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ABSTRACT

The present piece of work deals with two segments of the study, the first segment related to

the lifetime study and the second segment related to the ecological study based on statistical

models. The lifetime study in the thesis belongs to Chapter 2, 3, and 4 and the ecological

modeling-based study belongs to Chapters 5. In this context, experimenters/doctors are deal-

ing with lifetime data for patients’ survival time. They are facing the difficulty of losing to

follow-up of the patient, it is the problem of censoring. When patients are lost to follow-up

in the duration of treatment due to unforeseen reasons which are beyond the control of ex-

perimenter/doctors such an appropriate censoring is known as progressive Type-II censoring

with binomial removals. Such problems are shared in consecutive Chapter. Chapter 2 deals

with Bayesian estimation of the parameter of Weibull Poisson distribution under different loss

functions using the Expectation-Maximization algorithm. A bladder cancer patient data has

been used to show their applicability on Weibull Poisson distribution. Chapter 3 presents

Bayesian and E-Bayesian estimations for Poisson Inverted Exponential distribution under dif-

ferent loss functions. This approach allows and facilitate multiple myeloma patients’ data.

Chapter 4, covers Empirical Bayesian estimation under Linear Exponential loss function for

Kumaraswamy distribution parameter, reliability, and hazard function. Also, ulcer patients’

data are included in that Chapter. The problems their relations are presented at the end of

the Chapter. Thus we cover all the aforesaid Chapters based on statistical inference of the

lifetime models parameter used progressive censoring with Binomial removals. Last Chapter

5, concerned with the estimation of the number of species using Poisson Lindley as a stochas-

tic abundance model. We have considered the classical estimation based on profile likelihood,

conditional likelihood. For Bayesian estimation, Jeffery’s priors and Bernardo’s reference prior

based on this Chapter. The proposed methods are illustrated through a microbial organisms

species data.

The statistical R software is used for computation purposes in the thesis. The thesis contains

a list of references at the end. We recognize that a comprehensive list of sources linked to
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the issues mentioned in the thesis would be too long to present here. As a result, we’ve only

included references that are cited in the thesis and are directly linked to our research.
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Chapter 1

Introduction: Definition and

Terminologies

1.1 Introduction

We are frequently reminded of the fact that we are living in the information age. The infor-

mation age is contemporary to the modern age of technological development and ecosystem.

In the modern age of technological development, we have the requirement of ecological re-

sources and technical items/devices to access the knowledge, benefiting in our daily life uses.

The lifetime and ecological literature have adequacy to continue further study. Therefore, these

fields are very attractive to draw the attention of researchers. In this context, we are focusing

on lifetime and ecological study.

We make different choices in our lives to make our lives more convenient, to perform our du-

ties more efficiently, and for a variety of purposes. However, statistics, with its many useful

methods, aids us in making decisions under uncertainty, and as a result, it is gradually being

embraced as the science of decision-making by many branches of science, applied disciplines,

social sciences, and even literature. In statistics, uncertainty is defined as randomness, which

is calculated in terms of probability. This theory serves as the foundation for a study in which

1
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decisions are taken based on a small number of data points (referred to as a sample) drawn from

the population of interest. Variables such as human survival times and lifetime of other man-

made systems/items, customer waiting times in line to receive service at a center, and other

economic and demographic variables are often encountered in real-life situations. The term

“lifetime” refers to the length of time it takes for an object to enter its failed state. It is worth

noticing that all of these variables have the same level of support, namely the positive real-line

number. Since statistical studies of such lifetimes play such a special and significant role in

statistical procedures, they are classified as a distinct branch of statistics known as Survival/Re-

liability analysis. As a result, survival analysis is a technique for analyzing failure (death)

time results (time to event data). Medicine, genetics, public health, epidemiology, engineering,

economics, and demography are a few of the areas where it can be used.

Also, our daily life activity goes with the environment and ecology. The term ecology was

coined by Ernst Haeckel in 1869. Ecology is the branch of science in which we study the pres-

ence of species in an organism and its environment, including individual habitat, population,

community, ecosystem, and biospheres as a whole. Ecology is the study of households with

emphasis on the totality or pattern of relationship between living organisms to one another and

to their surroundings, their natural environment, and ecosystems. Ecology is defined as the

study of an ecosystem. These household consists of non-living matter such as soil, water, light,

wind, humidity, minerals, gases, etc., and living organisms such as micro-organisms, plants, an-

imals, bacteria, and humans. An organism depends upon each other for its survival, existence,

and continuance. Besides, living (biotic) organisms and their non-living (abiotic) environment

are inseparably interrelated and interact with each other, see Dash (2001). It is a fascinating

discipline because everyone is usually interested in knowing about his surroundings. Ecology

is concerned with the biology of organisms, population, communities, etc., and their functional

processes occurring in natural habitats like ponds, lakes, oceans, and land. A community or bi-

otic community includes all the population of a given area, called the habitat. The community

and the abiotic environment interact and function together as a system called the “ecological

system” or “ecosystem”, a term coined by the British ecologist Arthur Tansley in 1935. Tansley
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devised the concept to draw attention to the importance of transfers of materials between organ-

isms and their environment. He regarded ecosystems not simply as natural units, but as mental

isolates and later defined the spatial extent of ecosystem using the term ecotope. The functional

form of the ecosystems is of great concern to ecologists. Ecosystems show large variations in

their size, structure, composition, and so on. However, all the ecosystems are characterized by

certain basic structural and functional features which are common. There can be different types

of ecosystems such as forest ecosystem, desert ecosystem, and marine ecosystem.

Species richness estimation can be extended to both animals and organisms in biology. The

term “species richness” is used to describe the number of species that live in a given bio-

sphere or population. The number of species in an ecosystem will help assess its complexity.

Finding a high level of species richness can aid in the identification of populations that have

been under-sampled. The number of endangered or extinct organisms can be calculated using

measurements taken over time. Species abundance is the number of individuals per species

and relative abundance refers to the evenness of distribution of individuals among species in

a community. Two communities may be equally rich in species but differ in relative abun-

dance. Animal populations of interest can range from very large animals, such as whales Zeh

et al. (1986), Raftery and Zeh (1998), to bacteria that can only be observed under a microscope

Hong et al. (2006). Other interesting animal populations for which diversity is studied are fish

Smith and Jones (2005), fossils Cobabe and Allmon (1994), and birds Borgella Jr and Gavin

(2005); Walther and Martin (2001).

