). 5-FU, imatinib and cisplatin are the most potent drugs to cause transgenerational effects on certain aquatic species (Mišík et al., 2019). The recalcitrant property of antineoplastic drugs leads their passage from sewage treatment plants to the surface water in its active form (Kümmerer, 2001). The native or parent compounds, as well as the by-product form of these drugs can induce adverse effects on both aquatic species and human life, e.g. direct physiological effects, genetic material damage and immune system damage (Zounkova et al., 2010; Filipič, 2014). The

organism present in aquatic environment would come in contact with the residue of antineoplastic pollutants throughout its life span and it will tend to accumulate the biomagnified pollutant within its body (Ghafuri et al., 2018; Jureczko and Przystaś, 2019; Jureczko and Kalka, 2020) (Table 2.3). Zounkova et al. (2010) studied the ecotoxicity effects of three antineoplastic drugs and their metabolites, namely 5-FU, gemcitabine and cytarabine on Daphnia magna, Desmodesmus subspicatus and Pseudomonas putida and genotoxicity effect on Salmonella choleraesius. The metabolite of 5-FU is α -fluoro- β -alanine (FBAL), while the metabolite of cytarabine is uracil-1-β-D-arabinofuranoside (AraU) and gemcitabine metabolite is 2, 2 – difluorodeoxyuridine (dfdU), respectively. According to this study, the native/parent forms of these antineoplastic drugs were able to cause higher toxicity when compared to their metabolites. The metabolites showed less or no toxicity and among these metabolites only FBAL showed significant toxic effect on the aquatic organisms. Cesen et al. (2016a) investigated the genotoxicity and ecotoxicity effects of cyclophosphamide, IF and their metabolites, as a single compound and in mixtures. The ecotoxicity effects of the three metabolites of cyclophosphamide, namely N-dechloroethyl-cyclophosphamide, ketocyclophosphamide and carboxy-cyclophosphamide were tested on Pseudokirchneriella subcapitata and Synecococcus leopoliensis, while the genotoxicity effect was tested on Salmonella typhimurium. According to the authors, interestingly, among these three metabolites, only carboxy-cyclophosphamide showed toxicity and the EC₅₀ value for compound was 17.1 mg.L⁻¹ (low value: 14.4 mg.L⁻¹; high value: 20.2 mg.L⁻¹).

In another study (Calza et al., 2014), the degradation of methotrexate, doxorubicin and the toxicity of their transformed products were tested on *Vibrio fischeri*. During degradation, eight by-products (M_1 - M_8) of methotrexate and twelve by-products (D_1 - D_{12}) of doxorubicin were formed. In the case of methotrexate and doxorubicin, the initial transformed products showed high toxicity, while the other end-products of degradation showed less toxicity on *V. fischeri*.

			<u> </u>		
Antineoplastic	Tested	Critical effect	Concentration	Ecotoxicity	References
drug	organism		(mg.L ⁻¹)		
5-Flourouracil	Vibrio fischeri	Luminescence	0.12	EC ₅₀	(Backhaus
					et al., 2000)
	Pimephales	Growth	20	LOEC 120 h	(DeYoung
	promelas				et al., 1996)
	Daphnia	Reproduction	0.05	LOEC 21	(Zounkova
	magna			days	et al., 2010)
	Daphnia	Reproduction	0.0028	NOEC 21	(Straub,
	magna			days	2010)
	Aphanizomeno	Growth	0.002	NOEC 72 h	-
	n flos-aquae				
	Zebrafish liver	Cell viability	0.01	LOEC 72 h	(Novak et
	cell line				al., 2017)
	Daphnia	Reproduction	20.84	EC ₅₀ 48 h	(Parrella et
	magna	inhibition			al., 2014a)
	Ceriodaphnia	-	501	EC ₅₀ 24 h	-
	dubia				
	Thamnocephal	-	0.28	EC ₅₀ 24 h	-
	us platyurus				
Paclitaxel	Daphnia	Immobilization	>0.074	EC ₅₀ 48 h	(CDER,
	magna				1996)

Table 2.3. Toxicological assessment of different antineoplastic drugs on various organisms

Cytarabine	Daphnia	Reproduction	3.7	LOEC 21	(Zounkova
	magna			days	et al., 2010)
Erlotinib	Selenastrum	Growth	0.14	NOEC 72 h	FASS
	capricornutum				(2011)
	Daphnia	Reproduction	0.7	NOEC 48 h	
	magna				
	Oncorhynchus	Survival	0.02	NOEC 14	
	mykiss			days	
Capecitabine	Daphnia	Reproduction	>850	EC ₅₀ 48 h	(Straub,
	magna				2010)
	Pseudokirchne	Growth	0.14	NOEC 72 h	
	riella				
	subcapitata				
	Vibrio fischeri	Luminescence	2.16	EC ₅₀ 15 min.	(Barisci et
					al., 2018)
	Daphnia	Reproduction	224	EC ₅₀ 48 h	(Parrella et
	magna	inhibition			al., 2014a)
	Cceriodaphnia		123000	EC ₅₀ 24 h	
	dubia				
	Thamnocephal		197.7	EC ₅₀ 24 h	
	us platyurus				
	Fish		566 AT, 56.9	LC ₅₀ 48, 96 h	(Huo et al.,
			СТ		2020)
	Daphnia		486 AT, 52.3	LC ₅₀ 48, 96 h	
	magna		СТ		
					•

	Green algae	-	0.897 AT, 22.1	EC ₅₀ 96 h	-
			СТ		
Thiotepa	Daphnia	Immobilization	546	EC ₅₀ 48 h	(CDER,
	magna				1996)
Gemcitabine	Daphnia	Reproduction	>1.0	LOEC 21	(Zounkova
	magna			days	et al., 2010)
	Pseudokirchne	Growth	0.57	EC ₅₀ 72 h	FASS
	riella				(2011)
	subcapitata				
	Daphnia	Immobilization	>0.99	EC ₅₀ 48 h	-
	magna				
	Pimephales	Survival	>1000	LC ₅₀ 96 h	-
	promelas				
	Oncorhynchu	Survival	>1000	LC ₅₀ 96 h	-
	mykiss				
Cladribine	Daphnia	Immobilization	233	EC ₅₀ 48 h	(CDER,
	magna				1996)
Methotrexate	Vibrio fischeri	Luminescence	3.0	EC ₅₀ 15 min.	(Barışçı et
					al., 2018)
	Vibrio fischeri	Luminescence	1220	EC ₅₀	(Henschel
	Scenedesmus	Growth	260	EC ₅₀ 72 h	et al., 1997)
	subspicatus				
	Tetrahymena	Growth	45	EC ₅₀ 48 h	-
	pyriformis				
					-

