
Chapter 4

Empirical Bayesian Estimation for

Kumaraswamy Distribution Using

Informative Prior *

4.1 Introduction

In the previous chapter, we have discussed the procedure for obtaining the classical, Bayesian

and E-Bayesian estimation under PT-II CBRs. In this chapter, we are introducing the Empirical

Bayes estimator of the Kumaraswamy distribution (KD). It is one of the simplest distribution

in the sense of being parsimonious in parameter. It is applicable to many natural phenomena

whose outcomes have lower and upper bound, such as the height of individuals, age of person,

scores obtained on a test, atmospheric temperatures, hydro logical data such as daily rain fall,

daily stream flow etc see Kumaraswamy (1980). The PDF and CDF of KD (α,λ ) are given by

f (x;α,λ ) = αλxα−1 (1− xα)λ−1 ; x > 0, α > 0, λ > 0, (4.1)

*Part of this chapter has been published in reputed peer-reviewed journals with indexing EBSCO Discovery

Service, see Kumar et al. (2019b).
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FIGURE 4.1: PDFs: left panel, CDFs: right panel of KD for different values of α and λ .
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FIGURE 4.2: HF of KD for different values of α and λ .

and

F(x;α,λ ) = 1− (1− xα)λ ; x > 0, α > 0, λ > 0, (4.2)

respectively; where α and λ are shape parameters. Figure (4.1) shows PDF and CDF for

α = 0.5,5,1,2,2 and λ = 0.5,1,3,2,5 respectively.

The reliability function (i.e. the probability of failure after time t) and the HF for distribution

Equation (4.1) are given by

R(t) = (1− tα)λ ,
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and

h(t) =
αλ tα−1

(1− tα)
.

respectively. The HF h(t) is shown in Figure (4.2) for α = 0.5,5,1,2,2 and λ = 0.5,1.5,3,2,5

respectively. It may be noted here that the HF has a non-monotonic shape which decreases

initially remains constant in the mid and lastly increases. For the statistical and probabilistic

properties and other distributions obtained under the influence of KD for the use in life testing

and reliability analysis, see Jones (2009), Lemonte (2011), Xiaohu et al. (2011), Santana et al.

(2012) etc. The problem of the estimation of the parameters of KD have been discussed by

Lemonte (2011) and Gholizadeh et al. (2011) etc. But it seems that the empirical Bayesian

inferences have not been attempted to the extent of classical and Bayesian inferences, although

it is well known that empirical Bayes is a good compromise between these two. According to

Morris (1983), an empirical Bayesian inference, which is, as expected, a hybrid of frequentist

and Bayesian inference.

The use of KD in life testing and reliability problems have been suggested by various authors,

see Jones (2009), Lemonte (2011), Kohansal (2017), Amin (2017) etc. A general problem

associated with life testing is that in most of the situation one can not wait for the failure of all

the items put on test. In such situation, censoring becomes unavoidable. A number of censoring

schemes are available in statistical literature. One of the popular censoring scheme under use

is progressive Type-II censoring scheme. On one hand it provides flexibility because it allows

the intermediate removals of the items from test and on other hand it guarantees for a minimum

efficiency of the estimators by fixing the number of complete observations.

In the point estimation an important element is the loss function specification. A very popular

loss function is SELF, used in estimation of parameter. Which can be appropriate on the space

of minimum variance-unbiased estimation. However, main drawback of this loss function is

that it have equal magnitude for o.e. and u.e., can say it is symmetric loss function. In the

literature, many asymmetric loss functions are available, and one of the most frequently used
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asymmetric loss function is the LINEX loss function, originally it was proposed by Varian

(1975) and popularized by Zellner (1986a), discussed in Chapter 1, Section (1.8).

In this chapter presented a piece of work, aims to develop the empirical Bayes estimators for

an unknown shape parameter of KD based on PT-II CBR under LINEX loss function. In KD,

one shape parameter known α > 1 i.e. α = 2 with λ > 1 (unknown) have been taken due

to the distribution with one mode of the KD. For α > 1, λ > 1, limx→1 f (x;α,λ ) = 0 and

limx→0 f (x;α,λ ) = 0. Therefore, it is mathematically deal with, the characteristics of KD for

different parameter values see Mitnik (2013).