Initially, two papers based on estimating the number of classes was written by Good (1953)

and Fisher et al. (1943), with the interest of estimating the frequencies of species in an animal

population. Good (1953) estimates the probability of an unseen species as n1 = n where n1 is

the number of species represented by only one individual in the sample and n is the total number

of observed individuals. Fisher et al. (1943) model the species abundances with a parametric

gamma-mixed Poisson or negative binomial distribution. The negative binomial model is based

on assuming that the numbers of individuals from each species are independent Poisson samples

and that the means of these Poisson random variables follow a gamma distribution. Many other
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approaches, including Bayesian methods, have been developed for the species problem since

these early works. For a review on this problem including other related models and additional

applications see Bunge and Fitzpatrick (1993), Buckland et al. (2000), Pollock (2000), Schwarz

and Seber (1999), and Seber and Schwarz (2002).

1.2 Classical Inference

In the classical inference, a population have some characteristic of the elements that can be

represented by a RV X whose density is f (X ,θ), where the form of the density is assumed to

be known except that it contains an unknown parameter θ and make inferences about θ based

on information contained in the observed sample only.

The classical school believes in Fisher′s Likelihood Principle, which claims that all the in-

formation about the unknown parameter(s) is contained in the sample, as summarized by the

likelihood function. This principle leads to Fisher′s ML estimator. In spite of certain limi-

tations, the ML estimators have a number of desirable properties and are extensively used in

preference of the other classical estimators.

In ML estimation method, it seems that a good estimate of the unknown parameter θ would

be the value of θ that maximizes the likelihood function. Parameter θ may be discrete and

continuous. Suppose we have a random sample (x1,x2,x3, . . . ,xn) for which the PDF of xi is

f (xi,θ). Then the joint PDF or PMF of (x1,x2,x3, . . . ,xn) is denoted by L(x,θ) as,

L(x,θ) =
n

∏
i=1

f (xi,θ). (1.1)

Likelihood function in Equation (1.1) can be maximized through LS method for continuous

parameter and LDS method for discrete parameter, see (Jain et al. (2003) and Lindsay and

Roeder (1987)). There are many different methods of point estimation, mentioned as method

of moment, method of least square (LS), and methods based on quantile/percentile, etc., are

discussed in the literature. But the ML estimator is very popular and widely used since it
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has many optimum properties as consistency, invariance, and other asymptotic properties, see

Rohatgi and Saleh (2015).

Point estimation, one may be interested in finding a set of values, say A(θ) such that A(θ)

contains the true value of the parameter (θ) with a certain high probability (1−φ), φ ∈ (0,1).

Let T1 = t1(X1,X2,X3, · · · ,Xn) and T2 = t2(X1,X2,X3, · · · ,Xn), T1 ≤ T2 be two statistics such that

Pθ [T1 ≤ θ ≤ T2] = 1−φ ,∀θ ∈ Θ,

where (1−φ) does not depend on θ . Then the random interval (T1,T2) is called the 100(1−

φ)% confidence interval (CI) for θ . Exact CIs are generally not available for some distribution

especially in the case of the multi-parameters model. In such a case, that the asymptotic distri-

bution property of ML estimator is very useful in constructing asymptotic CIs principle. The

asymptotic CIs are defined as

{θ̂ ∓Zφ/2

√
var(θ̂)}, (1.2)

where, φ/2th upper percentile of a standard normal variables, and var(θ̂) is asymptotic variance

of θ , and is obtained as diagonal elements of inverse fisher’s information matrix. Suppose there

are k parameters θ = θ1,θ2, · · · ,θk, then variance-covariance matrix, say V, is defined by

V (θ) =



δ11 δ12 · · ·δ1k

δ21 δ22 · · ·δ2k

. . .

. . .

. . .

δk1 δk2 · · ·δkk



−1

θ=θ̂

where, δi j = − ∂ 2

∂θi,∂θ j
logL;(i, j) = 1,2,3, · · · ,k, second derivatives of the likelihood function

with respect to θ .
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1.3 Bayesian Inference

In Bayesian inference, it is believed that we always have the availability to make use of sub-

jective probabilities that measures the degrees of belief about the value or values of unknown

parameter θ . These subjective probabilities are used to define prior distribution for the param-

eter θ , prior to sampling. In other words, the parameter θ may be treated as a RV with known

prior distribution, say g(θ), see Berger (2013). The ML method, as well as other classical

approaches, are based only on the empirical information provided by the available data. How-

ever, when there are some technical knowledge on the parameters of the distribution available,

a Bayesian inference seems to be an attractive inferential method.

The goal of Bayesian inference is to represent prior uncertainty about model parameters with

a probability distribution and to update this prior uncertainty with current data to produce a

posterior probability distribution for the parameter that contains less uncertainty. The posterior

distribution, denoted by π(θ |x) of the parameter, say θ given x is defined to be the conditional

distribution of θ given the sample observations x and is given by

π(θ |x) = g(θ)L(x|θ)∫
Θ

g(θ)L(x|θ)dθ
, (1.3)

where g(θ) is the prior distribution function that reflects beliefs about θ (prior to experimenta-

tion) and Equation (1.3) shows the updated belief about θ after observing the sample.

Clearly, the prior distribution plays a very crucial role in Bayesian of parameter. But the speci-

fication of the prior distribution is not an easy task. A vast Bayesian literature is fully devoted

to finding the prior distribution of the parameter of interest, see for more details on prior spec-

ifications Jeffreys (1946), Zellner (1986a), Box and Tiao (2011), Berger (2013), Gelman et al.

(2013). In the next section, we will discuss prior distributions.
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1.4 Prior Distribution

The prior distributions are broadly classified into two categories, (i) Informative and (ii) Non-

informative. Berger (2013) has given a useful discussion on various methods to construct a

prior distribution is certainly a subjective manner. The main idea of subjective probability is

to let the probability of an event reflect the personal belief in the chance of occurrence of the

event, however, it is typically determined by introspection. The simplest way of determining

subjective probabilities is to compare events, determining relative likelihoods. Several useful

techniques are included (i) The Histogram Approach, (ii) The Relative Likelihood Approach,

(iii) CDF Determination Approach, and (iv) Matching a Given Functional Form. The easiest

and very simplified approach is to use a given functional form when a piece of prior information

is available, and the problem is then reduced to a subjective determination of a few hyper-

parameters (see Good (1950)).

For example, a gamma distribution is widely discussed in existing literature as a prior distribu-

tion for the parameters of numerous lifetime models. The gamma distribution as a prior have

shape parameter α and scale parameter β for the parameter θ is defined as

g(θ) =
αβ

γ(β )
θ

β−1e−αθ ; θ > 0,α > 0,β > 0. (1.4)

Here, in the Bayesian paradigm, the parameters (α,β ) of the prior distribution are referred to

as hyper-parameters and are assumed to be known. The simplest way of eliciting these hyper-

parameters is to set the prior moments equal to the values taken by the experimenter to guess

the prior parameters. In the above case, the moments equations are

β

α
= M(say), (1.5)

β

α2 =V (say), (1.6)
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where the quantities M and V reflect the experimenter’s beliefs about the mean and variance

of the unknown parameter of the model. Note that the smaller, moderate and larger values of

V respectively correspond to the low, moderate, and high magnitude of beliefs in the expected

value of the parameter. The large values of V lead to a flat prior density whereas smaller

values of V indicate a high picked prior density for θ . This facile methodology has been

widely adopted by many authors for prior elicitation under Bayesian paradigm, see Kundu and

Howlader (2010) and Singh et al. (2013a).