	Daphnia	Immobilization	>1000	EC ₅₀ 48 h	-
	magna				
	Brachydanio	Survival	85	EC ₅₀ 96 h	-
	rerio				
	Bluegill	Cell density	3	EC ₅₀	-
	sunfish cells				
	Brachydanio	Pulse rate	142	EC ₅₀ 48 h	-
	rerio				
	Xenopus laevis	Growth	0.015	EC ₅₀ 96 h	(Bantle et
					al., 1994)
Doxorubicin	Daphnia	Reproduction	2.14	EC ₅₀ 48 h	(Parrella et
	magna	inhibition			al., 2014a)
	Ceriodaphnia	·	5.18	EC ₅₀ 24 h	-
	dubia				
	Thamnocephal	·	0.31	EC ₅₀ 24 h	-
	us platyurus				
Cyclophosphami	Daphnia	Immobilization	>1000	EC ₅₀ 48 h	(Zounková
de	magna				et al., 2007)
	Pimephales	Growth	930	EC ₅₀ 72 h	-
	subcapitata	inhibition			
	Zebra fish liver	Cell viability	37.5	LOEC 72 h	(Novak et
	cell line				al., 2017)
Tamoxifen	PLHC-1 cell	Cell viability	1.72	EC ₅₀ 24 h	(Caminada
	line				et al., 2008)

	PLHC-1 cell		5.12		
	line				
	RTG-2 cell		5.38	_	
	line				
	RTG-2 cell		7.09	_	
	line				
	Pimephales	F ₁ growth	0.00001	112 days	(Williams et
	promelas				al., 2007)
	Pimephales	F ₁ larvae	0.00008	28 days	_
	promelas	growth			
		significant			
		Decrease			
	Pimephales	Increase in	0.00001	112 days	_
	promelas	vitellogenin in			
		F ₁ males			
	Acartiatonsa	Larval	49	EC ₅₀ 5 days	_
		development			
	Selenastrum	Growth	0.001	72 h	(Mater et
	capricornutum				al., 2014)
Letrozole	Oryzias latipes	Fecundity	0.005	LOEC 21	(Sun et al.,
	Oryzias latipes	Fertility	0.005	days	2007)
	Oryzias latipes	Increase in	0.005	_	
		genotypic F ₁			
		males			

Flutamide	Brachionus	Fertilization of	0.001	LOEC 96 h	(Preston
	calicyflorus	sexual females			and Snell,
					2001)
	Gasterosteus	Spiggin	0.5	LOEC 21	(Sebire et
	aculeatus	inhibition		days	al., 2008)
	Gasterosteus	Male	0.1		
	aculeatus	behaviour			
	Pimephales	Testis	0.062	LOEC 21	(Jensen et
	promelas	alterations		days	al., 2004)
	Pimephales	Increase of	0.651		
	promelas	estradiol			
		plasma levels			
Nilutamide	Green algae	Growth	1	NOEC	(CDER,
					1996)
Bicalutamide	Pimephales	Overall	0.01	NOEC	FASS
	promelas				(2011)
Ifosfamide	Zebra fish liver	Cell viability	37.5	LOEC 72 h	(Novak et
	cell line				al., 2017)
Cisplatin	Zebra fish liver	Cell viability	0.1	LOEC 72 h	(Novak et
	cell line				al., 2017)
	Daphnia	Reproduction	0.94	EC ₅₀ 48 h	(Parrella et
	magna	inhibition			al., 2014a)
	Ceriodaphnia	· -	2.50	EC ₅₀ 24 h	
	dubia				
		· _			-

	Tetrahymena		8.44	EC ₅₀ 24 h	-
	platyurus				
	Chlorella	Growth	106.2	IC ₅₀ 96 h	(Dehghanpo
	vulagris				ur et al.,
					2020)
Carboplatin	Chlorella	Growth	124.3	IC ₅₀ 96 h	(Dehghanpo
	vulagris				ur et al.,
					2020)
Oxaliplatin	Chlorella	Growth	153.9	IC ₅₀ 96 h	(Dehghanpo
	vulagris				ur et al.,
					2020)
Bleomycin	Lamna minor	Growth	0.2	EC ₅₀ 7 days	(Jureczko
	Daphnia	inhibition	0.77	EC ₅₀ 48 h	and
	magna				Przystaś,
	Pseudomonas		7.27	EC ₅₀ 16 h	2019)
	putida				
Vincristine	Lamna minor	Growth	>100	EC ₅₀ 7 days	(Jureczko
	Daphnia	inhibition	7.74	EC ₅₀ 48 h	and
	magna				Przystaś,
	Pseudomonas		>100	EC ₅₀ 16 h	2019)
	putida				

Note: PLHC = Poeciliopsis lucida hepatocytes, RTG-2 = Rainbow trout gonad, EC = Effective concentration, AT = Acute toxicity, CT = Chronic toxicity, FASS = Federation of Animal Science Societies.

Similarly, toxicity studies of the parent antineoplastic drug and their metabolites have also been reported in the literature for capecitabine, cyclophosphamide, methotrexate and 5-FU on

different microorganisms (Lutterbeck et al., 2015b; Lutterbeck et al., 2016; Barışçı et al., 2018; Chen et al., 2019; Huo et al., 2020). The dispersion of antineoplastic drugs via drinking water has also been reported by Aherne et al. (1990). As an example, if a pregnant woman is undergoing chemotherapy, the antineoplastic drugs would have negative impact on the foetus with craniofacial and digital abnormalities because the anticancer drugs can cross the placenta (Paskulin et al., 2005; Jureczko and Kalka, 2020). There are very authentic rules which stipulate that the health care staff under the pregnancy period should be boycotted from the preparation and management of the cytotoxic drugs (Allwood et al., 2002).