4.2 Likelihood Function under PT-II CBRs

Suppose that in a life testing experiment having items put on test, the lifetime of which follow

the KD. Also, we considered that the lifetime experiment perform under PT-II CBR, discussed

in Chapter 1, Subsection (1.11.2). The conditional likelihood function can be written as

L(α,λ ;x|R = r) = c
m

∏
i=1

f (xi)[1−F(xi)]
ri; −∞ < x1 < ... < xm < ∞, (4.3)

where n = m+
m
∑

i=1
ri, n,m ε N,1 ≤ i ≤ m and c =

m
∏
i=1

γi where γi =
m
∑
j=1

(r j +1) , ri ∼ B(n−m−

i−1
∑

l=0
rl, p) for i = 1,2,3, ...m− 1 and r0 = 0 substituting f (.) and F(.) from Equation (4.1) and

(4.2) respectively, into Equation (2.3), we have

L(α,λ ;x|R = r) = c
m

∏
i=1

αλxα−1
i (1− xα

i )
λ−1

{
(1− xα

i )
λ
}ri

. (4.4)

Since at the every stage the removals are independent of each other with probability p for each

unit, the removals are following a binomial distribution i.e.,

ri ∼ B(n−m−
i−1

∑
l=0

rl, p),
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where i = 1,2,3, ...m−1. Therefore;

p(R1 = r1; p) =
(

n−m
r1

)
pr1(1− p)n−m−r1, (4.5)

and for i = 2,3, ...,m−1

p(Ri; p) = p(Ri = ri|Ri−1 = ri=1, ...R1 = r1)

=

(n−m−
i−1
∑

l=0
rl

ri

)
pri(1− p)

n−m−
i−1
∑

l=0
rl
. (4.6)

It is further assumed that Ris are independent of Xi:m:n for all i. Thus full likelihood function

can be written as:

L(α,λ , p;x) = L(α,β ,λ ;x|R = r)p(R = r; p), (4.7)

where;

p(R = r; p) = p(R1 = r1)p(R2 = r2|R1 = r1)p(R3 = r3|R2 = r2,R1 = r1)...

p(Rm−1 = rm−1|Rm−2 = rm−2, ...R1 = r1).

(4.8)

Making the substitution from the Equation (2.5) and (2.6) into Equation (2.8), we get

p(R = r; p) =
(n−m)!p

m−1
∑

i=1
ri
(1− p)

(m−1)(n−m)−
m−1
∑

i=1
(m−i)ri

(n−m−
i−1
∑

l=1
rl)!

m−1
∏
i=1

ri!
, (4.9)

now using Equations (2.4), (2.7) and (2.9), the full likelihood can be represented in the fol-

lowing form:

L(α,λ , p;x) = HL1(α,λ )L2(p). (4.10)
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where

H =
c(n−m)!

(n−m−
i−1
∑

l=1
rl)!

m−1
∏
i=1

ri!
,

L1(α,λ ;x|R = r) =
m

∏
i=1

αλxα−1
i (1− xα

i )
−(λ (−1−ri)+1) , (4.11)

L2(p) = p

m−1
∑

i=1
ri
(1− p)

(m−1)(n−m)−
m−1
∑

i=1
(m−i)ri

. (4.12)

It may be noted here that the likelihood function is product of three terms H, L1 and L2 ; where

H is a constant term, L1 is function of the parameters but does not involve p and L2 is function

of p but does not involve other parameters.

4.3 Estimation of Parameters

4.3.1 Maximum Likelihood Estimator

As mentioned above, only L1 involves the parameters, hence ML estimates of the parameters

are those values which maximizes L1, we have

lnL1(α,λ ) = m ln(α)+m ln(λ )+(α −1)
m

∑
i=1

ln(xi)

−
m

∑
i=1

(λ (−1− ri)+1) ln(1− xα
i )

(4.13)

Thus, the likelihood equations can be obtained by differentiating the log-L function given above

with respect to parameter α and λ and equating to zero; i.e., ML estimates are α̂ and λ̂ of α

and λ respectively, can be obtained by simultaneously solving the likelihood equations:

m
α
+

m

∑
i=1

ln(xi)+
m

∑
i=1

(λ (−1− ri)+1)
(
x−α

i −1
)−1 ln(xi) = 0, (4.14)
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and

m
λ
−

m

∑
i=1

(−1− ri) ln(1− xα
i ) = 0. (4.15)

The above mentioned normal equation solved simultaneously but do not provided closed form

solution for the estimators. Then we opted NR method to compute the ML estimators, then we

are using the invariance property to the ML estimators of the reliability function R(t) and the

failure rate h(t) at time t can be evaluated from the following:

R̂(t) = (1− tα)λ ; t > 0, (4.16)

and

ĥ(t) =
αλ tα−1

(1− tα)
; t > 0. (4.17)

4.3.2 Bayes Estimator

In this sequence, we obtain the Bayes estimator of the parameter λ , when we assume that λ has

a conjugate prior density,

π(λ ,β ) = β exp(−βλ ) ; λ > 0, β > 0. (4.18)

That is to say, we regard random variable λ with prior density an exponential distribution

exp(β ), which is used in detail Bayesian theory, see Berger (2013). It may be noted that, the

exponential family prior π(λ ,β ) has been used by Nassar and Eissa (2005), Kim et al. (2011)

possibly because of the fact that it is flexible enough to cover a wide range of prior believes

of the experimenter. Hence, mathematical formula to evaluate the posterior distribution of λ is

given below,

π (λ |x) = π(λ ,β )L1(α,λ ;x|R = r)∫+∞

0 π(λ ,β )L1(α,λ ;x|R = r)dλ
. (4.19)
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Substituting L1(α,λ ;x|R = r) and π(λ ;β ) from Equation (2.10) and (4.18), respectively, in

Equation (4.19). We obtain the posterior distribution after simplification as,

π (λ |T ) =
β exp(−βλ )c

m
∏
i=1

αλxα−1 (1− xα)−(λ (−1−ri)+1)

∫+∞

0 β exp(−βλ )c
m
∏
i=1

αλxα−1 (1− xα)−(λ (−1−ri)+1) dλ

=
(β +T )m+1λ m exp(−λ (β +T ))

Γ(m+1)
. (4.20)

where T = −∑
m
i=1 (ri +1) ln(1− xα

i ). Randomly generated posterior distribution for complete

sample size 20 having x = (4.602501e− 07,9.335994E − 07,1.306320E − 02,1.351230E −

02,4.355106E−02,9.641328E−02,1.842315E−01,2.266576E−01,2.577245E−01,4.145024E−

01,7.714380E−01,7.891063E−01,8.778412E−01,8.926065E−01,9.723090E−01,9.963840E−

01,9.986856E − 01,9.990788E − 01,9.999941E − 01,1.000000E + 00) are presented in Fig-

ure (4.3).
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FIGURE 4.3: Informative prior π(λ ) and the posterior π (λ |x,β ): left panel, Informative prior
π(λ ) and the posterior π (λ |x, β̂ ) : right panel of λ .

Note that the posterior distribution of λ is gamma distribution with parameters (m+1) and

(β +T ). The Bayes estimator of λ under LINEX loss function for posterior Equation (4.20) is

obtained, after simplification, as

λ̂B =−1
a

ln
∫

∞

0
e−aλ

π (λ |T )dλ =
m+1

a
ln
(

1+
a

β +T

)
. (4.21)
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Similarly, the Bayes estimators of R(t) and h(t) at time t are obtained under LINEX loss func-

tion

R̂B(t) =−1
a

ln
∫

∞

0
e−a(1−tα )λ

π
∗(λ |T )dλ =−1

a
ln

(
∞

∑
s=0

(−a)s

s!

(
1− s ln(1− tα)

(β +T )

)−(m+1)
)
,

(4.22)

and

ĥB(t) =−1
a

ln
∫

∞

0
e
−aαλ tα−1
(1−tα ) π

∗(λ |T )dλ =
m+1

a
ln
(

1+
aαtα−1

(β +T )(1− tα)

)
, (4.23)

respectively.

4.3.3 Empirical Bayes Estimator

In view of this fact, Shi et al. (2005) and Yan and Gendai (2003) used the ML estimator to

estimate hyper parameter of prior distribution for analyzing the Bayesian reliability quantitative

indexes of cold stand by system. In Equation (4.21), the hyper parameter β is an unknown

constant, so λ can not be used directly. Therefore, we make use of the ML estimator to estimate

β .

f (x) =
∫

∞

0
f (x;α,λ )π(λ ;β )dλ

=
∫

∞

0
αλxα−1 (1− xα)λ−1

β exp(−βλ )dλ

=
αβxα−1

(1− xα)(β − ln(1− xα))2 ,
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and

1−F(x) =
∫

∞

x
f (x)dx

=
∫

∞

x

αβxα−1

(1− xα)(β − ln(1− xα))2 dx

=
β

β − ln(1− xα)
.

