Chapter 5

Bayesian Estimation of the Number of
Species Using Poisson Lindley Stochastic

Abundance Model

5.1 Introduction

Previous chapters are based on the lifetime problem. While this chapter deals with ecological
problem to estimating the number of species are present in an organism. The problem of esti-
mating the number of species has been discussed extensively in the biological and ecological
literature (Wilson and Collins (1992), Colwell and Coddington (1994), Bunge et al. (1995)).
Various approaches have been proposed like parametric and non-parametric respectively. Both
of these approaches have some optimal properties. In a parametric distribution, we can fit the
observed frequency counts and use the estimated parameter values to estimate the number of
species see Greenwood and Yule (1920). A non-parametric approach of ML version has been
given by Norris and Pollock (1998). In non-parametric, the estimators are based on the cov-
erage of the sample and the fraction of the population. These concepts were first proposed by

Chao and Lee (1992).
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But authors are interested to estimate the total number of species. When the total number of
species have not been caught during the experiment. The estimators have been developed in
this chapter through a parametric approach when observed samples were induced a parametric
model. The estimation methods needed in this chapter are based on a Poisson mixed sampling
model. Because each species independently contributed as representatives of the sample ac-
cording to a Poisson process. When the rate or abundance parameters for these processes are

taken to be i.i.d. RV from some fixed well-known distribution, see Chao and Bunge (2002).

One parameter Lindley (1958) distribution has been used for this process. Ghitany et al. (2008)
studied some properties of the one-parameter Lindley distribution. In the application part, they
showed that it is more flexible and works better in modeling for different types of data than well-
known exponential distribution. Now we mixed this distribution with Poisson, and get discrete
Poisson Lindley distribution. For applicability of Poisson mixed distributions, authors are refer-
ring to see Sankaran (1970). Furthermore the distributions based on Poisson mixture model for
species abundance problems have been study by many authors such as (Bulmer (1974), Ord and
Whitmore (1986), Sichel (1986)) etc. But in estimation problem for the number of species, ac-
cording to Fisher et al. (1943) and Sichel (1986), it has required a suitable Poisson mixed model
for a given problem. Thus we need to Poisson mixed as well as in-truncated distributions as
per the demand of the problem see, Leite et al. (2000). Bunge and Fitzpatrick (1993) shows an
interesting review of the problem of estimating the number of species. Therefore, we motivated
by the above study is that no attempt has been made to use Poisson Lindley distribution as a
model in species problems. Therefore, in this chapter we propose to develop such an estimator
and estimation procedure for the parameters. The details of the mathematical formulations are

discussed in a further Section.

In the past few decades, Bayesian estimation for the number of species population parame-
ter based on Poisson mixed models have been studied by several authors such as Lewins and
Joanes (1984), Leite et al. (2000) and Barger et al. (2010), etc. Fully hierarchical and em-
pirical Bayesian estimation of the number of species based on Poisson-Gamma mixed model

has been discussed by Rodrigues et al. (2001), and for other Poisson-mixed models by Wang
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et al. (2007), Barger et al. (2010), etc. But, it seems as if no attempt has been made to develop
Bayes estimators of the number of species based on Poisson mixed Lindley distribution. Al-
though estimation of the number of species based on Poisson mixed models under classical set
up has been attempted by Gotelli and Colwell (2011), Chao and Lee (1992), Sichel (1986), etc.
Therefore, we propose to develop a Bayesian estimation procedure to obtain the estimate of the
number of species (using a Lindley model as a stochastic abundance model in which the sample
according to independent Poisson process i.e., Poisson Lindley). Jeffery’s and Bernardo’s ref-
erence priors have been obtaining and proposed the Bayes estimators of the number of species
for this model. An important feature of this chapter is to develop the required mathematics for

the number of species parameters and priors along with its application to biological data.