A large part of Bayesian literature is devoted to finding appropriate prior distributions for which

π(θ |x) can be easily calculated. These are so-called conjugate priors and were developed ex-

tensively by Schlaifer and Raiffa (1961). Also defined is a family of prior distributions known

as conjugate prior which eases the associated computational difficulties with Bayesian analy-

sis. A prior is said to be conjugate if it’s resulting posterior also belongs to the same family

of distributions as that of the prior. A number of informative priors such as g-prior by Zellner

(1986b), an independent t-gamma prior by Leamer and Leamer (1978) and maximum entropy

prior by Berger (2013) have also been suggested in Bayesian literature.

A general class of prior that is often considered in Bayesian analysis is popularly known as

non-informative priors. The non-informative priors are those priors that utilize very minimal or

no prior information in their choice. Uniform and Jeffery’s priors (Jeffreys (1946)) are widely

used non-informative priors. If a non-informative prior density is desired, it seems reasonable

to give equal weight to all possible values of θ , arriving at the uniform non-informative prior

g(θ) ≡ c. Although this was routinely done by Laplace (1812), it came under severe (though

unjustified) criticism because of a lack of invariance property under transformation, see Jaynes

(1983). The lack of invariance of the constant prior has led to a search of non-informative

priors which are appropriately invariant under transformation. Efforts to derive non-informative

priors through consideration of transformation of a problem had their beginnings with Jeffreys

(1961). It has extensively used in Hartigan et al. (1964), Jaynes (1968), Jaynes (1983), Villegas

(1977), Villegas (1981) and elsewhere. A very useful prior is Jeffrey’s prior (Jeffreys (1961)).

It satisfies the local uniformity property: a prior that does not change much over the region in
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which the likelihood is significant and does not assume large values outside that range. It is

based on the Fisher information matrix I(θ), which is

g(θ) = |I(θ)|1/2, (1.7)

where |.| denotes the determinant and Fisher information matrix under commonly satisfying

assumptions (see Lehmann (1983)) this is given by

I(θ) =−Eθ

[
∂ 2 logL(x|θ)

∂θ 2

]
. (1.8)

Jeffrey’s prior is locally uniform and hence non-informative. It provides an automated scheme

for finding a non-informative prior for any parametric model f (x|θ).

Another non-subjective prior is reference prior, introduced by Bernardo (1979) and further de-

veloped by Berger and Bernardo (1989), Berger and Bernardo (1992a), Berger and Bernardo

(1992b) is, to the best of our knowledge, the only available method to derive non-subjective

posterior distributions which satisfy all these property, (i) Invariance (ii) Consistent marginal-

ization (iii) Consistent sampling properties (iv) Generality (v) Admissibility. Reference prior

is non-informative prior and it also has improper nature. Reference prior is an objective prior

which is based on maximizing the expected entropy provided by the prior. The amount of infor-

mation to be expected from an experiment about some quantity of interest naturally depends on

the available prior knowledge: the more prior information available, the less information may

be expected to be learned from the data. An infinitely large experiment would eventually pro-

vide all missing information; thus, it is possible to obtain a measure of the amount of missing

information as a limiting form of a functional of the prior distribution.
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1.5 Empirical Bayesian Inference

A major drawback of the conventional approach is that it cannot use past data, while the

Bayesian approach is that it requires an assumption for the prior distribution. It appears to

be desirable to have an approach, which can make use of the past data and does not require

an assumption for the prior distribution. It means we did not know the value of prior parame-

ters. Many statisticians have considered working in areas where it is possible to specify prior

distributions reasonably well. Among the others, empirical Bayesian have typically assumed

that the parameters of interest come from some unknown prior distributions instead of specify-

ing the prior distributions in advance. They have developed the technique, called the Empirical

Bayesian approach, for eliciting the unknown prior distributions using the past available sample

information. Borrowing the strengths of each, Herbert Robbins proposed an approach, known

as empirical Bayesian approach, as a valid alternative to make use of past data to estimate the

statistical form of prior information. Empirical Bayesian methods comparatively require fewer

sample data to achieve the same quality of inference than the methods based on sampling the-

ory. This is one important consideration when sample data is either expensive or difficult to

obtain. Thus, the Empirical Bayesian approach sounds like a compromise between the conven-

tional approach and the Bayesian approach. It is described extensively in the literature, e.g.,

Robbins (1955), Robbins (1964) and Maritz (1967), Sinha et al. (1976), Grabski and Sarhan

(1996), Ahmad et al. (1997), Pensky and Singh (1999), Jaheen (2004). Recently, some more de-

velopments are Shojaee et al. (2012) that discuss the Empirical Bayes estimators for compound

Rayleigh distribution parameter and reliability under record data.

Suppose that θ is a vector, consisting of components (θ1, ....,θp) that are i.i.d. from the density

π0. Suppose also that the data X consists of independent components (X1,X2, ...,Xp) where

each Xi has density f (xi|θi). Then the common marginal distribution of each Xi is

m0(xi) =
∫

f (xi|θi)dFπ0θi, (1.9)
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and (X1,X2, ...,Xp) can be considered to be a simple random sample from m0. Note that this

also follows from the direct calculation (assuming continuous densities for convenience)

m(x) =
∫

f (x|θ)π0(θ)dθ

=
∫ [ p

∏
i=1

f (xi|θi)

][
p

∏
i=1

π0(θi)

]
dθi

=
p

∏
i=1

∫
f (xi|θi)π0(θi)dθi

=
p

∏
i=1

m0(xi).

The data x can thus used to estimate m0 (and hence m).

1.6 Hierarchical Bayesian Inference

An another important type of prior distribution is a hierarchical prior, also called a multistage

prior, see Lindley and Smith (1972). The idea is that one may have structural and subjective

prior information at the same time, it is often convenient to model at this stage. The hierarchical

approach is most commonly used when the first stage, Γ, consists of prior of a certain functional

form see Antoniak (1974), Berry et al. (1979), and Kuo (1986) being exceptions. Thus, if

Γ = {g1(θ |λ ) : g1 is o f a given f unctional f orm and λ ∈ Λ}, (1.10)

then the second stage would consist of putting a prior distribution, g2(λ ), on the hyper param-

eter λ , which could be chosen for the hyper parameters according to subjective beliefs. Such a

second stage prior is sometimes called a hyper prior for this reason. The difficulty of specify-

ing the second stage prior has made common use of non-informative priors at the second stage.

