Chapter 4

Empirical Bayesian Estimation for
Kumaraswamy Distribution Using

Informative Prior

4.1 Introduction

In the previous chapter, we have discussed the procedure for obtaining the classical, Bayesian
and E-Bayesian estimation under PT-II CBRs. In this chapter, we are introducing the Empirical
Bayes estimator of the Kumaraswamy distribution (KD). It is one of the simplest distribution
in the sense of being parsimonious in parameter. It is applicable to many natural phenomena
whose outcomes have lower and upper bound, such as the height of individuals, age of person,
scores obtained on a test, atmospheric temperatures, hydro logical data such as daily rain fall,

daily stream flow etc see Kumaraswamy (1980). The PDF and CDF of KD (a, A ) are given by

frod)=aax® (1-29*"" x>0, a>0, A>0, @D

“Part of this chapter has been published in reputed peer-reviewed journals with indexing EBSCO Discovery

Service, see Kumar et al. (2019b).
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FIGURE 4.2: HF of KD for different values of ¢t and 1.

and

Flaad)=1-(1-x9" x>0, a>0, >0, (42)

respectively; where o and A are shape parameters. Figure (4.1) shows PDF and CDF for

o =0.5,5,1,2,2and A =0.5,1,3,2,5 respectively.

The reliability function (i.e. the probability of failure after time ¢) and the HF for distribution

Equation (4.1) are given by
R(t) = (1-1%)",
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and
aAr*1
h(t) = =k

respectively. The HF h(z) is shown in Figure (4.2) for « =0.5,5,1,2,2and A =0.5,1.5,3,2,5
respectively. It may be noted here that the HF has a non-monotonic shape which decreases
initially remains constant in the mid and lastly increases. For the statistical and probabilistic
properties and other distributions obtained under the influence of KD for the use in life testing
and reliability analysis, see Jones (2009), Lemonte (2011), Xiaohu et al. (2011), Santana et al.
(2012) etc. The problem of the estimation of the parameters of KD have been discussed by
Lemonte (2011) and Gholizadeh et al. (2011) etc. But it seems that the empirical Bayesian
inferences have not been attempted to the extent of classical and Bayesian inferences, although
it is well known that empirical Bayes is a good compromise between these two. According to
Morris (1983), an empirical Bayesian inference, which is, as expected, a hybrid of frequentist

and Bayesian inference.

The use of KD in life testing and reliability problems have been suggested by various authors,
see Jones (2009), Lemonte (2011), Kohansal (2017), Amin (2017) etc. A general problem
associated with life testing is that in most of the situation one can not wait for the failure of all
the items put on test. In such situation, censoring becomes unavoidable. A number of censoring
schemes are available in statistical literature. One of the popular censoring scheme under use
is progressive Type-II censoring scheme. On one hand it provides flexibility because it allows
the intermediate removals of the items from test and on other hand it guarantees for a minimum

efficiency of the estimators by fixing the number of complete observations.

In the point estimation an important element is the loss function specification. A very popular
loss function is SELF, used in estimation of parameter. Which can be appropriate on the space
of minimum variance-unbiased estimation. However, main drawback of this loss function is
that it have equal magnitude for o.e. and u.e., can say it is symmetric loss function. In the

literature, many asymmetric loss functions are available, and one of the most frequently used
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asymmetric loss function is the LINEX loss function, originally it was proposed by Varian

(1975) and popularized by Zellner (1986a), discussed in Chapter 1, Section (1.8).

In this chapter presented a piece of work, aims to develop the empirical Bayes estimators for
an unknown shape parameter of KD based on PT-II CBR under LINEX loss function. In KD,
one shape parameter known o > 1 i.e. @ =2 with A > 1 (unknown) have been taken due
to the distribution with one mode of the KD. For o« > 1, A > 1, lim,_; f(x;o,A) = 0 and
lim,_,0 f(x; &, A) = 0. Therefore, it is mathematically deal with, the characteristics of KD for

different parameter values see Mitnik (2013).