5.2 Model and Likelihood Function

In biological sampling there are S species present, it has for some time been observed. When
the successive, independent and unequal samples with sizes xi,x»,x3,--- ,xs be taken from
heterogeneous abundance of species. The number of individuals observed in different samples
will vary in a different manner in study period [0,¢]. The distribution of the number of observed

species depends only on one parameter Poisson distribution (A4;) may be easily expressed in

terms of the number expected (A;), which is given eitlx(:!l)xi, i=1,2,3,---,5. Where X; is
the variate representing the number, which has been observed in any sample. And A; is the
parameter, which is average value of Xj;, and need not be whole number. This is an extension of
the Poisson process, and is provided by supposition that the values of A are distributed as well-
known Lindley distribution with density function f;,, where 1) is a low dimensional parameter
vector. In the Lindley distribution case, 7 = 0 and f, (1) = fo(A) and empirical CDF is Fg(A).
Thus A must be positive, and it has followed a well known form the distribution of Lindley (0),

such that the element of frequency or probability with which it falls in any infinitesimal range.
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Fo(A)=F(A|0)=1— A>0;0 >0,

fazy:ﬂxm):527u+zyﬂﬁ; 1>0:0>0.
We can only observe the number of individuals contributed to the sample by each species.
When contribution is greater than 0 i.e. X; > 0. The species that contribute zero individuals to
the sample are unobserved. The observed data are therefore §; = Z,’S:l I[(X; = j) for j > 1. Thus,
S represent the number of species that contribute j individuals to the sample. The observed
number of species is w=}_ ;| 5, and the observed number of individual is s =} ;~.; js;, where
s j are realized values of S;. The goal is to estimate S (or equivalently to predict so) based on the

observed frequency counts {s; : j > 1}. Without loss of generality, we can and do take t = 1

because the time scale does not affect any of our estimates of S.

Therefore, the marginal distribution of X; is pg(j) = [ e_;!’lj f(A|6)dA representing the zero

truncated P-mixed Poisson distribution, where f(4|0) = %F (A|6). Sankaran (1970) derived

the zero truncated P-mixed Poisson Lindley distribution given below,

6 \? j+6+2
) = —; 60>0;,7=0,1,2,3,---, 5.1
when j = 0 then Equation (5.1) become
0= (-2 0+2). 4. (5.2)
Pl =\176) \o+1) ' '

5.2.1 Likelihood and Information of Parameters

The likelihood can be written as
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Where A is the set of x1,x2,x3, - - -, xg Which correspond to the observed frequencies (s1,s2,: -+ ,ss).

Sanathanan (1972) has demonstrated that the likelihood can be written as

2500 = (5) 1= po(0)" o0 2 ] (pe_w)

H]>1SJ i>1
+0+2
w! 1+9 ( (]9+1 Jt )
[j>18! 50 1—(% (6%)
=A(S,0)B(0), (5.3)

where S > w, i.e. S —w = s¢ is the number of unobserved species. Now, the likelihood are func-
tion of parameters S and 6 in the Equation (5.3), where 6 = (0, 65, ..., 0,,). Since, we consider
0 is a nuisance parameter, and our interest is in estimating S. Which shows the likelihood can
be factored into a binomial likelihood for w that corresponds A(S, 6), and a multinomial like-
lihood for the observed frequencies corresponds the B(8). This factorization of the integrated
likelihood has an important role. It was first formulated by Sanathanan (1972) who derived the
asymptotic theory for the ML estimation for S and 8. Fisher Information matrix can only be
found for likelihoods which are differentiable with respect to the parameters. In the species
likelihood, S is discrete parameter, S = 1,2, .... This likelihood is not differentiable with respect
to S. Lindsay and Roeder (1987) define information for discrete parameters using the LDS

defined as
L(S)—L(S—1)

LDS(8) = ==

were L(S) is the likelihood for an integer parameter S.
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FIGURE 5.1: Plot of LDS for S with respect different 6 for fixed in (a) w = 30, N = 50, and
(b) w=45, N =50.

If LDS(S) satisfies the form LDS(S) = (Y — Us)/cs, where Us and cg are function of S and
Y is random data, then 1/Var(LDS(S)) is the information in S. In Figure (5.1), shows that
LDS(S) = 0 then it gives the maxima of S with respective to different choice of 6. Using the
method described by Lindsay and Roeder (1987) to calculate the information for S and 6, we

obtain,

Ll—

T
1-pg (0 )
e (— F5logpe(0)) ) |

F(5,6) = (
—2-10gpg(0) S(—p(0))

Where, % pe(0) is the column vector of partial derivatives. The p(0) = (Exaa—;zlogpg ( ]))
has taken expectation with respect to pg. We may also observed that the diagonal elements
of partitioned matrix contain elements which factor into a function of S times a function of 6.