Every beneficiary of the earth's food chain is a consumer of water and many of them directly depend upon the natural water bodies (Bai et al., 2018) such as lakes, rivers, bore wells and ponds. These water bodies are often contaminated with untreated domestic sewage (Zounkova et al., 2010). Researchers have found traces of numerous pesticides and other pharmaceutical compounds in the food chains *i.e.* food crops, fishes and seafood. Similar to these pesticides and pharmaceutical compounds, the antineoplastic drugs may also find their way to our food chain through fish or any kind of direct water body dependent foods. Antineoplastic agents work their way through the food chain by accumulating in the body of living organisms and becoming more concentrated as they move from one organism to another through the process of "biomagnification". The pharmaceutical compounds contaminate the surface water and extricate with time in a different niche of the aquatic food webs. However, there are very few scientific documents that report the presence of antineoplastic drugs in the food web. According to several imitated/custom-designed food web experiments, the gathering of antineoplastic drugs occurs at a greater magnitude in the life, ensuing at the lower tropic levels (e.g. algae) when compared to the higher trophic levels (e.g. fish) (Du et al., 2014; Ruhí et al., 2016). However, Xie et al. (2017) reported conflicting outcomes *i.e.* their study shows no accretion and tropic biomagnification of the drugs in the aquatic food webs. Hence, in order to

understand the generic motif of pharmaceutical compounds transmission in aquatic environments, long-term studies should be carried out because the bioaccumulation of these drugs depends on the species (Heynen, 2016; Lagesson et al., 2016).

2.4. Treatment technologies for removal of antineoplastic drugs

Several treatment technologies have been adopted by the researchers to mitigate antineoplastic drug pollution from the aquatic environment. Table 2.4 summarize the studies investigated for the mitigation of antineoplastic compounds. It can review the work done of the scientific community on the efficiency of different treatment technologies used for removal of antineoplastic compounds. Mainly three treatments process are used for the treatment of these compounds *i.e.* physiochemical, chemical and biological treatment and which involve different techniques for the treatment of antineoplastic compounds.

2.4.1. Physio-chemical treatment

The physiochemical treatment process involves membrane filtration and AOPs for the removal of antineoplastic compounds from wastewater. Membrane filtration involves both membrane separation and adsorption for the removal of pharmaceuticals compounds. Reverse osmosis membrane is one of the most comply used membrane separation process (Wang et al., 2009). While, in adsorption based separation processes, the use of powder activated carbon (PAC) is more efficient for long term column operations when compared to activated carbon loaded columns (Kovalova et al., 2013). This treatment strategy has the advantage of separating the water from the contaminants, thereby providing both water treatment and fulfilling the water demand. The performance of PAC and granulated activated carbon (GAC) depends on the K_{ow} value of the antineoplastic compounds and dose of adsorbent. Verlicchi et al. (2015) reported the removal of cyclophosphamide and IF by PAC from hospital wastewater, while Lenz et al. (2007) tested the removal of 5-FU and capecitabine from oncological ward effluent of a

hospital by GAC and showed the superiority of using GAC when compared to the use of PAC. Towards the treatment of pharmaceutical pollutants from wastewater, RO and NF (nanofiltration) membranes have also proven to be efficient. Wang et al. (2009) investigated the removal of cyclophosphamide by RO and NF and observed a rejection of around 90 %, which indicated that both NF-MBR (membrane bioreactor) and RO-MBR were highly efficient to remove cyclophosphamide from contaminated water. Besides membrane filtration, AOPs have also been tested for the removal of pharmaceutical/antineoplastic drugs present in wastewater, e.g. electron beam radiation, UV photolysis, and photocatalytic oxidation.

The removal efficiency of a particular treatment process for antineoplastic compounds varies and each method has its own specific advantage and limitation for a particular drug. For example, the removal efficiency of capecitabine in a UV irradiation process was 100 %, but the toxicity in aquatic system after treatment increased significantly due to the production of more toxic metabolites (Guo et al., 2015). 5-FU treated by UV/H₂O₂ process achieved 99.6 % degradation (Kosjek et al., 2013), while the cyclophosphamide degradation was only 90 % (Ferre-Aracil et al., 2016). In another study, the degradation of cytarabine was compared in different UV irradiation based technologies and the following results were achieved: UV/S2O82-= 96 %, UV/H₂O₂ = 81 %, UV/(OH)₄B₂O₄²⁻ = 65 %, and UV/C₃H₉COOH = 48 % (Ocampo-Pérez et al., 2016). Meanwhile, the treatment of methotrexate and doxorubicin by UV was only 60 % and 10 %, respectively, although both the compounds were removed completely by UV/TiO₂ (Calza et al., 2014). Lai et al. (2015), investigated the treatment of cyclophosphamide and IF by UV/TiO₂ and reported that, although the removal was ~ 100 %, the by-products formed during the treatment process showed higher toxicity when compared to the parent compound. These results were similar to the results achieved by Guo et al. (2015) for capecitabine degradation.

In two different studies, 5-FU and cyclophosphamide degradation was compared in a UV/H_2O_2 , UV/TiO_2 and $UV/H_2O_2/Fe^{2+}$ system and the authors reported no toxicity of the treated effluent even when the removal efficiencies of 5-FU and cyclophosphamide were not > 99 % (Lutterbeck et al., 2015a; Lutterbeck et al., 2015b). Cesen et al. (2016b) as curtained the removal of cyclophosphamide and IF in a $UV/O_3/H_2O_2$ process and removal efficiencies > 98 % was reported for both cyclophosphamide and IF. Li et al. (2016) reported the degradation of busulfan, chlorambucil, cyclophosphamide, dacarbazine, flutamide, IF, tamoxifen and methotrexate by ozonation and the authors observed 100 % removal of chlorambucil, dacarbazine, flutamide, tamoxifen and methotrexate was achieved, 70 % removal for cyclophosphamide and IF, and no removal of busulfan.