4.2 Likelihood Function under PT-II CBRs

Suppose that in a life testing experiment having items put on test, the lifetime of which follow
the KD. Also, we considered that the lifetime experiment perform under PT-II CBR, discussed

in Chapter 1, Subsection (1.11.2). The conditional likelihood function can be written as

L(OC,?L;x|R:r):cﬁf(x,-)[l—F(xi)]”; —00 < X] < o < Xy < 00, 4.3)
i=1

m m m
wheren=m+ Y rinmeN,1 <i<mandc= [y where ;= Y (r;+1),ri~B(n—m—
i=1 i=1 j=1

i—1
Y r,p) fori=1,2,3 ..m—1 and ro = O substituting f(.) and F(.) from Equation (4.1) and
=0

(4.2) respectively, into Equation (2.3), we have
L(o, Asx[R=r) = e[ JoAx? " (1 —x%) ! {(1 —x?‘)l} " (4.4)
i=1

Since at the every stage the removals are independent of each other with probability p for each

unit, the removals are following a binomial distribution i.e.,

i—1

ri~B(n—m—Yr,p),
=0
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where i = 1,2,3,...m — 1. Therefore;

p(Ry=r1;p) = (n—m> pr(1—p)yrmn 4.5)

and fori=2,3,...m—1

P(Ri;p) = p(Ri =rilRi—1 =ri=1,..R1 =11)

n—m—Yr - —‘Z
_ ( =5 l)pri(l _p)n " zzorl. 4.6)

It is further assumed that R;s are independent of Xj.,,., for all i. Thus full likelihood function
can be written as:

L(a,A,p;x) =L(a,B,A;x|[R=r)p(R=r;p), 4.7)

where;

p(R=r;p) = p(Ri=r)p(Ry = r2|Ry = r1)p(Rs = r3|Ry = r2, Ry = 11)...

4.8)
P(Rn—1=Tm-1|Rm—2 = rm—2,...R1 = r1).
Making the substitution from the Equation (2.5) and (2.6) into Equation (2.8), we get
$ (m=1)(n—m)~"Y. (m—)
ri m— n—m)— m—ui)r;
n—m)lpi=t (1—p i=1
(n—m—% r)! 1 ri!

=1 i=1

now using Equations (2.4), (2.7) and (2.9), the full likelihood can be represented in the fol-
lowing form:

L(a, A, p:x) = HLy (ct, 2)La(p). (4.10)
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where
_ |
H= C(’Zlm)'ml :
(n—m—Y r)! T r!
=1 i=1
Li(a,A;x|R =r) Haxx“ (1 — )~ (AT (4.11)
"y (m=1)(n-m)~"5 (m—i)
Ly(p)=p= (1-p) =R 4.12)

It may be noted here that the likelihood function is product of three terms H, L; and L, ; where
H is a constant term, L is function of the parameters but does not involve p and L, is function

of p but does not involve other parameters.

4.3 Estimation of Parameters

4.3.1 Maximum Likelihood Estimator

As mentioned above, only L; involves the parameters, hence ML estimates of the parameters

are those values which maximizes L;, we have

InLi(ot,A) =mlIn(at) +mIn(A) + (« —l)il (xi)
. 4.13)
Z —1—r)+1)In(1—x¥)

Thus, the likelihood equations can be obtained by differentiating the log-L function given above
with respect to parameter @ and A and equating to zero; i.e., ML estimates are & and A of

and A respectively, can be obtained by simultaneously solving the likelihood equations:

m m m 1
a+Zln x;) Z —1-r)+1)(x;%=1)" In(x;) =0, (4.14)
i=1 i=1
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and

(=1—r)In(1—x¥)=0. (4.15)

™=

n
A

i=1

The above mentioned normal equation solved simultaneously but do not provided closed form
solution for the estimators. Then we opted NR method to compute the ML estimators, then we
are using the invariance property to the ML estimators of the reliability function R(¢) and the

failure rate h(t) at time ¢ can be evaluated from the following:

Rt)=(1—1t9%:  t>0, (4.16)
and

~ aAt®!

h(t) = = t>0. (4.17)

4.3.2 Bayes Estimator

In this sequence, we obtain the Bayes estimator of the parameter A, when we assume that A has

a conjugate prior density,
w(A,B) =PBexp(—BA); A>0, B>0. (4.18)

That is to say, we regard random variable A with prior density an exponential distribution
exp(fB), which is used in detail Bayesian theory, see Berger (2013). It may be noted that, the
exponential family prior 7(A, ) has been used by Nassar and Eissa (2005), Kim et al. (2011)
possibly because of the fact that it is flexible enough to cover a wide range of prior believes
of the experimenter. Hence, mathematical formula to evaluate the posterior distribution of A is

given below,

R (U) = o P AR = 1) (4.19)
Jo " m(A, B)Li(0t, Aix|R = r)dA’ '