Thus we have,

1(1+9)23—92(9+2) _( 262+0—4 )T
F(5.0) = ( S EI ) 0(6+1)(6+2) )7 (5.4)

20%40—4 2 24860+136%2+1003+36% .
- (9(9+1)(9+2)> S <§ - + W(J,9)>

0(6+1)°
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where, y(j,0) = Yo W'

5.3 Bayes Estimators of Parameters

In Bayesian paradigm, the parameter of interest 8 and S are consider to be RV, and having
their prior distribution. The selection of prior distribution is often based on the type of prior
information available to us. When we have minimal or no information about the parameter then

a non-informative prior should be used.

5.3.1 Bayes Estimators of Parameters Using Jeffery’s Priors

The Jeffrey’s prior (see Jeffreys (1946)) is one of the general rule. Using the fisher information
matrix as shown above F(S,0) in Equation (5.4). The Jeffery’s prior for (S,0) is g;(S,0).
It based on invariance property under one to one re-parameterization. The Jeffery’s prior is
defined to be proportional to the square root of the Fisher information matrix. For multidimen-
sional model, the determinant of the Fisher information is used, which preserve the invariance

property. By calculating the determinant of the partitioned matrix in Equation (5.4) is,

g(S,0) o det[F(S,0)]'/? (5.5)

where g(0) is some function of 6, which will depend on the dimension of the information

matrix. When the dimension increases this will become complex,

0+1)7°—-0%(06+2 2 2+80+136%2+1003 +36%
5.0 ({0

02(6+2) 02 6(6+1) +ll/(ja9)) (5.6)

20240 -4 \°\}
_(e(eﬁ)(eu)) ) '
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Several authors have presented a general rule, and for using Jeffery’s prior for an exponential
family by showing that a proper posterior is produced (Jeffreys (1961), Barger and Bunge
(2008) and Barger et al. (2010)). The product of two independent prior has been discussed by
Jeffery. They suggest to use an idea about reasonable Jeffery’s prior for integer parameter S and
continuous parameter 6. Integer parameter is the interest of our study parameter. Using Bayes
theorem for computing likelihood in Equation (5.3) and Jeffery’s prior in Equation (5.7). We

get the joint posterior distribution of 7y (S, 0) is,

ﬂJ(Sa 9|x) o< L(S7 Glx)gJ(S, 9)7

75(S. 6]x) o (5;) (1‘ (1i9>2 <gﬁ)>w ((1%)2 (Z—ﬁ»SW

0 \2(_j+6+2 5
! (%) (F5%)
. . 2
M5! i\ 1- (5)° (§22)
( (04+1)>—6%(6+2) 3_2+89+13«92+1oe3+394Jr (.0)
62(6 +2) 92 0(6+1)° Vi,

2 . 2 1
‘<e<299+3?ef2>) ). 67

Now full conditional posterior for S is

oo = ()-89 G3D) (%) (650)
i NB<W+1’<1_(1EG)2<21?)>)’ (5.8)
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and full conditional posterior for 0 is

Wl 6 \(j+6+2\)" !
ﬂ1(9|57x)“mj1;11<(1+9) ((9+1)j+1)> 1_( ) )Z(w)

1+6 0+1
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Full conditional posterior for S, we can use direct sampling from negative binomial distribution
with size (w+ 1) and probability (1 — (HLB)Z (85) ) , and full conditional posterior for 8 does
not come in closed form then using the M-H steps uses a normal proposal distribution to get

posterior samples.

5.3.2 Bayes Estimators of Parameters Using Bernardo’s Reference Priors

Now, we have proposed for considering the Bernardo’s reference prior. This prior is a quite
general and powerful tool for obtaining automatic prior to be used in Bayesian analysis. Be-
cause of that reference prior are firstly useful with large sample but may also be helpful where
the data analysis is unsure whether a sample is large. Typically the Bernardo’s reference prior is
the same as the Jeffery’s prior in the one dimensional case, but where the parameter space © is
bivariate or more. Non-informative prior is Bernardo’s reference prior (Bernardo (1979)) based
on maximizing and expected entropy (measurement of loss of information). The Bernardo’s
reference prior algorithm take into account (see Bernardo and Ramon (1998). It may also noted
that in the standard Bayesian approach, the Bernardo’s reference prior is used to obtain the
joint posterior for (S, 0) = . In this approach, we only discuss the two groups case, where the
parametric space © or vector is split in the parameter of interest S, and the nuisance parame-
ter, O under certain regularity conditions (see Bernardo (1979), Bernardo and Ramon (1998),
Bernardo and Smith (2009)) for the existence of a consistent and asymptotically normal es-

timator of the parameters. Thus the reference prior for S, when 0 is known, is used Fisher
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information matrix in Equation (5.4). The construction of the reference prior takes into ac-

count the order of interest of the parameters S and 6 is a nuisance parameter.