In a combined O_3/H_2O_2 process, Ferre-Aracil et al. (2016) reported 100 % degradation of pharmaceutical drugs mixture, namely gemcitabine hydrochloride, temozolomide, methotrexate, hydroxy-methotrexate, irinotecan, imatinib, mesylate, IF, cyclophosphamide, erlotinib hydrochloride, etoposide, doxorubicin hydrochloride, capecitabine, endoxifen, 4-hydroxytamoxifen and tamoxifen citrate. Ferrando-Climent et al. (2017) demonstrated 100 % removal of tamoxifen in an UV/O₃ process and observed that the by-products formed during the degradation was more toxic compared to tamoxifen. As a novel treatment technique, the electro-degradation of cyclophosphamide and IF by boron doped diamond electrode was tested by Fabianska et al. (2015). In that study, the authors tested the effect of current density (4.8 to 16.0 mA cm⁻²), IF concentration (5 to 55 mg.L⁻¹), and pH (4.0 to 9.5) and observed that the current density has a significant effect on the removal efficiency of both cyclophosphamide and IF, while pH did not affect the performance of the electro-degradation process.

2.4.2. Chemical treatment

The removal of antineoplastic drugs by chemical treatment processes was previously used in hospitals and pharmaceutical industries; however, they have been replaced recently by AOPs. In chemical treatment, different oxidizing agents such as sodium hypochlorite, potassium and sodium permanganate, Fenton reagent and hydrogen peroxide are used to remove various antineoplastic drugs like doxorubicin, epirubicin, cyclophosphamide, IF melphalan and idarubicin (Hansel et al., 1996; Castegnaro et al., 1997). During the chemical transformation of antineoplastic drugs, several by-products or intermediate chemicals are formed and these by-products are mutagenic in nature (Lutterbeck et al., 2015b). The conventional chemical treatment process includes methods such as neutralization, precipitation, ion exchange, disinfection (ozone, chlorine and UV) and adsorption (Tripathi et al., 2020).

In recent years, AOPs are commonly used for the removal or degradation of antineoplastic drugs. Typical examples of AOPs are ozonation, photo-assisted degradation, electrochemical oxidation and Fenton based degradation (Pieczyńska et al., 2017). These methods involve the use of free radicals for the degradation or transformation of the antineoplastic drug (Janssens et al., 2017). Briefly, the mechanism/steps of hydroxyl based AOPs can be summarized as follows: (i) the first step if the production of highly reactive free radicals (e.g. OH⁺), (ii) the OH⁺ has electrophilic functions and it can react with the antineoplastic drugs present in water, (iii) during the process, there is transfer of hydrogen ions and interaction of radicals, (iv) the OH⁺ have a very short lifetime and they are produced *In-situ* using oxidising agents such as H_2O_2 and O_3 , irradiation (e.g. UV light source or ultrasound), and catalysts (e.g. Fe²⁺), and (v) this process mineralizes the antineoplastic agents and it is transformed into less or non-toxic products in the water phase. In AOPs, many combined techniques have been developed for treating pharmaceutical compounds present in water: UV (O₃/UV), H₂O₂ (O₃/H₂O₂), and both (O₃/UV/H₂O₂). AOPs have proven to be effective in treating hospital wastewater (Lutterbeck

et al., 2015b; García et al., 2020). Many researchers have tested electrochemical oxidation (Hirose et al., 2005; Lazarova and Spendlingwimmer, 2008), ozonation, H₂O₂ and UV induced photo-oxidation for treating numerous recalcitrant pollutants present in water and wastewater (Roberts and Thomas, 2006; Broséus et al., 2009; Zhang et al., 2013b; Česen et al., 2015). Evidently, the literature reports have proven the effectiveness of different treatment processes, both as standalone and combined/integrated systems, and depending on the nature of the drug, variations in removal efficiencies has been observed. The operational parameters of the treatment system/reactor also affect the treatment efficiency, e.g. treatment time, concentration of the drug, initial pH, catalyst/adsorbent dose, nature of the oxidant, applied voltage/current intensity, etc, among others. However, the operating conditions and the degree of treatment achieved decides the final quality of the treated water, its toxicity and treatment costs. For example, although ozonation has proven to be efficient for removing a wide variety of pharmaceutical drugs, persisting organic pollutants, pesticides, insecticides/herbicides and volatile organics present in water, in most of the cases, the toxicity of the treated water is somewhat high than the initial pollutant (Lin et al., 2015). For the treatment of antineoplastic drugs, photo-assisted treatment has also shown promising results. In few studies, UV/H₂O₂ process has achieved 100 % removal, reduced toxicity of the treated water and increased biodegradability of the transformed products (Lutterbeck et al., 2015b; Lutterbeck et al., 2016; Koltsakidou et al., 2017). On the other hand, in some studies, although the photo-assisted process has shown 100 % efficiency for removing antineoplastic drugs, the toxicity of the byproducts were shown to be high (Ocampo-Pérez et al., 2010; Lin and Lin, 2014; Ferrando-Climent et al., 2017).

Table 2.4. Different	strategies used	to mitigate antined	nlastic drugs fron	n wastewater samples
	strategies useu	to mingate antinet	plastic ul ugo li on	a waste water samples

Strategies	Antineoplastic compounds	Source	Operating parameters	Conclusion	Reference
Biological	10 antineoplastic compounds namely	Hospital	Kirk medium, 25 °C	Tamoxifen removed totally but	(Ferrando-
treatment	(cyclophosphamide, Ifosfamide,	wastewater	temperature, 4.5 pH and	cyclophosphamide and	Climent et al.,
by WRF	ciprofloxacin, methotrexate, paclitaxel,		130 rpm for 9 days	ifosfamide remains as such	2015)
(Trametes	azathioprine, etoposide, docetaxel,				
versicolor,	tamoxifen and vincristine)				
Ganoderma	Cyclophosphamide and ifosfamide	Synthetic	Kirk medium + other	Removal percentage for both	(Castellet-Rovira
lucidum)		solution	nutrient source, 25 °C	cyclophosphamide and	et al., 2018)
			temperature, 4.5 pH and	ifosfamide was less than 40 %	
			135 rpm for 6 days		
-	Bleomycin and vincristine	Synthetic	Modified Kirk medium +	Bleomycin was removed 36 %	(Jureczko et al.,
		solution	26 °C temperature, 14 days	and vincristine was removed	2021)
				94 % after only 4 days	