Chapter 4. Kumaraswamy Distribution 146

Substituting L; (@, A;x|R = r) and w(A; ) from Equation (2.10) and (4.18), respectively, in

Equation (4.19). We obtain the posterior distribution after simplification as,

Bexp(—BA)e [T adx®! (1 —x@)~ 1=+
ﬂ(llT) = l:ni -
f0+mﬁexp(—ﬁ7t)c [T aAx®—1(1 _xa)*( (=1=r)+1) g2
i=1
(B+T)" 2" exp(~A(B+T))

= Tlm+1) . (4.20)

where 7' = —Y ", (r;+1)In(1 —x{*). Randomly generated posterior distribution for complete
sample size 20 having x = (4.602501e — 07,9.335994E — 07,1.306320E — 02,1.351230F —
02,4.355106E —02,9.641328E —02,1.842315E —01,2.266576E —01,2.577245E —01,4.145024E —
01,7.714380E —01,7.891063E —01,8.778412E — 01, 8.926065E —01,9.723090E —01,9.963840FE —
01,9.986856E — 01,9.990788E — 01,9.999941F — 01, 1.000000E + 00) are presented in Fig-

ure (4.3).

(A/x, B)
m(A/x, B)

TTToseall

FIGURE 4.3: Informative prior 77(4) and the posterior 7(A |x, B): left panel, Informative prior
7(A) and the posterior 7 (A |x, ) : right panel of A.

Note that the posterior distribution of A is gamma distribution with parameters (m+ 1) and
(B+T). The Bayes estimator of A under LINEX loss function for posterior Equation (4.20) is

obtained, after simplification, as

5 1 ® _a _m+1 a
Ag = ln/oe r(AIT)aR =" ln(1+ﬁ+T). 4.21)
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Similarly, the Bayes estimators of R(7) and A(z) at time 7 are obtained under LINEX loss func-

tion

N B Y 1 (& (—ay stn(1—¢o)\ D
RB(I)———ln/O el t)n'(MT)d)L——Zln(Z S (1_ :

a s=0 (ﬁ"’T)
(4.22)
and
~ 1 o _qaar®! m-f-l aata_l
hp(t :——ln/ e T A TYaA =" (14 U
sy =—1mn [ (ryan =" (14 ) )
respectively.

4.3.3 Empirical Bayes Estimator

In view of this fact, Shi et al. (2005) and Yan and Gendai (2003) used the ML estimator to
estimate hyper parameter of prior distribution for analyzing the Bayesian reliability quantitative
indexes of cold stand by system. In Equation (4.21), the hyper parameter 3 is an unknown

constant, so A can not be used directly. Therefore, we make use of the ML estimator to estimate

B.

Fx) = /0 " f( o 2)m(As B)dA

:/Owa/’txa_l(l—xa)l_lﬁexp(—ﬁl)dl
_ afx®!

(1=x%) (B —In(1—x%))*
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and

l—F(x):/xwf(x)dx

:/w aﬁxail 2a’x
x (1=x%)(B—In(1—x%))
_ B

B—1In(l—x%)

Hence, Equation (2.3) can be expressed as

m

R=r)=c[]f(x)[l —F(x;)]" (4.24)

i=1

Lla,A;x

substituting f(x) and F(x) in to (4.24)

L(a,A;x

m m
R=r)=Inc+mho+mnf+(o—1)) Inx— ) In(1-x%)
i=1 i=1

+irilnﬁ _i(”i+2)1n(ﬁ —(1-x%)),

InL(a,A;x

dInL(o, A;x[R=r) m ’"r. 1 1 v 1
3p _B+Z’<B (B—ln(l—xo‘))) 2L (=)

1

Now, we have considered,

m m 1 1 1 1
k‘(ﬁ>zﬁ+,~_zlr” (3_ (B—ln(l—xa))>’ B) =2 L i

i=1

Using iterative numerical computing method to obtain the ML estimate of . We just draw a

conclusion that k; () = k»(B) has a root i.e, 3, numerically solved through R software. Since
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the empirical Bayes estimate of A is

Ap =" <1+ 4 > (4.25)
a B+T

where B is replaced by 3 in Equation (4.21). Substituting 3 in Equation (4.22), the empirical

Bayes estimation of R(t) is obtained

o0 s ay) ~ D
Re(t)=—'mn Z(_“) (1-“) . (4.26)

Similarly, the empirical Bayes estimation of fz(t) is given as

. m+1 act®!
h = In| 1+ — 4.27
T ( (I3+T)(1—t"‘>> -

As it has been mentioned earlier, using (R; =r; =0;i=1,--- ,m— 1) in Equation (2.3) and
Equation (4.24) and proceed to above subsequent equations, we can get the Bayes and empir-
ical estimators /AIBZ,}»EZ, Rp,(t),RE, (t) and hp, (t), hg, (t) of A,R(t),h(t) for Type-II censoring
at time 7, respectively. For the assessment of the above equations, we numerically calculate

through R software.