Now we obtain the Bernardo’s reference prior for a nuisance parameter, m = 1. Thus, the Fisher
information matrix in Equation (5.4) will be 2 x 2. Let us assume H = F~! be the variance-
covariance matrix. (h11)"/% = ag($)bo(0) and (f2)'/? = a;(S)b () are the elements of the
covariance and information matrices, respectively. The nuisance parameter 6 and number of
species S are independent to each other. The joint Bernardo’s reference prior gg(S,0) will

become,

gr(S,0) o (ao($))""(b1(0))"/? (5.10)

o 5T2(p(0)!/2,

2 2486+1362+1003 +36% o\ 2
= —II/(J,G)) . (5.11)

w12 _
$R(S,0) S ( 62 0(0+1)

From above Equation (5.11), we may also seen the joint gg(S, ) factorized into a marginal
distribution function of S and 6. Now, the joint posterior distribution of 7(S,0) is based on

likelihood and Bernardo’s reference prior is,

7R (S, 0]x) o< L(S, 8]x)gr (S, 6),

TR(S. O]x) o (f;) (1— (ie)z(gﬁ)) ((HLGY

L)Z j+6+

w! 1+6 (6+1)771
EHE 6 \2 (642

Mzt 2\ 1= (%) (8%

- 2 2480+1362+1003 + 364 1/2
1/2 .
sl <—§ 56T 1) —W(J,e)> . (5.12)
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Now full conditional posterior for S is

”R(Sw’x)“S_I/ZCV) (1_ (1:39)2 (Zﬁ))w ((1i9>2 (fﬂ?))sw’ 19

and full conditional posterior for 0 is

0 \2( j+e+2 \\ ¥
sy () () (-2
R X Missi! 3 _(_6_ 2 6+2 6
215 I\ 1= (%) (55
248641362 +1003 +36% 1/2
o) 5.14
I v(j.0)) (5.14)

Here, full conditional posterior distribution of S and 6 are not obtainable in closed form then
using the M-H steps. For posterior samples of S and 6, we used a negative binomial distribution

and normal distribution as a proposal distribution for S and 6, respectively.

5.4 An application to Microbial Organisms Species Data

Let us consider a sample of microbial organisms species data set, taken from Barger and
Bunge (2008). The data set may be assumed to be a sample from a P-mixed Poisson model
having a non- monotonic HR as that of Poisson Lindley model. The data set was origi-
nally reported by Behnke et al. (2006), and it represents the classification of the organisms
into species based on 18S rRNA similarity. The samples of microbes were taken from 18
meter below the water surface of the Framvaren Fjord in Norway. Diversity of these or-
ganisms is largely unknown and estimating the total number of species of microbes. Cor-
respond the observed frequency (nonzero) and the number of species are listed as (j,s;) :
(1,15),(2,6),(3,7),(4,2),(5,1),(6,1),(7,1),(8,1),(9,1),(12,1),(15,1),(20,1),(164,1). The
observed number of species and observed number of individual organisms are found to be

w = 39 and s = 302 respectively.
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First of all, we checked the graphical method to the data set, have come from Poisson Lindley
model. Figure (5.2) shows the (observed) relative frequency histogram and the postulated (or
expected) relative histogram on the same graph. Which shows that Poisson Lindley model
provides a satisfactory close to the agreement between two histogram appears. But there is
little difference between the two histogram due to some chance fluctuation. Since, we study
the chi-square test of goodness of fit. Hence, xczal = 3.70 and xtzab’%% 3= 7.82 then xtzab is
greater than xcza ;» S0 we can say that observed frequency has no significance difference between
expected (hypothesized) frequency. Thus this data set has been proposed for Poisson Lindley
model and compared with some well-established models, namely, Poisson and exponential-
mixed Poisson model (discuss it in details Barger and Bunge (2008)). Here we used values of

frequencies up to 10 selected by the criteria described therein (goodness-of-fit).

The full data includes observed frequencies greater than ten, but we only model the observed
frequencies less than equal to ten. This can be interpreted as assuming the most abundant
species are from a known sub population. For final estimate of the number of species were

added later when observed frequencies greater than 10.