Membrane	Cyclophosphamide	Semi-	MBR volume 20 L,	60 % removal efficiency	(Seira et al.,
Bioreactor		synthetic	WWPF were 13.3 L.d ⁻¹ ,		2016)
		wastewater	HRT was 36 h, SRT was		
			20 days, DO level was		
			kept between n 0 and 4.5		
			mg O_2 L ⁻¹ , temperature		
			varied between 25 to 32 °C		
			and pH varied between 7		
			to 8		
Enzymatic	Various antineoplastic compounds such	Mixed	Growth medium + other	More potential than white rot	(Pereira et al.,
degradation	as tamoxifen, ifosfamide,	sources	nutrient elements,	fungi	2020)
(secreted by	cyclophosphamide, etoposide etc.		temperature range from 25		
WRF)			°C to 35 °C, pH range from		
			4 to 6 and degradation		
			time period from 6 days to		
			30 days		

Mixed	16 antineoplastic compounds (cytarabine,	Hospital	For photochemical – 22 °C	UV-H ₂ O ₂ (eliminate all) > UV-	(Franquet-Griell
approach	gemcitabine, capecitabine, ifosfamide,	WWTPs	temperature, 6.5 pH and	C (not effective) > aerobic	et al., 2017)
(biological	cyclophosphamide, melphalan,		48 h degradation time	biodegradation (not capable)	
and	chlorambucil, doxorubicin, daunorubicin,		For biodegradation- 22 °C		
photochemi	etoposide, irinotecan, vincristine,		temperature, 7.5 pH and		
cal)	vinblastine, megestrol, prednisone and		48 h degradation time		
	mycophenolic)				
Activated	Vincristine	Synthetic	9 days degradation time	90 % removal of parent	(Kosjek et al.,
sludge		wastewater	period, pH from 5 to 8 and	compound	2018)
batch		used	activated sludge		
biotransfor					
010014115101			concentration 0.24 to 1.9		
mation			concentration 0.24 to 1.9 g·L ⁻¹		
mation MBR-Pilot	5-Fluorouracil and anthracyclines	Oncologic	concentration 0.24 to 1.9 g·L ⁻¹ MBR tank size 1000 L,	5- Fluorouracil was readily	(Lenz et al., 2007)
mation MBR-Pilot (HRT- 24h)	5-Fluorouracil and anthracyclines (doxorubicin, epirubicin, daunorubicin)	Oncologic wastewater	concentration 0.24 to 1.9 g·L ⁻¹ MBR tank size 1000 L, HRL–260 L.d ⁻¹ , UV	5- Fluorouracil was readily biodegradable and adsorption	(Lenz et al., 2007)
mation MBR-Pilot (HRT- 24h)	5-Fluorouracil and anthracyclines (doxorubicin, epirubicin, daunorubicin)	Oncologic wastewater	concentration 0.24 to 1.9 g·L ⁻¹ MBR tank size 1000 L, HRL–260 L.d ⁻¹ , UV radiation - 254 nm and	5- Fluorouracil was readily biodegradable and adsorption to sludge was marginal, it	(Lenz et al., 2007)
mation			concentration 0.24 to 1.9 $g \cdot L^{-1}$		

			monitoring time period	from the liquid phase; over 90	
			was 18 months	% of anthracyclines were	
				removed mainly due to	
				adsorption of suspended solids.	
MBR-Pilot	Cisplatin, carboplatin	Oncologic	MBR tank size 1000 L,	Moderate elimination	(Mahnik et al.,
		wastewater	HRL (hydraulic load)-100-	efficiency (51 % $-$ 63 %) of	2007)
			200 L d ⁻¹ , HRT- 20-24 h	total platinum was achieved;	
			and monitoring time	carboplatin showed relatively	
			period was 98 days	low adsorption to activated	
				sludge and was mainly present	
				as an intact drug in both	
				influent and effluent.	
—	Cyclophosphamide and its human	Domestic	MBR volume 20 L, 25 °C	Cyclophosphamide removal	(Delgado et al.,
	metabolites	wastewater	to 32 °C temperature, 7-8	was up to 80 %, however,	2011)
		with	pH, SRT- 50 and 70,		

—		inoculated	HRT- 48 and 32 and	residue cytotoxicity was	
		activated	aeration cycle 2 minutes	measured in permeate.	
		sludge			
Nanofiltrati	Cyclophosphamide	Dra trastad	Pra treatment time period	NE rejection $> 90\%$ when	(Varliefde at al
Nalionitiati	Cyclophosphannde	Fle-fleated	rie-treatment time period-	NI lejecuoli > 90 % wileli	(vernerue et al.,
on,		surface	100 days, 7.5 pH and 6.7,	water recovery is only 10 %	2007)
NF/Granula		waters	DOC- 6 and 12,	but at 20 % water recovery	
r activated			conductivity – 530 and	only 30 % rejection for CP.	
carbon			920, pump pressure- 25		
			bars and treatment time		
			period- 4 days		
NF/RO	Cyclophosphamide, ifosfamide,	Ultrapure	MBR volume - 400 ml,	RO performed with more than	(Wang et al.,
	paclitaxel and etoposide	water and	HRT- 48 h, SRT- 50 days,	90 % rejection in compared to	2009; Cristóvão
		MBR	7.5 to 8 pH, room	NF's poor rejection of $20 - 40$	et al., 2019)
		effluent,	temperature and trans-	%.	
		synthetic	membrane pressure range		

		urine and	between 5.10^{+5} to 25.10^{+5}	Rejection in NF for etoposide	
		real	Pa	was maximum <i>i.e.</i> 97.7 and	
		secondary		98.7 % in ultrapure water and	
		effluent	250 ml feed solution,	secondary effluent as	
			minutes, 300 rpm, room	compared to paclitaxel and IF.	
			temperature and treatment		
			time period was 30		
			minutes		
Electrolysis	Epirubicin, irinotecan, vincristine,	Clinic	minutes Two platinum-irridium	Cytotoxicity, mutagenicity and	(Hirose et al.,
Electrolysis (anodic	Epirubicin, irinotecan, vincristine, mitomycin-C, paclitaxel, methotrexate,	Clinic wastewater	minutes Two platinum-irridium electrodes (gap 5mm), 100	Cytotoxicity, mutagenicity and antibacterial activity of	(Hirose et al., 2005)
Electrolysis (anodic oxidation)	Epirubicin, irinotecan, vincristine, mitomycin-C, paclitaxel, methotrexate, cisplatin	Clinic wastewater	minutes Two platinum-irridium electrodes (gap 5mm), 100 mA constant current and	Cytotoxicity, mutagenicity and antibacterial activity of epirubicin were ~ 100 %	(Hirose et al., 2005)
Electrolysis (anodic oxidation)	Epirubicin, irinotecan, vincristine, mitomycin-C, paclitaxel, methotrexate, cisplatin	Clinic wastewater	minutes Two platinum-irridium electrodes (gap 5mm), 100 mA constant current and current density was 4 A	Cytotoxicity, mutagenicity and antibacterial activity of epirubicin were ~ 100 % eliminated after electrolysis (6	(Hirose et al., 2005)
Electrolysis (anodic oxidation)	Epirubicin, irinotecan, vincristine, mitomycin-C, paclitaxel, methotrexate, cisplatin	Clinic wastewater	minutes Two platinum-irridium electrodes (gap 5mm), 100 mA constant current and current density was 4 A dm ⁻²	Cytotoxicity, mutagenicity and antibacterial activity of epirubicin were ~ 100 % eliminated after electrolysis (6 h), 72 – 100 % for other	(Hirose et al., 2005)