4.4 Monte Carlo Simulation Study and Comparison of Esti-

mators

An analytical study of the behavior of the estimators are not possible. Therefore, we make a
study based on simulated results and hence, we need to simulate PT-II CBR samples from KD.
The algorithm proposed by Balakrishnan and Sandhu (1995) have been used for simulation of
samples, Since, we simulate PT-II CBR from specified KD and propose the use of following

algorithm



Chapter 4. Kumaraswamy Distribution 150

i.

il.

1il.

1v.

Vi.

vil.

viii.

iX.

Specify the value of n.

Specify the value of m.

Specify the value of parameters o, A and p.

Generate random number 7; from B (n —m— ):f;é rl,p), fori=1,2,3,--- ,m—1.
Set r,, according to the following relation.

n—m—Z’l":_l1 Ty ifn—m—Z;":_ll r>0

rm =

0 otherwise

Generate m independent U (0, 1) random variables Wy, W, -+, W,,.

For given values of the progressive type-1I censoring scheme r;(i = 1,2,--- ,m)

set V; = ml/(i-i—rm—o—.—i—rmfml)(i =12, ,I’I’L).

SetUi=1-V, Vi1 - Vip—iz1(i=1,2,- -+ ym), then Uy, Uy, - - - ,U,, are PT-Il CBR samples

of size m from U(0, 1).

Finally, for given values of parameters & and A, set x; = F~'(U)(i = 1,2,--- ,m). Then

(x1,%2, -+ ,Xp,) is the required PT-IT CBR sample of size m from the KD.

Comparison of Estimators

Here, we compare the different estimators obtained through PT-II CBR and Type-II censored

samples. The comparison of the risks (average loss over sample space) under LINEX loss func-

tion. The estimators Az, Ag,, Ar, Ar,: Rp(t), Rp, (t),Rg (1), Re, (1) and hp(t), hp, (1), hp (1), hg, (1)

of A,R(t) and h(t) are respective Bayes and empirical Bayes estimators for PT-II CBR and

Type-II censoring samples under LINEX loss function, respectively. Through MC simulation

obtained the risks of the estimators of 1000 samples. Here, we note that the risks of the es-

timators are function of n,m,a,o, A, and ¢t. The choice of hyper parameters of the prior
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distribution of A can be taken in such a way that if we consider any two independent informa-
tion as prior mean and variance of A, then, (1 = 1/8, 02 = 1/B?) whereas u is considered as
true values of the parameter A for different confidence in terms of smaller and larger variances.
On the basis of this information, the hyper parameter of A can be easily evaluated from this

relation, (B = u/c?).

In order to consider the variation of these values, we obtained the simulated risks for n =
20[10]90,m = 10[10]80,# = 0.2, & = 2(known), A = 2 = y (say prior mean of 1), 62 = (1,3)
(say prior variance of 1), since B = (2/1,2/3), a = £1.5. We use the symbol R; to denote
the risk under LINEX loss function, and the simulated risks under LINEX loss functions are
given in Tables (4.1 —4.2). Table (4.1) present the risks of estimators for PT-II CBR. The next
Table (4.2) show the risks of estimators for Type-II censored samples. From Table (4.1), we
can observe that for PT-II CBR, the risk of the estimators of Az and g (t) under LINEX loss
function is the least (for both small and large prior variances i.e. 6> = 1,3) for botha = +1.5
(when o.e. is more serious than u.e.) and ¢ = —1.5 (when u.e. is more serious than o.e.).
But the risk of the estimators of Rp(¢) under PT-II CBR is minimum for LINEX loss function
with a = £1.5 for small and large prior variances. Due to the change in the value of n and m
(effective sample size), the risks of the estimators change, but follow a particular trend. Further,
the risk of the estimator Az and hg (t) under LINEX loss function was found to be least always.
It is also observed that as the failure proportion (m/n) increases, the magnitude of the risk of
the estimator Az and /g (1) decreases. However, the magnitude of the risk of the estimator Rp(r)

increases as failure proportion increases.