™~ 7 = Observed Relative Frequency
= Expected Relative Frequency

Frequency

_ -

I I I I I I
0.0 0.1 0.2 0.3 0.4 0.5

Relative Frequency

FIGURE 5.2: Observed and Expected relative frequency histogram plot of Poisson Lindley
Model.
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For Bayesian estimation we use MCMC sampler with M-H steps to simulate from the posterior
distributions. Expression for the full conditionals posterior distribution of proposed model with
Jeffery’s prior is given by 7;(S|0,x) and 7m;(6|S,x) in Equation (5.8) and (5.9), respectively
and with Bernardo’s reference prior is given by 7g(S|60,x) and mg(61S,x) in Equation (5.13)
and (5.14), respectively. The posterior samples are taken to have an approximate effective
sample size of 5000. Acceptance rates for parameters are kept below 40% and 30% for S and

0 respectively.

In M-H step we use a normal proposal distribution for sampling of (nuisance) parameter 6. To
obtain the sample from full conditional distribution for S in Equation (5.8) and (5.13). Figure
(5.5) shows posterior simulations from each of the two models for species posterior distribution
derived in Section (5.3). The proposed Poisson Lindley model parameter for Jeffrey’s and
Bernardo’s reference priors, the posteriors are described in Subsection (5.3.1) and (5.3.2). It
is well known that MCMC analysis provides reliable results only when the chains have run
sufficiently large number of times and reached to the stationary distribution. In the existing
literature of MCMC, a number of tools to assess the convergence of chain like mixing of chain
and auto correlation are mentioned in Figure (5.3) and Figure (5.4). These Figures is enough
to show that the chains in the present analysis have converged. Now, we may be mentioned
here that Bayes estimators and credible intervals (with 95% confidence) have been obtained
above using the MCMC procedures. The frequentist estimates for S are summarized in Table
(5.1). While under Bayesian paradigm the estimate of S are summarized in Table (5.2). It
has shown the posterior modes, means, median and central credible intervals. Also, we are
drawn an comparison between Bayesian estimates and ML estimates; symmetric CI based on
asymptotic normality, and asymptotic profile likelihood interval (described in Cormack (1992))
are included in Table (5.2). We can also see that the Bayesian estimates are always more than
the ML estimates for PLJ and PLR. Further we observed that the profile likelihood intervals
are comparable with credible interval estimates and the posterior mean estimates for S are also
more than ML estimates. It may also notice that asymptotic 95% symmetric CI for the ML

estimate in the consider Lindley model falls above the observed number of species, w = 39.
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FIGURE 5.5: Posterior histogram plot of parameter S with (a) Jeffery’s prior and (b) Bernardo’s
reference prior.

TABLE 5.1: ML estimate and 95% CI of parameter S obtained with profile likelihood 6, and
conditional likelihood 6.,.

Model MLE 95%Confidence Interval
Poisson Lindley model S, =52.67544  (42.56637,62.78451)
S, =53.01631 (42.77726,63.25537)

TABLE 5.2: Summary statistics for posterior 7(S|x) with PLJ and PLR.

PLJ PLR
Mode 55 58
Mean 58.02068 58.37274
Median 57 58

95% Credible Interval  (47,74)  (47,75)

We next check the fit of the each model as well as the relative fit among the models. For the
relative fit of models we have derived the deviance averaged over values from posterior sample

for each considered model. The model deviance is defined as
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DE(x,S,0) = —2logL(S, 0|x). (5.15)

Now, using the posterior samples ', k = 1,2,...,N to obtain the average deviance, where I
is the total number of posterior samples. Model deviance estimates (DE) formula is as given

below,

N
DE(x) = zlv Y DE(x,6/). (5.16)
k=1

Table (5.3) is shown to DE of the models, lower DE shows a better fit. From Barger and Bunge
(2008) considered the same data set for various models, that mentioned in the Table (5.3), such
as PJ: Poisson model with Jeffrey’s prior, PR: Poisson model with Bernardo’s reference prior;
EJ: exponential-mixed Poisson model with Jeffrey’s prior and ER: exponential-mixed Poisson
model with Bernardo’s reference prior. Here we consider these models to compare deviance of
PLJ and PLR. We obtained PLR have very minimum model DE as well as better fit for the data
set.

TABLE 5.3: DIC for PJ: Poisson model with Jeffrey’s prior; PR: Poisson model with Bernardo’s
reference prior; EJ: exponential-mixed Poisson model with Jeffrey’s prior; ER:exponential-
mixed Poisson model with Bernardo’s reference prior; PLJ and PLR.