Hence, Equation (2.3) can be expressed as

L(α,λ ;x|R = r) = c
m

∏
i=1

f (xi)[1−F(xi)]
ri (4.24)

substituting f (x) and F(x) in to (4.24)

L(α,λ ;x|R = r) = c
m

∏
i=1

αβxα−1

(1− xα)(β − ln(1− xα))2

(
β

β − ln(1− xα)

)ri

,

lnL(α,λ ;x|R = r) = lnc+m lnα +m lnβ +(α −1)
m

∑
i=1

lnx−
m

∑
i=1

ln(1− xα)

+
m

∑
i=1

ri lnβ −
m

∑
i=1

(ri +2) ln(β − (1− xα)) ,

∂ lnL(α,λ ;x|R = r)
∂β

=
m
β
+

m

∑
i=1

ri

(
1
β
− 1

(β − ln(1− xα))

)
−2

m

∑
i=1

1
(β − ln(1− xα))

.

Now, we have considered,

k1(β ) =
m
β
+

m

∑
i=1

ri

(
1
β
− 1

(β − ln(1− xα))

)
, k2(β ) = 2

m

∑
i=1

1
(β − ln(1− xα))

.

Using iterative numerical computing method to obtain the ML estimate of β . We just draw a

conclusion that k1(β ) = k2(β ) has a root i.e, β̂ , numerically solved through R software. Since
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the empirical Bayes estimate of λ is

λ̂E =
m+1

a
ln
(

1+
a

β̂ +T

)
(4.25)

where β is replaced by β̂ in Equation (4.21). Substituting β̂ in Equation (4.22), the empirical

Bayes estimation of R̂(t) is obtained

R̂E(t) =−1
a

ln

 ∞

∑
s=0

(−a)s

s!

(
1− s ln(1− tα)

(β̂ +T )

)−(m+1)
 . (4.26)

Similarly, the empirical Bayes estimation of ĥ(t) is given as

ĥE(t) =
m+1

a
ln

(
1+

aαtα−1

(β̂ +T )(1− tα)

)
(4.27)

As it has been mentioned earlier, using (Ri = ri = 0; i = 1, · · · ,m−1) in Equation (2.3) and

Equation (4.24) and proceed to above subsequent equations, we can get the Bayes and empir-

ical estimators λ̂B2, λ̂E2 , R̂B2(t), R̂E2(t) and ĥB2(t), ĥE2(t) of λ ,R(t),h(t) for Type-II censoring

at time t, respectively. For the assessment of the above equations, we numerically calculate

through R software.

4.4 Monte Carlo Simulation Study and Comparison of Esti-

mators

An analytical study of the behavior of the estimators are not possible. Therefore, we make a

study based on simulated results and hence, we need to simulate PT-II CBR samples from KD.

The algorithm proposed by Balakrishnan and Sandhu (1995) have been used for simulation of

samples, Since, we simulate PT-II CBR from specified KD and propose the use of following

algorithm



Chapter 4. Kumaraswamy Distribution 150

i. Specify the value of n.

ii. Specify the value of m.

iii. Specify the value of parameters α,λ and p.

iv. Generate random number ri from B
(
n−m−∑

i−1
l=0 rl, p

)
, for i = 1,2,3, · · · ,m−1.

v. Set rm according to the following relation.

vi. rm =


n−m−∑

m−1
l=1 rl if n−m−∑

m−1
l=1 rl > 0

0 otherwise

vii. Generate m independent U(0,1) random variables W1,W2, · · · ,Wm.

viii. For given values of the progressive type-II censoring scheme ri(i = 1,2, · · · ,m)

set Vi =W 1/(i+rm+·+rm−i+1)
i (i = 1,2, · · · ,m).

ix. Set Ui = 1−VmVm−1 · · ·Vm−i+1(i= 1,2, · · · ,m), then U1,U2, · · · ,Um are PT-II CBR samples

of size m from U(0,1).

x. Finally, for given values of parameters α and λ , set xi = F−1(U)(i = 1,2, · · · ,m). Then

(x1,x2, · · · ,xm) is the required PT-II CBR sample of size m from the KD.