From Table (4.2), we can observe that for Type-II censoring, the risk of the estimators of
Ar,, hg, () and R, (1) have also the least (for both small and large prior variances) for a = +1.5
under LINEX loss function. When the change in the value of (n,m) with respective for small
and large prior variances, the risks of the estimators change, they have follow a similar trend
as discuss above in Table (4.1). But, the risk of the estimators at Ag,, iz, (1) and Rp, (1) were
also found to be the least always. From Tables (4.1 —4.2), it can be seen that the behavior

of the risks of the estimators under PT-II CBR is more similar to that of the estimators under
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Type-II censoring. The risks were found to be least for the empirical Bayes estimators iE, iEz
and hg(t),hg, (t) of A and h(t) with an informative prior I'(1, 3) respectively. Therefore, we
propose that empirical Bayesian estimator of parameter and reliability characteristics can use
planning of the experiment. Hence, the reliability practitioners can save much time and cost of

the experiment.

4.5 An application to Ulcer Patients Data

Now, we extract 43 primary disease (ulcer) patients data set from Collett (2014) to show prac-
tical applicability of proposed work. It have been taken for the analysis of PT-II CBRs dis-
cussed in the context of a study based on age ((10’2) *age) data. In order to have an idea
about the associated primary disease (ulcer) patient’s age failure rate, we considered, a graph-

ical method based on TTT plot as a crude indicator see Aarset (1987). The empirical TTT

’ ) _ Y x<,->+(n—r)x

is given as T'(+ Y%
i=1"(1

“) where r =1,2,---,n and X(r) is the order statistics of the
sample. For this data set in Figure (4.4) shows concave TTT plots, indicating increasing failure
rate functions along with Figure (4.5), (4.6) and (4.7) represent PDF/CDF plot, sample Q-Q
plot and hazard plots respectively, which can be properly accommodated by KD. However,
we fitted three competitive distributions, F (x;o,A) = (1 — e‘“)cx, x>0, a>0,A>0and
Fx;o,A)=1— e’(“)a, x>0, a > 0,4 > 0 are CDFs of the EED (Exponentiated exponen-
tial distribution) and WD (Weibull distribution) respectively. Table (4.3) provides the -log-L
values and the AIC, BIC and p-values for these distributions. They indicate evidence in favor
of KD. The ML estimates (and their corresponding standard errors in parentheses) of the KD,
EED and WD parameters are given by & = 3.2490(0.0108917),4 = 5.64104(0.03766); & =
15.44731(0.12571), A= 6.531165(0.01933) and & = 3.55875(0.01012), A= 1.76975(0.00186)
respectively. But for the purpose of illustrating the method discussed in this chapter, PT-Il CBR
samples are generated from this data set under different schemes see Table (4.6). The box plot

of different censoring schemes as well as descriptive statistics is also presented in Figure (4.8)

and Table (4.7) respectively. The required numerical calculations for the considered schemes
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are carried out using the formula given in Section (4.3) through R software see Thaka and
Gentleman (1996). The Bayes estimates, empirical Bayes estimates of Ag, Rp(.), hp(.) and
Ag.Rg(.), hg(.) under LINEX loss for a = £1.5 are presented in Table (4.4). While, Table
(4.5) shows the Bayes, empirical Bayes estimates of Ag,, R, (.), hg,(.) and Ag,.Rg,(.), he,(.)
for Type-II censoring under LINEX loss for @ = +1.5. From Tables (4.4 —4.5), it may also
be observed that the behavior of the estimators under PT-II CBRs are more similar to that of
the estimators under Type-II censoring. The estimates were found to be decreases as effective

sample size increases.

4.6 Conclusion

On the basis of the previous discussion given in the above Section (4.5), we may conclude that
the proposed empirical Bayes estimators Az, ;lEz and i (t), hg, (t) are better than Bayes estima-
tors Az, 132 and hp(t), hp,(t) for smaller or larger prior variance (6 = 1,3) of B with a = +1.5.
Also, we have seen that Table (4.1 —4.2) under LINEX loss function for the estimators R (¢)
and R, (t) is not always less than those of Rp(¢) and Rp, (). Since the risks associated with
Rp(t) and Rp, (¢) is smaller than the risk associated with reliability of the empirical estimators.
Thus, the use of propose estimator (g, Rp(t), hg (¢)) and (5LE2 ,Rp, (1), hg, (1)) under PT-I CBRs

and Type-II are recommended under LINEX loss function respectively.