The cost-effective apparatus

can be adapted to treat clinical

wastewater.

Electrolysis	Methotrexate	Urine	Platinum-irridium	Electrolysis generates active	(Kobayashi et al.,
(anodic			electrodes, 1 A constant	chlorine and decomposes	2012)
oxidation)			current, 3.5 to 4 V voltage	methotrexate	
			and electrolysis time		
			period was 4 h		
Indirect	Cyclophosphamide, ifosfamide	Lake water	pH 8.8, 2.51 mM	Elimination efficiency was 80	(Buerge et al.,
photochemi			alkalinity, 1.6 mg.L ⁻¹	% and 60 % for	2006)
cal			dissolved organic carbon,	Cyclophosphamide and IF.	
degradation			22 °C temperature foe light	Increased OH' by adding	
			and 20 °C for dark	nitrate enhanced the	
				degradation of CP and IF.	
UV and	Cyclophosphamide	Pure water	8 W low-pressure mercury	UV dose decreased from 5201	(Kim et al., 2009)
UV/H ₂ O ₂		and	lamp–254 nm, H ₂ O ₂	to 1695 mJ cm ⁻² (UV/H ₂ O ₂) for	

		biologically	concentration was 6 to 8.2	90 % Cyclophosphamide –	
		treated water	mg·L ⁻¹ , 20 °C temperature	degradation. H ₂ O ₂ addition	
			and 7 pH	significantly enhanced CP	
				degradation by UV radiation.	
				The H ₂ O ₂ enhancement was	
				more effective to less readily-	
				degraded PPCPs. Dissolved	
				organic matters might act as	
				scavengers of both OH' and	
				UV energy.	
Ozonation	Cyclophosphamide, methotrexate	Drinking	Natural water (10 mg·L ⁻¹	CP degradation rate with O ₃	(Garcia-Ac et al.,
		water	O ₃), natural water spiked	was low (ko ₃ = $3.3 \pm 0.2 \text{ M}^{-1}\text{s}^{-1}$,	2010)
			with tert-butanol (10 mg \cdot L ⁻	pH 8.1) without significant	
			¹ O ₃), natural water (10	natural water matrix effects;	
			mg·L ⁻¹ O ₃) spiked with	reaction of Cyclophosphamide	
			hydrogen peroxide (2.5 10	with OH [•] was much easier ($k =$	

			mg·L ⁻¹ H ₂ O ₂), buffered	2.0×10 ⁹ M ⁻¹ s ⁻¹). A high	
			ultrapure water (8.10 pH)	concentration (oxidant dose \times	
			spiked with tert-butanol	contact time) value of ~45 mg	
			$(10 \text{ mg} \cdot \text{L}^{-1} \text{ O}_3)$ and	min/L was required to remove	
			temperature was 20 °C	96 % CP from natural water.	
				By comparison, methotrexate	
				reacted quickly with O_3 (ko ₃ >	
				$3.6 \times 10^3 \text{ M}^{-1} \text{s}^{-1}$) at typical	
				dosages applied in drinking	
				water treatment.	
UV/H ₂ O ₂ /O	Cyclophosphamide	Deionized	Reactor volume – 1 L,	$ko_3 = 2.5 \text{ M}^{-1} \text{s}^{-1}$ (CP+O ₃ in	(Lester et al.,
3 and its		water	0.45 kW medium pressure,	excess); $k_{OH} = 1.3 \times 10^9 \text{ M}^{-1} \text{s}^{-1}$	2011)
sub-		sample	polychromatic UV lamp-	(Cyclophosphamide + OH [•]).	
processes			200-300nm and	H ₂ O ₂ /O ₃ show highest	
			temperature was 25 °C	degradation rate among	
				different AOP conditions.	

Biological treatment systems have also been tested for the removal of pharmaceutical drugs present in water. Although, the operating costs for biological processes are less compared to physio-chemical processes. In order to achieve 100 % removal of the pharmaceutical drugs present in water, some laboratory scale studies have shown that, a combination of one or two technologies, e.g. UV/O_3 + biodegradation or UV/H_2O_2 + biodegradation, will be more efficient to meet discharge/regulatory limits (Lutterbeck et al., 2020).

2.4.3. Biological treatment

The biological treatment process involves the use of microorganisms (mixed or pure cultures) for the removal of persistent pharmaceuticals from water. Currently, researchers have reported that the conventional biological wastewater treatment processes are not able to efficiently remove or degrade these compounds (Franquet-Griell et al., 2017; Castellet-Rovira et al., 2018; da Rosa et al., 2019). On the other hand, WRF emerged as promising tool for the removal of recalcitrant pharmaceuticals from the aquatic environment. WRF can secrete extracellular and intracellular oxidoreductase or ligninolytic enzymes. These enzymes can effectively degrade wide range of pharmaceuticals including antineoplastic compounds (Haroune et al., 2014; Ferrando-Climent et al., 2015; Castellet-Rovira et al., 2018; Singh et al., 2018; Pereira et al., 2020). Several modes have been used by the researcher for the removal of antineoplastic drugs by WRF or their oxidoreductase enzymes which are as follows:

- 1) Whole-cell culture
- 2) Enzymatic treatment

2.4.3.1. Whole-cell culture

Some studies investigated on the removal of antineoplastic compounds by the use of whole cell culture of WRF (Table 2.5). The whole-cell culture involved the use of fungi mycelium into solid or liquid medium under different culture conditions such as temperature, pH and shaking.