Comparison of Estimators

Here, we compare the different estimators obtained through PT-II CBR and Type-II censored

samples. The comparison of the risks (average loss over sample space) under LINEX loss func-

tion. The estimators λ̂B, λ̂B2 , λ̂E , λ̂E2; R̂B(t), R̂B2(t), R̂E(t), R̂E2(t) and ĥB(t), ĥB2(t), ĥE(t), ĥE2(t)

of λ ,R(t) and h(t) are respective Bayes and empirical Bayes estimators for PT-II CBR and

Type-II censoring samples under LINEX loss function, respectively. Through MC simulation

obtained the risks of the estimators of 1000 samples. Here, we note that the risks of the es-

timators are function of n,m,a,α,λ ,β and t. The choice of hyper parameters of the prior
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distribution of λ can be taken in such a way that if we consider any two independent informa-

tion as prior mean and variance of λ , then, (µ = 1/β ,σ2 = 1/β 2) whereas µ is considered as

true values of the parameter λ for different confidence in terms of smaller and larger variances.

On the basis of this information, the hyper parameter of λ can be easily evaluated from this

relation, (β = µ/σ2).

In order to consider the variation of these values, we obtained the simulated risks for n =

20[10]90,m = 10[10]80, t = 0.2,α = 2(known), λ = 2 = µ (say prior mean of λ ), σ2 = (1,3)

(say prior variance of λ ), since β = (2/1,2/3), a = ±1.5. We use the symbol RL to denote

the risk under LINEX loss function, and the simulated risks under LINEX loss functions are

given in Tables (4.1−4.2). Table (4.1) present the risks of estimators for PT-II CBR. The next

Table (4.2) show the risks of estimators for Type-II censored samples. From Table (4.1), we

can observe that for PT-II CBR, the risk of the estimators of λ̂E and ĥE(t) under LINEX loss

function is the least (for both small and large prior variances i.e. σ2 = 1,3) for both a =+1.5

(when o.e. is more serious than u.e.) and a = −1.5 (when u.e. is more serious than o.e.).

But the risk of the estimators of R̂B(t) under PT-II CBR is minimum for LINEX loss function

with a = ±1.5 for small and large prior variances. Due to the change in the value of n and m

(effective sample size), the risks of the estimators change, but follow a particular trend. Further,

the risk of the estimator λ̂E and ĥE(t) under LINEX loss function was found to be least always.

It is also observed that as the failure proportion (m/n) increases, the magnitude of the risk of

the estimator λ̂E and ĥE(t) decreases. However, the magnitude of the risk of the estimator R̂B(t)

increases as failure proportion increases.

From Table (4.2), we can observe that for Type-II censoring, the risk of the estimators of

λ̂E2, ĥE2(t) and R̂B2(t) have also the least (for both small and large prior variances) for a =±1.5

under LINEX loss function. When the change in the value of (n,m) with respective for small

and large prior variances, the risks of the estimators change, they have follow a similar trend

as discuss above in Table (4.1). But, the risk of the estimators at λ̂E2, ĥE2(t) and R̂B2(t) were

also found to be the least always. From Tables (4.1− 4.2), it can be seen that the behavior

of the risks of the estimators under PT-II CBR is more similar to that of the estimators under
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Type-II censoring. The risks were found to be least for the empirical Bayes estimators λ̂E , λ̂E2

and ĥE(t), ĥE2(t) of λ and h(t) with an informative prior Γ(1,β ) respectively. Therefore, we

propose that empirical Bayesian estimator of parameter and reliability characteristics can use

planning of the experiment. Hence, the reliability practitioners can save much time and cost of

the experiment.

4.5 An application to Ulcer Patients Data

Now, we extract 43 primary disease (ulcer) patients data set from Collett (2014) to show prac-

tical applicability of proposed work. It have been taken for the analysis of PT-II CBRs dis-

cussed in the context of a study based on age
(
(10−2)∗age

)
data. In order to have an idea

about the associated primary disease (ulcer) patient’s age failure rate, we considered, a graph-

ical method based on TTT plot as a crude indicator see Aarset (1987). The empirical TTT

is given as T ( r
n) =

∑
r
i=1 x(i)+(n−r)x(r)

∑
n
i=1 x(i)

, where r = 1,2, · · · ,n and x(r) is the order statistics of the

sample. For this data set in Figure (4.4) shows concave TTT plots, indicating increasing failure

rate functions along with Figure (4.5), (4.6) and (4.7) represent PDF/CDF plot, sample Q-Q

plot and hazard plots respectively, which can be properly accommodated by KD. However,

we fitted three competitive distributions, F(x;α,λ ) =
(

1− e−λx
)α

, x > 0, α > 0,λ > 0 and

F(x;α,λ ) = 1− e−(λx)α

, x > 0, α > 0,λ > 0 are CDFs of the EED (Exponentiated exponen-

tial distribution) and WD (Weibull distribution) respectively. Table (4.3) provides the -log-L

values and the AIC, BIC and p-values for these distributions. They indicate evidence in favor

of KD. The ML estimates (and their corresponding standard errors in parentheses) of the KD,