154

Chapter 4. Kumaraswamy Distribution

9801l  SPII'T 1,080  S908°0 10600 1€60°0 L8TI'y  LTLU'Y  SOSET  SLLET 10010 OWOI'0 08 06
SOII'T  9LIT'T  0L0S'0  €908°0 T6600 TTOI'0 160Cy  LLSTY  9SLET  €TLET 0TTI'0 99210 OL 08
62€1'T  SOPI'T  0SO8'0  €#0S'0  €€C1'0  +LTIO 061€y  1ELEY  SS9E'T  0S9€T  6SPI'0  8ISI'O 09 OL
[ISI'T  S6SI'T  #€08°0  LTOSO  ILPI'O  1TSI°0 659V v ILIST  66S€T  6SSET  €061°0  6L6I0  0S 09
79811 €S6I'T 0080  S66L°0 ¥T6I'0  T6610 0069  ¥8SLY  09v€T  SIYET 09¥TO S9STO O 0S
IV2T1  €YETT  TL6L'O  TI96LO0  +8STO  6S9T°0 8€80°S  €8SI'S  €STET  LOTET LVIFO L9THFO  OE O
PEOST  TEICT  €06L°0  ¥68L°0 6v0V0 101470 18€9°C  vPIL'S TS6TT  €€6TT 9TILO €SIL0 0T O
SITH T 98T¥'1  LOSL'0  86LL'0 TH89'0 L9890 68LL°9 12089  1TSTT  ¥LYTT 9ILS'T LTLST 01 0T
9801°'T  TOVI'T  1L08°0 1080 10600 11110 TSIy €08€Y  6SLET  THIST  FIOI0  6IEI0 08 06
SOII'T  €9¥I'T  0L0S'0  9€08°0 T6600 +TTI'0 bE61Y  90SH'Y  99LET  109€'T  00TI'0  SSSI'0 0L 08
62€1°T  €TLI'T  0S08°0  €1080 €€TI'0  LESIO IWLEY  LE99V  1S9ET  TLVET I¥SI'0  0SOTO 09 OL
IISI'T  6S61'T  ¥€08°0  €66L0 ILVI'O  6S81°0 996vy  YEESY  8LSET  VLEET  PP6I'0  S09T0  0S 09
7981°'T  89€T1  ¥00S'0  9S6L°0 ¥T61'0  TSHTO 0289%  ¥¥80'S  E€LVET  SETET  I8STO  €6¥E0 O 0S
1%2C1 I¥STT  TL6L'O  SI6L'0  +8STO0  ILTEO SYL6'y  SILY'S TISET TEOET 69LE0  8IISO  0E OF
PEOST  TELET  €06L0  LESLO  6VOF'0  0S6V°0 SYPL'S  VYLSE9  ¥T6TT  609TT 8EYL'O 10860 0T O
SITH' T 90IS'T  LOSLO  SILL'O TH69'0 I€6L0 19v8°9  LEOL'L ¥8YTT T90TT L9OL'T  ¥SSOT Ol 0T

S1+=0 S1—=n
(D) Ty (DY) Ty ()FY) Ty (8T (T (Fy)Ty  (D)3y) Ty (DY) Ty (DAY (T (Ty)Ty (Y)Y  w u

v

v

M

v

44D II-Ld 39pun g'0 = / PUe g = Y ‘7 = 0 PaXY 10J uonouny ssof XFNIT 9pUn ¢ pue y *y Jo SIOjwWnsa 3y Jo SYSY ' 414V,