Note that there is no theoretical reason for limiting hierarchical priors to just two stages, but

more than two are rarely useful in practice. see also Goel and Degroot (1981) and Goel (1983).

As a final comment, note that a hierarchical structure is merely a convenient representation for
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a prior, rather than an entirely new entity: any hierarchical prior can be written as a standard

prior. For instance, in this situation, the actual prior distribution is

g(θ) =
∫

Λ

g1(θ |λ )dFg2(λ ), (1.11)

and any Bayesian analysis will actually be performed with respect to g. Attention will be

restricted to two-stage priors. The first stage prior, g1(θ |λ ) where λ is a hyper parameter in Λ,

can be thought of as the unknown prior in the empirical Bayes scenario. Instead of estimating

λ , as in empirical Bayes analysis, however, λ will be given a second stage prior distribution

g2(λ ). This could be a proper prior but is often chosen to be a suitable non informative prior.

It is frequently used to calculate and to write λ = (λ 1,λ 2), represented g2 as

g2(λ ) = g2.1(λ
1|λ 2)g2.2(λ

2),

g(θ |x) =
∫

Λ

g1(θ |x,λ )g2.1(λ
1|x,λ 2)g2.2(λ

2|x)dλ .

This process is called Hierarchical Bayesian process for estimating the hyper parameter, see

Berger (2013).

1.7 E-Bayesian Inference

In the Bayesian inference, Posterior distribution is the basis of prior distribution and likelihood

of the experiment. It depends on the selection of prior distribution and specification of loss

functions. But, prior distribution may depend on the prior parameters i.e. hyper parameters.

Hierarchical prior distribution has been used as prior for the unknown hyper parameters. Very

first time Lindley and Smith (1972) introduced the idea of the hierarchical prior distribution.

The hierarchical Bayesian inference have the requirement of prior at least two stages to finish

the setting of the prior distribution. Hence, it is more robust as well as more efficient than

Bayesian inference. The method for construction of hierarchical prior distribution has been
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developed by Han (2007). This method is known as E-Bayesian (Expected-Bayesian) esti-

mation. The hierarchical Bayesian methods have confronted complicated integration, though

some computational methods are available in the literature. However, it was observed that ob-

taining the E-Bayesian estimates of the unknown parameters is simpler than that of hierarchical

Bayesian estimates, see Han (2007), Han (2011a), Han (2011b). Further, E-Bayesian estima-

tion for the parameters of different lifetime distributions has been discussed by several authors,

see Gupta (2017), Yousefzadeh (2017), Han (2017a), Han (2017b), Han (2019b) etc., and some

authors also discussed the E-Bayesian estimation for parameters of lifetime distribution with

type-II censoring, see Jaheen and Okasha (2011), Okasha (2014), Reyad and Ahmed (2016)

etc. Recently, El-Sagheer (2017) has considered the Rayleigh distribution for E-Bayesian es-

timation under progressive type-II censoring and Kızılaslan (2017) discussed the hierarchical

and E-Bayesian Bayesian estimations for the proportional reversed hazard rate model based on

record values. Some recent literatures of E-Bayesian estimation to develop the E-posterior and

E-MSE method, see Han (2018), Han (2019a), Han (2019b), Han (2019c) and Han (2020).

1.8 Loss Function

Statistical inference can always be viewed as a decision problem under prevailing uncertainties

modeled in the form of parent population distribution. The statistical decisions are based on

the sample information only in classical inferences; whereas in Bayesian decisions, in addition,

to sample information, it also includes prior information. The overall purpose of statistical

inference is to provide an optimal decision based on some evaluation criterion for the goodness

of the decisions. The criterion assesses the average consequences of each decision. It is worth-

while to mention here that in statistical inference problems, we try to reveal the true state of

affairs therefore two situations may arise. The first one is that the inference will be able to

reveal the truth. In this case we are achieving what is intended. Thus there is no loss. In other

cases, our inference may deviate from what the truth is and this leads to a loss. In other words,

in developing the inferential procedures one should keep this point in mind by specifying an
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appropriate loss function. It may be noted that the considered loss functions should be non-

negative functions as there is no chance of a gain. A statistical decision problem is formalized

by specifying the set of elements (Ω ,A,L), where, Ω is the set of all possible values of the

parameter called as parameter space, A is set of all action (decision) that taken by statistician

and L is the loss function which is a real-valued function of the decision and true state of nature.

As mentioned earlier, the statistical decisions are based on the sample information, thus it may

be defined as the function from sample space to action space. Thus, our aim is to select from

the set of all possible decisions (called decision space), a decision (called optimal decision)

for which the average loss (In non Bayesian or classical set up, the expected error is termed as

risk defined as expected loss) is minimum. For example, in one-dimensional point estimation

problems the true state of nature θ , called parameter, is unknown but one can always specify

that it belongs to a set of real numbers Θ ∈ R takes A = Θ meaning that the decision rule

will output estimates (guesses) of the true θ . Let us consider that θ is a parameter of some

distribution f (x|θ) and suppose that the parameter θ is estimated by the decision rule δ (x).

Then, the quantity L(θ ,δ ) expresses how much wrong estimates are to be penalized. Then, the

Bayes estimators δ ∗ of the parameter θ is defined as the estimator that minimizes the posterior

expected loss i. e.

Eθ |x[L(θ ,δ
∗)] =

∫
Θ

L(θ ,δ ∗)π(θ |x)dθ . (1.12)

In the statistical literature, several loss functions have been discussed namely, square error loss

function (SELF), absolute loss function, 0− 1 loss function, quadratic loss function, Linear

Exponential (LINEX) loss function, and general entropy loss function (GELF). For more detail

about these loss functions, see Winkler (1972), Zellner (1996), Basu and Ebrahimi (1991),Cal-

abria and Pulcini (1994), Box and Tiao (2011), Berger (2013) etc. Among the various loss

functions, the most popular one is SELF which is initially proposed by Legendre (1806) and

Gauss (1855) to develop the LS theory. Later, it was used in estimation problems when un-

biased estimators of parameter θ were evaluated in terms of the risk function R(θ ,δ ) which

become nothing but the variance of the estimator. It was observed that SELF is a convex loss
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function and another beauty of this loss function is that it equally penalizes the overestima-

tion as well as underestimation of equal magnitude. The mathematical form of the weighted

quadratic loss function is given as follows

L(θ ,δ ) = ψ(θ −δ )2. (1.13)

If ψ is the function of θ then, the corresponding loss function is called a weighted quadratic

loss function, and if ψ = 1 then we have SELF. i.e.