EED and WD parameters are given by α̂ = 3.2490(0.0108917), λ̂ = 5.64104(0.03766); α̂ =

15.44731(0.12571), λ̂ = 6.531165(0.01933) and α̂ = 3.55875(0.01012), λ̂ = 1.76975(0.00186)

respectively. But for the purpose of illustrating the method discussed in this chapter, PT-II CBR

samples are generated from this data set under different schemes see Table (4.6). The box plot

of different censoring schemes as well as descriptive statistics is also presented in Figure (4.8)

and Table (4.7) respectively. The required numerical calculations for the considered schemes
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are carried out using the formula given in Section (4.3) through R software see Ihaka and

Gentleman (1996). The Bayes estimates, empirical Bayes estimates of λB, RB(.), hB(.) and

λE ,RE(.), hE(.) under LINEX loss for a = ±1.5 are presented in Table (4.4). While, Table

(4.5) shows the Bayes, empirical Bayes estimates of λB2 , RB2(.), hB2(.) and λE2 ,RE2(.), hE2(.)

for Type-II censoring under LINEX loss for a = ±1.5. From Tables (4.4− 4.5), it may also

be observed that the behavior of the estimators under PT-II CBRs are more similar to that of

the estimators under Type-II censoring. The estimates were found to be decreases as effective

sample size increases.

4.6 Conclusion

On the basis of the previous discussion given in the above Section (4.5), we may conclude that

the proposed empirical Bayes estimators λ̂E , λ̂E2 and ĥE(t), ĥE2(t) are better than Bayes estima-

tors λ̂B, λ̂B2 and ĥB(t), ĥB2(t) for smaller or larger prior variance (σ = 1,3) of β with a =±1.5.

Also, we have seen that Table (4.1−4.2) under LINEX loss function for the estimators R̂E(t)

and R̂E2(t) is not always less than those of R̂B(t) and R̂B2(t). Since the risks associated with

R̂B(t) and R̂B2(t) is smaller than the risk associated with reliability of the empirical estimators.

Thus, the use of propose estimator (λ̂E , R̂B(t), ĥE(t)) and (λ̂E2 , R̂B2(t), ĥE2(t)) under PT-II CBRs

and Type-II are recommended under LINEX loss function respectively.
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FIGURE 4.4: TTT plot for an ulcer patient with different ages
(
(10−2)∗age

)
for the primary

disease.
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for the primary disease. Left panel: PDF; right panel: CDF.

TABLE 4.3: The -log-L values and the AIC and BIC values for the KD, EED and WD fitted
distributions.

distribution -log-L AIC BIC KS p-value
KD 15.6765 27.35302 23.83062 0.082175 .9923

EED 18.6053 33.21062 29.68822 0.102652 .9333
WD 18.0699 32.13973 28.61733 0.086067 .9901
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FIGURE 4.6: The sample Q-Q plots via the KD, EED and WD, for an ulcer patient with
different ages

(
(10−2)∗age

)
for the primary disease. Left panel: KD; middle panel: EED;

right panel:WD.
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TABLE 4.6: PT-II CBR under different censoring schemes (Sn:m) for fixed n = 43 and p = 0.5
for an ulcer patient with different ages

(
(10−2)∗age

)
for the primary disease.

Sn:m i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

S43:20 Xi 0.23 0.37 0.49 0.58 0.58 0.58 0.58 0.59 0.59 0.61 0.62 0.71 0.72 0.73 0.74
Ri 8 10 5 0 0 0 0 0 0 0 0 0 0 0 0
Xi 0.75 0.75 0.75 0.76 0.76
Ri 0 0 0 0 0

S43:23 Xi 0.23 0.38 0.47 0.52 0.53 0.54 0.58 0.58 0.58 0.58 0.59 0.59 0.61 0.62 0.71
Ri 9 5 4 0 1 1 0 0 0 0 0 0 0 0 0
Xi 0.72 0.73 0.74 0.75 0.75 0.75 0.76 0.76
Ri 0 0 0 0 0 0 0 0