155

Chapter 4. Kumaraswamy Distribution

096'T 90961  60€L0 60EL0 98I8T 88I8'I BELEYT  0SLEVYL  L910C  9910TC €I96°1T OV96'11 08 06
COL6'T  90L6'T  00€L0  00EL'0  ¥vP8 1T  9PP8'l LESYI  68SSVI  LTIOC  LTIOT CeLeTl LSLETI 0L 08
[Z86°1  TI¢86'I  06CL'0  06CL0 CTYL8'T  CvLY'I 61LL YT 6CLLYI  C800C  C8O0C 8I98CI Iv98°CI 09 0L
8C66'l 67661  18CL0 I8CL'0 00061 TCO6'L grL6V1 9SL6YI  O0¥O0'C  6€00C Ovec el 09¢eel 0S¢ 09
0¥00C  0vY00'C  ILZL'O  TILZLO 60¢6'T 0I€o'] OL8T'ST  9L8I'ST 96661 96661 6LE8Cl S6£8°CI 0y 0S
LYIOC  LYIOT  T9CLO0  C9CL'0  98S6'T  L8S6'] 6C6LST  Peoc’ ST $S66'1  vS66'T B9ce vl C8eL VI 0c oY
LSTOC  8SCOT  TSTLO  TSCTL'O  €L86'1T  €L86'I ¢809°ST  9809°GI  T166'1 11661 8898+ 869811 0C 0¢
€9¢0C  P9E0T  eYCL0  €¥CL0  8YIOT  67I0T €LI8'ST OLIST 6986’1 69861 9S6¢° Sl €96€°C1 0T 0¢
9656’1  66S6'T  0I€L'0  OIEL'0  <C9I8T  OLIB'T ceLevl  88LEVI  L9TOC  9910°C 0096°IT VCLOTI 08 06
CIL6'l  SIL6'T  00€L0  66CL0 TOV8T  6918°L L99S VI LILSYI  STIOT  +vCI0C 1e6eCl SYOVCl 0L 08
0286’1 €786l  06CL0  06CL0 IPL8T LYL8'] €69L VI  8eLLvl  €800C  C800C 8SSBTI 0998°CI 09 0L
0€66'T  Ce66'l  I8CL'O  I8CLO0 ¥C06'T 0£06'1 0CLO6 VI 8SL6WI  O¥00C  6£00C 9LCEEl S9ceel 0S¢ 09
e00C  LLO0C  CTLCLO  ILTLO L6C6'T  10¢6°1 Ce8I'ST  €98I°ST L6661 96661 68T8Cl S9ERCI 0 0¢
VI0C  0STI0OT  T9CLO0  T9CL'0  06S6'1T  €6S6°1 PI6€' ST  6£6E°CT  ¥S66'1  vS66'1 ceecvl PoLevl 0c Oy
96C0C  LSCOC  TSTLO  CSCL'O 0L86'T  CL86'I 9¢09°ST  ¥LO9'ST  T166'1 11661 vCI8YI 8998I 0C 0¢
€9¢0C  S9¢0C  £vCL’0  evel0 TSI0OCT  vSI0T 00C8'ST  TIT8ST 6986’1 6986’1 vCOV'SI €S0V SI 0T 0¢
CI+=e c'I-=e
(1)) 7y ((4) ) Ta((1) DY) 7)) Ty ()T ()T (1)) Ty(()ay)T9(() ) (D)) Ty ()7 ((y)7y w

v

v

v

v

O

"3unIosuad [[-odAJ, 1opun ') = 7 pue g = Y ‘7 = 0 XY Joj uonouny sso] XgNJIT JOpun y pue y ‘y Jo SI0JeWwnsd 2y Jo SYSIY ¢’ A19V]



Chapter 4. Kumaraswamy Distribution

156

Density

10

09

08

07

08

05

r/n

FIGURE 4.4: TTT plot for an ulcer patient with different ages ((10_2) * age) for the primary
disease.
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FIGURE 4.5: The PDF and CDF plots via the KD, EED and WD, for an ulcer patient with
different ages ((1072) xage) for the primary disease. Left panel: PDF; right panel: CDF.

TABLE 4.3: The -log-L values and the AIC and BIC values for the KD, EED and WD fitted
distributions.

distribution  -log-L AIC BIC KS p-value
KD 15.6765 27.35302 23.83062 0.082175 9923
EED 18.6053 33.21062 29.68822 0.102652  .9333
WD 18.0699 32.13973 28.61733 0.086067 9901
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FIGURE 4.6: The sample Q-Q plots via the KD, EED and WD, for an ulcer patient with
different ages ((10_2) *age) for the primary disease. Left panel: KD; middle panel: EED;
right panel:WD.
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FIGURE 4.7: The hazard plots via the KD, EED and WD, for an ulcer patient with different ages
((1072) x age) for the primary disease. Left panel: KD; middle panel: EED; right panel: WD.
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TABLE 4.6: PT-II CBR under different censoring schemes (S,.,) for fixed n =43 and p = 0.5
for an ulcer patient with different ages ((10_2) * age) for the primary disease.