L(θ ,δ ) = (θ −δ )2

Therefore, the Bayes estimate under SELF is

Eθ |x[L(θ ,δ )] =
∫

Θ

L(θ ,δ )π(θ |x)dθ ,

after simplification, we get

δ =
∫

Θ

θπ(θ |x)dθ , (1.14)

here δ is Bayes estimate under SELF i.e posterior mean. SELF have the symmetric, it is

justified for o.e. & u.e. with equal seriousness. Similarly, Bayes estimate under absolute

loss function is posterior median and under 0− 1 loss function is posterior mode. However,

assumption for real situation of symmetric loss function may not be appropriate. In these

situations, when o.e. is more serious than u.e. or vice-versa. Then we have lot of asymmetric

loss functions that are available in statistical literature.

The LINEX loss function suggested by Varian (1975) has been widely used by several authors,

see Zellner (1986a), Schabe (1991), Pandey and Rai (1992), Ahmadi et al. (2005) and Doost-

parast (2009). This loss function rises approximately exponentially on one side of zero and

approximately linearly on the other side. The mathematical form of this loss function is

L(θ ,δ ) = ν1{eν1(θ−δ )−ν1(θδ )−1}; ν1 ̸= 0, (1.15)
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where, ν1 is the loss parameter. If ν1 > 0, then o.e. is more more serious than u.e. & vice versa.

Under this loss function, the Bayes estimate is given by following equation

BL(δ ) =− 1
ν1

log[e−ν1θ ]. (1.16)

Despite the exibility and popularity of the LINEX loss function for the location parameter

estimation, it appears to be unsuitable for the scale parameter, a similar comment can be found

in Basu and Ebrahimi (1991) and Parsian and Sanjari Farsipour (1993). To provide a better

asymmetric loss function for scale parameter, Basu and Ebrahimi (1991) defined a modified

LINEX loss function. Calabria and Pulcini (1994) introduced an alternate of the modified

LINEX loss function having the following form,

LG(θ ,δ ) ∝

{(
δ

θ

)ν

−ν log
(

δ

θ

)
−1
}

; ν ̸= 0. (1.17)

When δ = θ , it has minimum. This loss function is generalization of the entropy loss function

used by several authors Lindley (1980), Zellner (1986a), Dey et al. (1986), Basu and Ebrahimi

(1991), Schabe (1991) and Singh et al. (2016), when shape parameter ν = 1. Here, ν involved

in above equation as shape parameter and it reflects the departure from symmetry. When ν > 0

o.e. is considered to be more serious than u.e. of equal magnitude & vice versa. The Bayes

estimator of θ under general entropy loss will be

BG(δ ) =
[
Eθ (δ )

−ν
]− 1

ν . (1.18)

Provided that, Eθ (δ )
−ν exists and is finite. It may be noted here that, when ν =−1 the Bayes

estimate under GELF coincides with the Bayes estimate under the SELF.
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1.9 Credible Intervals

Another approach to inference is to present a CI for model parameter. The Bayesian analog of

a classical CI is called credible interval which is defined as

∫
θU

θL

π(θ |x)dθ = 1−ϕ,

where, (θL,θU) is a 100(1−ϕ)% credible interval for θ . Since the posterior distribution is an

actual probability distribution on θ , this interval can be stated with a probabilistic statement.

This is in contrast to classical CI which can only be interpreted in terms of CP. The equal tail

credible interval for parameter θ , can be obtain by solving the following equation

∫
θL

0
π(θ |x)dθ =

ϕ

2
,∫

θU

0
π(θ |x)dθ = 1− ϕ

2
.

In constructing a credible interval for the parameter θ , it is usually desirable to have those

values in the interval which are more probable than those not included in the interval, and

such an interval is called the highest posterior density (HPD) interval. The 100(1−ϕ)% HPD

credible interval (θ h
L ,θ

h
U) for θ must satisfy the following conditions provided the posterior

distribution is unimodal and bell-shaped

∫
θ h

U

θ h
L

π(θ h
U |x)dθ = 1−ϕ; θ ,∈ Θ (1.19)

where, π(θ h
L |x) = π(θ h

U |x),θ ∈ Θ.
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1.10 Advanced Statistical Computation Technique

The main obstructions to carrying out statistical inferences are the optimization of the likeli-

hood function to obtain the ML estimator and the integration required to compute the Bayes

estimator. The optimization of the likelihood function ultimately results in a solution of k like-

lihood equations, where k is the number of model parameters to be estimated from the data.

The usual iterative methods for solving the likelihood equation

L′(θ̂) =
d

dθ
L(θ)


θ=θ̂

= 0, (1.20)

are based on replacing the left side by the linear terms of its Taylor expansion about an approx-

imate solution θ̃ . If θ̂ denotes a root of above equation, this leads to the approximation

0 = L′(θ) = L′(θ̃)+(θ̂ − θ̃)L′′(θ̃),

and hence to

θ̂ = θ̃ − L′(θ̃)

L′′(θ̃)
. (1.21)

The procedure is then iterated by replacing θ̂ with the value θ̃ of the right side of the above

equation, and so on. This method is referred as the Newton-Raphson iterative process, see Kale

(1961) Kale (1962), Barnett (1966). Another method called the fixed-point iterative method al-

ternative to Newton-Raphson (NR) is also used by many practitioners for solving the likelihood

equations. In this method, likelihood Equation (1.20) is re-rewritten as

θ = h(θ),

in such a way that any solution of the above equation, which is a fixed point of h, is a solution

of Equation (1.20). Reaching to the solution, the iterative process proceeds as

• Set initial solution as θ̃ .
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• Update the initial θ̃ as θnew = h(θ̃) and set θ̃ = θnew.

• Repeat the above step till θnew converges to a value θ̂ . Now θ̂ is the solution of Equation

(1.21).

For more detail on the fixed-point iterative method and NR method, readers may be referred to

Jain et al. (2003). Moreover, these iterative methods may be used to solve complicated func-

tions, sometimes, they do not converge. Then the corresponding point at which the convergence

is obtained may not be the desired root. To overcome this difficulty, EM algorithm may be a

choice, which is simple to apply and have sure convergence with any initial guess.

1.10.1 Expectation-Maximization Algorithm

Dempster et al. (1977) introduced the term EM algorithm to overcome the above difficulties.