S43:25 Xi 0.23 0.36 0.41 0.49 0.49 0.53 0.54 0.54 0.58 0.58 0.58 0.58 0.59 0.59 0.61
Ri 7 5 4 0 1 0 0 1 0 0 0 0 0 0 0
Xi 0.62 0.71 0.72 0.73 0.74 0.75 0.75 0.75 0.76 0.76
Ri 0 0 0 0 0 0 0 0 0 0

S43:30 Xi 0.23 0.38 0.41 0.47 0.47 0.48 0.49 0.49 0.52 0.53 0.54 0.54 0.56 0.58 0.58
Ri 10 1 2 0 0 0 0 0 0 0 0 0 0 0 0
Xi 0.58 0.58 0.59 0.59 0.61 0.62 0.71 0.72 0.73 0.74 0.75 0.75 0.75 0.76 0.76
Ri 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

S43:33 Xi 0.23 0.28 0.37 0.38 0.41 0.44 0.47 0.47 0.48 0.49 0.49 0.52 0.53 0.54 0.54
Ri 4 3 1 2 0 0 0 0 0 0 0 0 0 0 0
Xi 0.56 0.58 0.58 0.58 0.58 0.59 0.59 0.61 0.62 0.71 0.72 0.73 0.74 0.75 0.75
Ri 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Xi 0.75 0.76 0.76
Ri 0 0 0

S43:35 Xi 0.23 0.28 0.37 0.38 0.38 0.41 0.41 0.44 0.47 0.47 0.48 0.49 0.49 0.52 0.53
Ri 4 3 0 0 1 0 0 0 0 0 0 0 0 0 0
Xi 0.54 0.54 0.56 0.58 0.58 0.58 0.58 0.59 0.59 0.61 0.62 0.71 0.72 0.73 0.74
Ri 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Xi 0.75 0.75 0.75 0.76 0.76
Ri 0 0 0 0 0

S43:38 Xi 0.23 0.23 0.27 0.34 0.37 0.38 0.38 0.38 0.41 0.41 0.44 0.47 0.47 0.48 0.49
Ri 0 2 2 1 0 0 0 0 0 0 0 0 0 0 0
Xi 0.49 0.52 0.53 0.54 0.54 0.56 0.58 0.58 0.58 0.58 0.59 0.59 0.61 0.62 0.71
Ri 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Xi 0.72 0.73 0.74 0.75 0.75 0.75 0.76 0.76
Ri 0 0 0 0 0 0 0 0

S43:40 Xi 0.23 0.27 0.28 0.33 0.34 0.36 0.37 0.38 0.38 0.38 0.41 0.41 0.44 0.47 0.47
Ri 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Xi 0.48 0.49 0.49 0.52 0.53 0.54 0.54 0.56 0.58 0.58 0.58 0.58 0.59 0.59 0.61
Ri 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Xi 0.62 0.71 0.72 0.73 0.74 0.75 0.75 0.75 0.76 0.76
Ri 0 0 0 0 0 0 0 0 0 0
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FIGURE 4.8: Box plot for PT-II CBR under different censoring schemes Sn:m for an ulcer
patient with different ages

(
(10−2)∗age

)
for the primary disease.

TABLE 4.7: Summary of the different censoring schemes (Sn:m) for PT-II CBR.

Sn:m Min Q1 Median Mean Q3 Max SD Skewness Kurtosis

S43:20 0.23 0.580 0.6150 0.62450 0.74250 0.76 0.1402807 -1.1887960 0.9533382

S43:23 0.23 0.560 0.5900 0.61170 0.73500 0.76 0.1344907 -0.9352590 0.6451634

S43:25 0.23 0.540 0.5900 0.59960 0.73000 0.76 0.1370669 -0.7446627 0.1144300

S43:30 0.23 0.498 0.5800 0.58370 0.71750 0.76 0.129973 -0.4230723 -0.1033113

S43:33 0.23 0.480 0.5800 0.56360 0.71000 0.76 0.140886 -0.3267876 -0.5493007

S43:35 0.23 0.470 0.5600 0.55400 0.66500 0.76 0.1423789 -0.1981708 -0.7473111

S43:38 0.23 0.433 0.5500 0.54630 0.71250 0.76 0.156757 -0.2054257 -0.9473064

S43:40 0.23 0.403 0.5350 0.52680 0.61250 0.76 0.1522546 -0.0128692 -1.0644150
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