Spm 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Ss30 X; 023 037 049 058 058 058 058 059 059 061 062 071 072 0.73 0.74
R, 8 10 5 0 0 0 0 0 0 0 0 0 0 0 0
X; 075 075 075 0.76 0.76
R, O 0 0 0 0

S;33 X; 023 038 047 052 053 054 058 058 058 058 059 059 0.61 062 0.71
R 9 5 4 0 1 1 0 0 0 0 0 0 0 0 0
X; 072 073 074 075 075 0.75 0.76 0.76
R O 0 0 0 0 0 0 0

Sa305 X; 023 036 041 049 049 053 054 054 058 058 058 058 059 0.59 0.61
R, 7 5 4 0 1 0 0 1 0 0 0 0 0 0 0
X; 062 071 072 073 074 0.75 0.75 0.75 0.76 0.76
R, O 0 0 0 0 0 0 0 0 0

Ss330 X; 023 038 041 047 047 048 049 049 052 053 054 054 056 0.58 0.58
R; 10 1 2 0 0 0 0 0 0 0 0 0 0 0 0
X; 058 058 059 059 061 062 071 072 073 074 075 0.75 0.75 0.76 0.76
R, O 0 0 0 0 0 0 0 0 0 0 0 0 0 0

S;333 X; 023 028 037 038 041 044 047 047 048 049 049 052 053 054 0.54
R, 4 3 1 2 0 0 0 0 0 0 0 0 0 0 0
X; 056 058 058 058 058 059 059 061 062 071 072 073 074 0.75 0.75
R, O 0 0 0 0 0 0 0 0 0 0 0 0 0 0
X; 075 076 0.76
R, O 0 0

Si335 X; 023 028 037 038 038 041 041 044 047 047 048 049 049 052 053
R, 4 3 0 0 1 0 0 0 0 0 0 0 0 0 0
X; 054 054 056 058 058 0.58 058 059 059 061 062 071 072 0.73 0.74
R, O 0 0 0 0 0 0 0 0 0 0 0 0 0 0
X; 075 075 075 0.76 0.76
R, O 0 0 0 0

Si33g X; 023 023 027 034 037 038 038 038 041 041 044 047 047 048 0.49
R O 2 2 1 0 0 0 0 0 0 0 0 0 0 0
X; 049 052 053 054 054 056 058 058 058 058 059 059 061 0.62 0.71
R, O 0 0 0 0 0 0 0 0 0 0 0 0 0 0
X; 072 073 074 075 075 0.75 0.76 0.76
R, O 0 0 0 0 0 0 0

Sa340 X; 023 027 028 033 034 036 037 038 038 038 041 041 044 047 047
R 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0
X; 048 049 049 052 053 054 054 056 0.58 058 0.58 0.58 059 0.59 0.61
R, O 0 0 0 0 0 0 0 0 0 0 0 0 0 0
X; 062 071 072 073 074 075 0.75 0.75 0.76 0.76

0 0 0 0 0 0 0 0 0 0

=
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Ulcer patient's ages(age/100) for the primary disease
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FIGURE 4.8: Box plot for PT-II CBR under different censoring schemes S,.,, for an ulcer
patient with different ages ( (1072) % age) for the primary disease.

TABLE 4.7: Summary of the different censoring schemes (S,,.,,) for PT-II CBR.

Siom Min QO Median Mean 03 Max SD Skewness Kurtosis
Saz20 0.23 0.580 0.6150 0.62450 0.74250 0.76 0.1402807 -1.1887960 0.9533382
Saz2z 0.23  0.560 0.5900 0.61170 0.73500 0.76 0.1344907 -0.9352590 0.6451634
Sa32s 023 0540 0.5900 0.59960 0.73000 0.76 0.1370669 -0.7446627 0.1144300
Sa330 023 0.498 0.5800 0.58370 0.71750 0.76 0.129973  -0.4230723 -0.1033113
Sa3:33 0.23  0.480 0.5800 0.56360 0.71000 0.76 0.140886  -0.3267876 -0.5493007
Saz35 023 0470 0.5600 0.55400 0.66500 0.76 0.1423789 -0.1981708 -0.7473111
Saz3z 0.23 0433 0.5500 0.54630 0.71250 0.76 0.156757  -0.2054257 -0.9473064
Saz.a0 023 0403 0.5350 0.52680 0.61250 0.76 0.1522546 -0.0128692 -1.0644150
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