Model DIC
PJ 58.05805
PR 58.06852
EJ 35.63834
ER  35.61999

PLJ  32.5128
PLR 30.83205

In this sequence, we plot the expected frequencies using posterior samples of the parameters S

for PLJ and PLR. We see that for this small data set PLR fit is acceptable, see in Figure (5.6).
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FIGURE 5.6: Expected frequency plot of S with (a) Jeffrey’s prior and (b) Bernardo’s reference
prior.

The Jeffrey’s and Bernardo’s reference prior for the Poisson Lindley model give very similar
results. These priors have been very minimal effect on resulting estimates. Hence, the model
selection is highly influence by the final estimates. It is a very important problem for the choice

of models.

5.5 Monte Carlo Simulation Study and Comparison of Esti-

mators

We shall compute and set side by side the estimators obtained under ML and Bayesian esti-
mators. The estimators Sp, S., S; and Sg denotes the profile ML estimator, conditional ML
estimator, Bayes estimator with Jeffery’s prior and Bernardo’s reference prior, respectively.
Here, S stands for the total number of species as a discrete parameter and 6 were abundance
parameter generated from Lindley distribution as a nuisance parameter. For the stochastic abun-

dance of the model we have stopping time ¢ and w stands for the observed number of species in
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the sample experiment. The comparisons are based on the square root of average risk (expected

loss over sample space) of the estimators of the parameters S, denoted by R(S).

In the simulation study number of species was to be fixed to be § = 50,60 and 70. The abun-
dance parameters were generated from Lindley distribution with parameter & = 0.5 and 1.2.
We considered the two stopping time i.e. t = 0.4 and 1.2. So we observed that the capture frac-
tion are (C.F.=V—§ x 100) lies between 70% and 98%. For each simulated data set, four estimates
were reported .§p, S., S; and Sg. The estimates average risk based on the asymptotic formula

for each estimator was also obtained.

We excluded those data sets for which the iterative steps for any ML estimates did not get
solution or the overlap fraction was negative. (This occurred only when the capture fraction
was 50%). The procedure continued until 5000 data sets had been generated. The estimates
are obtained through ML method using NR iterative method for nuisance parameter. For the
proposed estimator also observed the acceptance rate through M-H algorithm nearly 28% and
40%. For the 5000 generated datasets, the average estimates and their square root of average
risk of parameter estimates were given in Table (5.4) and (5.5). All estimates were computed
using frequencies f;. The problem of cut off point selected did not arise because only few
species were observed more than 10 times in most generated data sets. In the mentioned Table
(5.4) and (5.5), we observed on various fixed frequencies j, when it was increases then coverage
fraction also increases and we obtain in a trend that risk of the estimators decreases gradually.
We also list the observed CI/HPD interval for the nominal 95%. Also, in this Table (5.4) and
(5.5), we observed that coverage fraction increase as increases the frequencies than the observed
number of species gets more closer to estimated number of species (as most of the time we got

over estimate of parameter).
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5.6 Conclusion

We observed that the ML estimation plays an important role in estimating the number of ob-
served species or unobserved species. Intuitively, when there are low coverage fractions i.e. few
overlaps of observed species and estimated species, we know that the true number of species is
much higher than the observed. On the other hand, if the coverage fraction is high then we are
likely to have seen most of the species. Based on this idea, we have proposed a consistent esti-
mator for the number of species, under a P-mixed Poisson Lindley model. Here the model has
low dimensional parameter space then computation became easy. Also, in the parameter space
known as hyper parameter or nuisance parameter. For these hyper parameters we have non-
informative prior or objective prior i.e. Jeffery’s and Bernardo’s reference prior, it can be based
on one’s belief. Both Jeffrey’s and Bernardo’s reference prior have simple forms in the case
when there is only one nuisance parameter, and become increasingly complex as the dimension
of the parameter space grows. For the comparison of these considered models based on model
deviance criteria in Table (5.3), PLR has the lesser deviance then we can say that PLR gives
a more optimum estimate of the number of species. In simulated Table (5.4) and (5.5), shows
the posterior mean (estimate of number of species) as Bayes estimate under squared error loss
function (see Pathak et al. (2020a)) and square root of average risk. When j increases then CF
increases but the estimate of S and R(S) decreases and the estimate of the number of species
S is the case of o.e., i.e. S >w. We observed that R(S) under Bayes estimate of Bernardo’s

reference prior have a minimum than R(S) under Bayes estimate of Jeffery’s prior.
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