They synthesized the earlier formulation of this algorithm in many particular cases and pre-

sented a general formulation of this method in finding the ML estimates in a variety of prob-

lems. The main references for the EM algorithm are Schafer (1997), Little and Rubin (2019),

Tanner (2012), McLachlan and Krishnan (2007) etc. In statistical inference, and EM algorithm

is a method for finding ML or maximum posterior estimates of parameters in statistical models,

where the model depends on unobserved latent variables. EM algorithm is an iterative method

that alternates between performing an expectation (E) step, which computes the expectation of

the log-L evaluated using the current estimate for the latent variables, and maximization (M)

step, which computes parameters maximizing the expected log-L found on the E step. These

parameter estimates are then used to determine the distribution of the variables for the next

iteration in the next E step. The EM algorithm is an efficient iterative procedure to compute the

ML estimate in the presence of missing or hidden data. In comparison to other optimization

techniques, it is very simple and converges reliably. In the case of the unimodal and concave

likelihood function, the EM algorithm converges to the global maxima from any starting value,

see Wu (1983). Here, we have given a short description of the EM Algorithm. The EM al-

gorithm has two main applications. The first case occurs when the data has missing values
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due to limitations or problems with the observation process. The second case occurs when the

likelihood function can be simplified by assuming that there are additional but missing param-

eters. With missing values or parameters in the data which is generated by some distribution

under the assumption, we call the data, X , the incomplete data. We assume that the complete

data, Z = (X ,Y ) exists with Y being missing data and that a joint density function also exists as

follows,

p(Z|θ) = p(X ,Y |θ) = p(Y |X ,θ)p(X |θ), (1.22)

where, θ is a set of unknown parameters from a distribution including a missing parameter.

With the density function, we now define the complete-data likelihood as follows

L(θ |Z) = L(θ |X ,Y ) = p(X ,y|θ).

The likelihood L(θ |X) is known as incomplete data likelihood function. Since, we have miss-

ing data Y , which have unknown distribution by assumption, we can think of L(θ |X ,Y ) as a

function of a random variable, Y , with constant values, X and θ .

L(θ |X ,Y ) = fX |θ (Y ).

Using the complete-data log-L function with respect to the missing data Y given the observed

data X , the EM algorithm finds its expected value as well as the current parameter estimates at

the E step and maximizes the expectation at the M step. Now, repeating E-step and M-step then

the algorithm is guaranteed to converge to a local maximum of the likelihood function with

each iteration increasing the log-L.

Expectation (E) Step: Firstly, we do the expectation of the complete-data log-L function as

Q(θ |θ (i−1)) = E[log{p(X ,Y,θ |X ,θ (i−1))}],

where θ (i−1) is a set of current parameters estimates that we use to evaluate the expectation

and to increase Q with the new θ for optimization. Here, X and θ (i−1) are known constants
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and θ is a variable to be adjusted. Since Y is a missing RV under an assumed distribution,

f (Y ;X |θ (i−1)), the expectation in the above equation can be written as

E[log{p(X ,Y,θ |X ,θ (i−1))}] =
∫

y∈Θ

log{p(X ,y|θ)} f (y|X ,θ (i−1))dy,

where, Θ is the space of values where y can take values on and f (y|X ;θ (i−1)) is the marginal

distribution of the missing data Y depending on observed data and current parameters.

Maximization (M) Step: At the M step, we maximize the expectation then the E step, that is

to find

θ
(i) = arg max

θ

{θ
(i),θ (i−1)}.

1.10.2 Bayesian Computation

Bayes estimator required some numerical computation of integration since the integrals en-

countered in Bayesian analysis or inference of the parameters are often intractable and don’t

possess the analytical solution. For this reason, Bayesian analysis was often doubting before the

invention of versatile computing. The developed computer-intensive sampling methods of esti-

mation have revolutionized the application of Bayesian methods, and such methods now offer

a comprehensive approach to complex model parameter estimation. The most common and ba-

sic approaches to computing the integrals are approximation methods and sampling methods.

One of the simplest approximation methods for evaluating the integrals is called as Gauss-

quadrature rule, which is stated as a weighted sum of function values at specified points within

the domain of integration, see Golub and Welsch (1969), Hildebrand (1974). Although the

numerical integration techniques mainly approximate the integrals by polynomials and were

efficiently used in a variety of problems, see Smith et al. (1987), Shaw (1988), Tierney (1994),

Smith (1991), but these integral techniques are quite complicated and not easy to use in case of

higher-dimension scenarios, see Shaw (1988), Smith (1991), etc.
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All of these approaches were methods of approximation, and hence formed a foundation for

criticizing Bayesian analysis. Of course, it is true that the Bayesian central limit theorem

shows that asymptotically most posterior distributions are normal, see Gelman et al. (2013)

and the high dimensional integrals were solved by analytical approximation techniques based

on normal approximation, see Heyde and Johnstone (1979), etc. The other approximations de-

veloped by Lindley (1980) and Tierney and Kadane (1986) received maximum attention in the

Bayesian literature, see Singh et al. (2008a), Singh et al. (2008b), Singh et al. (2009) and refer-

ences cited therein. These approximation methods were widely used, but these had limitations.

If the dimension of the parameter to be estimated is high, these methods become unmanageable

as clearly mentioned by Smith (1991). Sampling methods constitute an alternative to approx-

imation methods. The logic of sampling is that we can generate/simulate a sample from the

distribution of interest and use discrete formulas, applied to these samples to approximate the

integrals of interest. The use of simulation methods for approximating integrals of the form

E f [h(x)] =
∫

h(x) f (x)dx,

can be justified as: the above integration can be approximated by

h̄n =
1
n

n

∑
i=1

h(xi),

where, x′s are i.i.d. sample of size n from the density f (x), since h̄n converges almost surely

(i.e. for almost every generated sequence) to E f [h(x)] by the strong law of large numbers. This

procedure is referred as Monte Carlo (MC) integration method, here MC refers to the random

simulation/process.

Bayesian inference has now become closely linked to sampling-based estimation methods.

There are various methods that have been suggested for sample generation. The idea of these

procedures started with a concept of rejection sampling that provides a general method for sim-

ulation from an arbitrary posterior distribution, but it can be difficult to set up since it requires

the construction of a suitable proposal density, see Robert and Casella (2013). In the case
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of high dimension model, it is suggested to use more advanced MCMC techniques. Robert

and Casella (2013) stated that “a MCMC method for the simulation of a distribution f is any

method producing an ergodic Markov chain (X(t)) whose stationary distribution is f ”. The

MCMC techniques are relatively straightforward for a range of applications, involving sam-

pling from one or more chains after convergence to a stationary distribution that approximates

the posterior, see Gilks et al. (1996).

In fact, the development of MCMC sampling methods, coupled with exponential growth in

computing capabilities, has made the use of Bayesian statistics more feasible because of their

relative simplicity compared with traditional numerical methods. With the advent of MCMC

sampling methods, more complicated and realistic applications can be undertaken, and there is

no inherent reliance on asymptotic arguments and assumptions. In the early 1990s, however, the

MCMC methods became standard for Bayesian analysis, but novices and other applied scien-

tists who are really attracted to Bayesian methods were very curious about the implementation

of MCMC methods and how these really work.