In general, the temperature range of whole cell treatment of WRF was between 25-35 °C, pH range was 4.5-5.5 and rpm range for shaking was 90-200. In most of the degradation studies, glucose was used as carbon source (Asif et al., 2017). Ferrando-Climent et al. (2015) as curtained the biodegradation of tamoxifen, etoposide, cyclophosphamide and IF by the fungi T. versicolor and G. lucidum in a synthetic solution and non-sterile hospital wastewater, respectively. They reported that, the removal of tamoxifen was 48 % in non-sterile hospital wastewater and 99 % in the synthetic solution, respectively. In the case of IF and etoposide, the removals rate was 40 and 100 % in non-sterile hospital wastewater. In another similar study, Castellet-Rovira et al. (2018) tested the removal of cyclophosphamide and IF using T. versicolor and reported very less removal of the drugs (i.e. ~ 40 %). MBR with high biomass concentration and retention time have also proven to be effective for the biodegradation and removal of pharmaceutical drugs (Martín et al., 2011). Seira et al. (2016) tested efficiency of a MBR for the removal of a cytostatic drug (e.g. cyclophosphamide) and characterized the mechanism (adsorption/biodegradation) of pollutant removal. The authors operated a 20 L MBR for 153 days, at an inlet cyclophosphamide concentration of 5 μ g.L⁻¹ and reported ~ 60 % cyclophosphamide removal. Jureczko et al. (2021) reported biodegradation of two antineoplastic drugs vincristine and bleomycin by six different WRF *i.e. F. fomentarius*, *H.* fasciculare, P. nidulans, P. ostreatus and T. versicolor. They compared the degradation rate of these fungi for vincristine and bleomycin. In case of vincristine, the degradation was only achieved by three fungi F. fomentarius, H. fasciculare and T. versicolor with 94-97 % degradation rate. However, in bleomycin, the degradation was shown by two fungi and the rate shown by T. versicolor was 36 % and H. fasciculare was 25 %.

2.4.3.2. Enzymatic treatment

WRF can produce extra and intracellular oxidoreductase ligninolytic enzymes which are laccase, manganese peroxidase, lignin peroxidase (extracellular), CYP₄₅₀ and nitro-reductase

(intracellular). Every WRF species are not able to produce all these extracellular enzymes. Some fungi such as T. versicolor, P. chrysosporium, G. lucidum and B. adusta can secrete all three enzymes extracellularly (Asif et al., 2017). The rate of specific enzyme production also influenced by growth medium compositions and culture conditions. As the whole cell treatment need long reaction time and having chance of contamination, the use of crude enzyme provides short reaction time, reduce the chance of contamination and provide less toxic transformed products after degradation (Pereira et al., 2020). Several study investigated the use of cell free enzyme and immobilized enzyme to reduce the operation time of treatment process. Kelbert et al. (2021) reported the treatment of antineoplastic compound doxorubicin by the use of laccase enzyme. They reported the highest degradation of enzyme at pH 7.0 and 30 °C temperature. In addition to antineoplastic compound degradation, several other recalcitrant pharmaceuticals were also degraded by crude enzyme secreted by different WRF. Lignin peroxidase was extracted by P. chrysosporium used for the removal of diclofenac and the removal rate was 100 % (Zhang and Geißen, 2010). Laccase was used for removal of estrone extracted by T. versicolor and the removal rate was 100 % (Auriol et al., 2007). Manganese peroxidase was used for the degradation of tetracycline and oxytetracycline extracted by P. chrysosporium. The removal rate of tetracycline was 72 % and oxytetracycline was 84 % (Wen et al., 2010). Versatile peroxidase was used for the degradation of diclofenac, estrone and naproxen extracted by B. adusta. The removal rate for diclofenac was 100 %, estrone was 100 % and naproxen was 80 % respectively (Eibes et al., 2011).

The intercellular mechanism for degradation of recalcitrant micropollutants is mediated by the CYP₄₅₀ in coordination or without co-ordination with the extracellular system. The unseen involvement of CYP₄₅₀ in the transformation of recalcitrant phenolic or aromatic compounds have been revealed in different studies. The intracellular system is also necessary for transforming different xenobiotics compounds in fungi (Olicón-Hernández et al., 2017).

Intracellular enzyme Cytochrome P₄₅₀ monooxygenase can also play a key role in degradation of recalcitrant pharmaceutical compounds. It can degrade pharmaceuticals or phenolic compounds by oxygenation, halogenation reaction inside the fungal cell (Golan-Rozen et al., 2011).

2.5. Removal mechanism

Fungi adopt several pathways to counteract with a myriad of toxic or hazardous compounds such as recalcitrant polycyclic aromatic hydrocarbons, pesticides etc. They can follow mainly two pathways for the removal process *i.e.* non-enzymatic pathway (bio-adsorption, bio-precipitation) and enzymatic pathway (biotransformation and biodegradation that are mediated by enzymatic systems). Bio-adsorption is mediated by the specific composition of the cell wall such as chitosan or chitin (Asif et al., 2017; Grelska and Noszczyńska, 2020). In some fungi, such as *Phoma* sp. UHH 5-1-03, biosorption into fungal mycelia has an important role for bisphenol A, 17a-ethinylestradiol and triclosan removal, until this bio-adsorption reaches equilibrium (Pezzella et al., 2017). Biotransformation process is mediated by enzymes. Hydroxylation can be regarded as a biotransformation strategy for bioremediation processes, since this reaction can increase the solubility of pollutants and thereby reduce the bioaccumulation potential. Biotransformation of recalcitrant micropollutants include hydroxylation, oxidation sulfoxidation and dealkylation reactions (Eibes et al., 2011; Wang et al., 2013; Xiao and Kondo, 2020).