1.10.3 Gibbs Algorithm

Geman and Geman (1984), Geman and Geman (1993) proposed an MCMC algorithm known

as Gibbs sampling or Gibbs sampler that is being found to be a very useful MCMC technique

for Bayesian analysis under the assumption of high-dimensional models. This procedure per-

mits the simulation from a model possessing high-dimensional parameters to be reduced to the

simulation for its much simpler and lower dimensional parameter. Thus, one simulates p ran-

dom variables sequentially from the p univariate conditionals rather than generating a single

p-dimensional vector in a single pass using the full joint distribution. Suppose we wish to sim-

ulate a sample from a bivariate posterior, π(α,β |x) distribution. The two-stage (p = 2) Gibbs

sampler algorithm can be stated as

• Simulate α j ∼ π1(α|β j−1,x) with j = 1,2, · · · ,N and β0 is the initial value of β .
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• Simulate β j ∼ π2(β |α j,x), where j = 1,2, · · · ,N.

where π1
(
.) and π2

(
.) are the full conditionals, and N is the sample size to be required for

posterior analysis. For large N, α j and β j converges to their stationary distributions. Gelfand

and Smith (1990) reviewed Gibbs algorithm with another sampling approaches by revealing its

potential in a wide variety of conventional statistical problems. Casella and George (1992) stud-

ied the properties of Gibbs algorithm with its convergence for many practical problems. Since

then, this algorithm has been increasingly employed to perform Bayesian analysis of many real

life problems, see Smith and Roberts (1993), Tierney (1994), Brooks (1998), Jackman (2000),

Upadhyay and Smith (2001) and Upadhyay and Gupta (2010).

1.10.4 Metropolis-Hastings Algorithm

The Metropolis-Hastings (M-H) algorithm is the most popular MCMC method of sampling.

This algorithm was initiated by Metropolis et al. (1953) and generalized by Hastings (1970).

Like accept-reject sampling, the M-H algorithm needs to choose a proposal density, say q(y|x)

for which sample generation is easy to perform, to simulate a Markov chain from the target

density, say f . The choice of proposal density q(.|x) can be almost arbitrarily made in that the

only theoretical requirements are that the ratio

f (y)
q(y|x)

,

is known up to a constant independent of x and that q(y|x) has enough dispersion to lead to an

exploration of the entire support of f . A key advantage of this algorithm over other methods of

sampling, like inversion and accept-reject methods, is that it will effectively work with multi-

variate distributions and do not need an enveloping function as in rejection sampling. The M-H

algorithm associated with the target density f and the conditional density q produces a Markov

chain (X (t)) through the following steps.

• Start with a value x(t) such that f (x(t))> 0.
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• Generate Yt q(y|x(t)).

• Calculate the ratio

ρ(Yt ,x(t)) = min

(
f (Yt)q(x(t)|Yt)

f (x(t))q(Yt |x(t))
,1

)
.

• Accept x(t+1) as

x(t+1) =


Yt with probability ρ(Yt ,x(t))

x(t) with probability 1−ρ(Yt ,x(t))

The probability ρ(.|.) is the M-H acceptance probability. This algorithm always accepts values

Yt such that the ratio f (Yt)

q(Yt |x(t))
is increased, compared to the previous value f (x(t))

q(x(t)|Yt)
. When the

proposal density is symmetric i.e. q(Yt |x(t)) = q(x(t)|Yt), the above M-H algorithm is identical

with Metropolis algorithm having Metropolis acceptance function is

ρ(Yt ,x(t)) = min
(

F(Yt)

f (x(t))
,1
)
. (1.23)

This algorithm is also referred to as an independent M-H algorithm. For more technical details

about the properties and implementations of the M-H algorithm, readers may be referred to

Robert and Casella (2013). There are cases, associated with the multi-parameters model, in

which conditional distributions can not be easily derived or determined from the joint density,

and so the Gibbs sampler can not be applied. A most common case in which Gibbs sampling

seems to be inappropriate is that the conditional densities are not of known forms for the multi-

parameters model. In such situations, a hybrid algorithm may be used. This algorithm tailors

the M-H algorithm within a framework of the Gibbs sampler. Such a hybrid algorithm has the

following steps to be executed (In the continuation of the algorithm of Gibbs sampler given in

the previous section).

1− Start with j = 1 and initial values {α(0),β (0)}.
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2− Using initial values {α(0),β (0)}, generate candidate (proposal) points {α
( j)
c ,β

( j)
c } from

proposal densities {q1(α
( j)|α( j−1)),q2(β

( j)|β ( j−1))}, respectively.

3− Calculate the ratios at the point α
( j)
c and previous point α( j)

ρ1 =

{
π1(α

( j)
c |β ( j−1),x)q1(α

( j−1)|α( j)
c )

π1(α( j−1)|β ( j−1),x)q1(α
( j)
c |α( j−1))

}

4− Accept α( j) as

α
( j) =


α
( j)
c with probability min (ρ1,1)

α
( j−1)
c with probability 1−min (ρ1,1)

5− Then calculate the ratio for β

ρ2 =

{
π2(β

( j)
c |α( j),x)q2(β

( j−1)|β ( j)
c )

π2(β ( j−1)|α( j),x)q2(β
( j)
c |β ( j−1))

}

6− Accept β ( j) as

β
( j) =


β
( j)
c with probability min (ρ2,1)

β
( j−1)
c with probability 1−min (ρ2,1)

7− Repeat steps 2 to 6 for all j = 1,2, · · · ,N and obtained

{(α(1),β (1)),(α(2),β (2)), · · · ,(α(N),β (N))}.

1.11 Censoring

The common characteristic of survival data is that one cannot always see the lifetimes of all

items under study; rather, for some individuals, the genuine lifetime T is only known to be

more or less than some value. Left censored data occurs whenever the censored data points are
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below a certain value but the degree by which they are below that value is unknown. Right-

censored data, on the other hand, is defined as the set of censored data points that are above a

certain value but not known to how much. For illustration, suppose a patient in a clinical trial is

moved to another clinic/hospital for treatment and is no longer be eligible for treatment under

the same study. The last day on which the patient reported to the clinic for a regular check-up

and was known to be alive is the only information about the patient’s survival. A patient’s actual

survival time can also be regarded as censored when death occurs due to a cause that is known

to be unrelated to the treatment. Suppose a clinical trial is conducted in order to determine the

survival times of some AIDS patients. Other causes of mortality, such as cancer, heart attack,

and high blood pressure, may happen in a few patients. The survival times due to some causes

other than AIDS are considered censored.