In addition to biosorption, there are other factors, including pollutant structure, fungal species, enzyme systems, culture medium, pH, temperature and enhancing methods e.g. the presence of mediators that affects the removal performance of a WRF (Mir-Tutusaus et al., 2018). *T. versicolor* fungus secrete three extracellular enzymes (lignin peroxidase, laccase, manganese peroxidase) and laccase is the predominant in some strains (Grelska and Noszczyńska, 2020). This fungus grows well in aqueous media than on solid matrices that can be due to better mass

transfer on liquid media. Furthermore, the degradation efficiency is not similar in all strain of fungi for a particular compound. Several other properties of WRF make them better in removal of different pharmaceutical compounds such as (Asif et al., 2017):

- Non-specificity of their produced enzyme that make them degrade a wide range of micropollutants
- Fast colonization through hyphal growth that allow fungus to access more pollutants
- Production and secretion of enzymes to degrade compounds with low water solubility
- Ability to treat pharmaceutical compounds in different range of pH.

The removal efficiency of WRF can be higher in non-sterile matrices than in sterile conditions due to the consortium established. Additionally, in non-sterile matrices bacteria could degrade the most biodegradable transformation products of the toxic compounds transformed by the WRF (Mir-Tutusaus et al., 2016). On the other hand, non-sterility reduces the duration of bioreactor operation due to native microorganisms exerting competitive pressure in WRF survival. This aspect has been partly resolved by introducing a pre-treatment step that reduces the initial concentration of microorganisms in the influent (Mir-Tutusaus et al., 2016; Mir-Tutusaus et al., 2018). From this perspective, several studies have focused on the use of whole cell basidiomycetes fungi, especially *T. versicolor*, to optimize degradation conditions as well as to implement new techniques for the monitoring of recalcitrant micropollutants. However, the filamentous growth could have operational problems associated (clogging, fouling and problems for biomass separation). The removal mechanisms involved in treatment with WRF whole-cell-culture can be divided into three steps including biosorption onto biomass, biodegradation through extracellular enzymes and intracellular or mycelium-bound enzymes (Asif et al., 2017; Naghdi et al., 2018; Pereira et al., 2020).

Name of white-	Antineoplastic	Operating conditions	Total removal	Reference	
rot-fungi	compounds		efficiency (%)		
Fomes	Vincristine	Initial conc. 10 mg.L ⁻¹ , 26 °C temp., 14 days	97 (94 at 4 day)	(Jureczko et al.,	
fomentarius	Bleomycin	Initial conc. 10 mg.L ⁻¹ , 26 °C temp., 14 days	No removal	2021)	
Hypholoma	Vincristine	Initial conc. 10 mg.L ⁻¹ , 26 °C temp., 14 days	97 (94 at 4 day)	_	
fasciculare	Bleomycin	Initial conc. 10 mg.L ⁻¹ , 26 °C temp., 14 days	58.5 (25 at 9 day)	_	
Trametes	Vincristine	Initial conc. 10 mg.L ⁻¹ , 26 °C temp., 14 days	97 (94 at 4 day)	_	
versicolor	Bleomycin	Initial conc. 10 mg.L ⁻¹ , 26 °C temp., 14 days	64.1 (36 at 9 day)	_	
	Tamoxifen	In real wastewater sample- Initial conc.	48 and 99	(Ferrando-Climent	
		44.5 ng. L ⁻¹ , 4.5 pH, 25 °C temp., 9 days		et al., 2015)	
		In synthetic sample- Initial conc. 0.3 mg.L ⁻¹ ,			
		25 °C temp., 4.5 pH, 135 rpm, 9 days			
	Etoposide	In real wastewater sample- Initial conc.	100	_	
		197.5 ng. L ⁻¹ , 4.5 pH, 25 °C temp., 9 days			

 Table 2.5. Recent studies performed on the removal of antineoplastic compounds by whole-cell culture of white rot fungi.

	Azathioprine	In real wastewater sample- Initial conc. 55	100	_
		ng.L ⁻¹ , 4.5 pH, 25 °C temp., 9 days		
	Cyclophosphamide	Initial conc. 10 mg.L ⁻¹ , 25 °C temp., 4.5 pH,	No removal	_
		135 rpm, 9 days		
	Ifosfamide	In real wastewater sample- Initial conc. 77.2	61, No removal	_
		ng. L ⁻¹ , 4.5 pH, 25 °C temp., 9 days		
		In synthetic sample- Initial conc. 10 mg.L ⁻¹ ,		
		25 °C temp., 4.5 pH, 135 rpm, 9 days		
	Cyclophosphamide	Initial conc. 43.5 µg.L ⁻¹ , 25 °C temp., 4.5	< 40	(Castellet-Rovira et
		pH, 135 rpm, 6 days		al., 2018)
	Ifosfamide	Initial conc. 39.1 µg.L ⁻¹ , 25 °C temp., 4.5	25	_
		pH, 135 rpm, 6 days		
	Iopromide	Initial conc. 174.4 µg.L ⁻¹ , 25 °C temp., 4.5	47	_
		pH, 135 rpm, 6 days		
Pleurotus oestrus	Vincristine	Initial conc. 10 mg.L ⁻¹ , 26 °C temp., 14 days	52.5	(Jureczko et al.,
	Bleomycin	Initial conc. 10 mg.L ⁻¹ , 26 °C temp., 14 days	No removal	2021)

Phyllotopsis	Vincristine	Initial conc. 10 mg.L ⁻¹ , 26 °C temp., 14 days	No removal		
niulans	Bleomycin	Initial conc. 10 mg.L ⁻¹ , 26 °C temp., 14 days	No removal		
Irpex lacteus	Cyclophosphamide	Initial conc. 43.5 µg.L ⁻¹ , 25 °C temp., 4.5	23	(Castellet-Rovira et	
		pH, 135 rpm, 6 days		al., 2018)	
	Ifosfamide	Initial conc. 39.1 µg.L ⁻¹ , 25 °C temp., 4.5	23		
		pH, 135 rpm, 6 days			
	Iopromide	Initial conc. 174.4 µg.L ⁻¹ , 25 °C temp., 4.5	25		
		pH, 135 rpm, 6 days			
Ganoderma	Cyclophosphamide	Initial conc. 43.5 µg.L ⁻¹ , 25 °C temp., 4.5	> 40	(Castellet-Rovira et	
lucidum		pH, 135 rpm, 6 days		al., 2018)	
	Ifosfamide	Initial conc. 39.1 µg.L ⁻¹ , 25 °C temp., 4.5	< 40		
		pH, 135 rpm, 6 days			
	Iopromide	Initial conc. 174.4 µg.L ⁻¹ , 25 °C temp., 4.5	> 30		
		pH, 135 rpm, 6 days			