In other circumstances, the experimental items/units may be intentionally removed from the

study to reduce the time required for data collecting to manageable levels, as individuals’ lifes-

pan can last an indefinite period of time. To reduce the time required to complete the ex-

periment, various types of censoring are included in the design. The concept of censoring is

accountable for some of the most significant advancements in survival analysis. For details

see the books Lawless (2011), Nelson (2003), Lee and Wang (2003), Klein and Moeschberger

(2006) which adduced the techniques for survival data analysis. There are various categories of

right censoring, such as time censoring (Type-I censoring), failure censoring (Type-II censor-

ing), and progressive censoring which are described below.

1.11.1 Type-I and Type-II Censoring

Suppose n identical units, here units may be regarded as human beings (patients) or electronic

items/systems, are put on a life-test, performed under controlled environment, results in an

i.i.d. failure lifetimes. In Type-I censoring, the experiment is terminated at a pre-determined

time T1, and the lifetime of k items failed by this time is observed, and the remaining nc = n−k

items remained alive. The Type-I censored data consists of the lifetimes of k failed items and
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the censoring time T1 for the remaining nc items. Under this censoring, the time at which the

experiment gets terminated is fixed but observable units are random. Type-II censoring allows

us to terminate the experiment as soon as a prefixed number (say, r < n) of units have failed.

Therefore, Type-II censoring ensures the availability of observation on the r failed units for the

study but the duration of the life-test is random. For both Type-I and Type-II censoring, the

likelihood function is defined by Cohen (1963), Cohen (1965) is given by

L(Θ|x) = r!
(

n
r

) r

∏
i=1

fX(xi|Θ)[1−FX(T0||Θ)]n−r, (1.24)

where, fX(.) and FX(.) are the PDF and CDF respectively, Θ represents the model parameter

and may be vector valued, and x = [x1,x2, · · · ,xr] denotes the observed data. For Type-II cen-

soring, T0 = xr, where, xr denotes the lifetime of the rth item, while for Type-I censoring, T0

be a pre-determined time for the experiment and r be the number of units have failed by this

time. Giving various real life examples with their associated inferences, Lawless (2011) and

Nelson (2003) addressed the problem of estimation under survival analysis with Type-I and

Type-II censoring. For some more citation one may refer to Sinha et al. (1976), Sinha (1986),

Balakrishnan and Aggarwala (2000), Ashour and Afify (2008), Shah and Patel (2011).

1.11.2 Progressive Type-II Censoring with Binomial Removal

A disadvantage of Type-I and Type-II censoring method is that they do not allow the removal

of active units during the experiment. Therefore, a general censoring scheme is introduced

named as progressive Type-II censoring scheme. This scheme was firstly introduced by Cohen

(1963). He suggests that this scheme may be used when test components are very expensive.

Progressive censoring allows for both failure (Type-II censoring) and time censoring (Type-

I censoring). In the progressive Type-II censoring , m effective sample units are removed at

intermediate stage out of n sample units. In this censoring scheme removals are pre-fixed. But,

if removals of censoring units are random then this censoring scheme are not suitable method.

Then we consider another censoring method that having random removals with progressive
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Type-II censoring is known as Progressive Type-II Censoring with Binomial removals (PT-II

CBR). In this thesis, PT-II CBR is considered and it can be described as follows.

Let us assume that the experimenter conducts a life test experiment with n items/ units and

decides to terminate the experiment as soon as m failure times are recorded. At first failure

observed at X1, R1 out of the n − 1 surviving items/ units are randomly removed from the

experiment and the experiment continues. Similarly, at second failure observed X2, R2 of the

remaining n−R1 − 2 surviving items/ units are again randomly remove from the experiment

and in a similar way the experiment continues till the mth failure is recorded and at this stage

all the remaining (n −m −∑
m−1
i=1 Ri = (Rm)) surviving items units are removed resulting to

termination of the experiment. Since, Ri at ith stage is the total removal out of surviving units,

each experiencing the risk of removal with probability p; it is a random variable following the

binomial distribution B(n−m−∑
m−1
i=1 Ri, p). For details see. Viveros and Balakrishnan (1994)

and Ng et al. (2004). Following Cohen (1963) for fixed removals, say R1 = r1,R2 = r2,R3 =

r3, · · · ,Rm = rm, the conditional likelihood function can be written as,

L(Θ;x|R = r) = c
m

∏
i=1

f (xi|Θ)[1−F(xi|Θ)]ri, · · ·−∞ < x1 < ... < xm < ∞, (1.25)

here, Θ is the parameter space, n, m ε N, 1 ≤ i ≤ m and c =
m
∏
i=1

γi where γi =
m
∑
j=1

(r j + 1).

Substituting PDF and CDF into (1.25).

It may be noted that type-II censoring is a special case of PT-II CBR with r =(0,0, · · · ,0,n−m).

For more details on progressive censoring and its further development, readers may be referred

to Balakrishnan and Aggarwala (2000), Balakrishnan (2007). There is the massive literature

available that reports for estimation of parameters of several lifetime distributions based on

progressive censored samples, see Cohen and Norgaard (1977), Davis and Feldstein (1979),

Viveros and Balakrishnan (1994), Rastogi and Tripathi (2013), Krishna and Malik (2012), Kr-

ishna and Kumar (2013) and Singh et al. (2013b).
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For PT-II CBR having recent developments discussed by Yuen and Tse (1996), Tse and Yuen

(2000), Yuen and Tse (1996) and Tse et al. (2000).

The assumptions regarding the uniform distribution with equal chance for the number of re-

movals, or binomial distribution with the fixed probability of a removal at each stage, do not

seems to be realistic in the practical situations. Consider that a doctor starts an experiment with

n patients. The patients may drop from the experiment due to various physical and psycho-

logical reasons. For example one of the reasons may be the duration of the cure. Thus at the

early stages the chance of drop out will be small as compared to the later stages. The degree of

belief, even if not cured completely, may be another factor. If the doctor’s cure is not providing

immediate relief the chances of drop out at the early stages are expected to be high as compared

to the later stages. Hence, keeping these points in mind, it seems more reasonable to think that

the number of removals follow a binomial distribution with random probability (p).

1.12 Summary of the Thesis

This thesis has a total of five chapters. Chapter 1 is the introductory definition and terminologies

part of the thesis. It contains a brief explanation of the various terms and concepts which

have been used in the rest of the thesis. Mainly this thesis work is based on estimation of the

parameters for a few lifetime models and ecological model.

Chapter 2, deals with parameter estimation of experimental items/units from the WPD under

PT-II CBRs. The EM algorithm has been used for ML estimators. The ML estimators and

Bayes estimators have been obtained under symmetric and asymmetric loss functions. The

performance of competitive estimators have been studied through their simulated risks. One

sample Bayes prediction and expected experiment time have also been studied. Furthermore,

through the real bladder cancer data set, the suitability of the considered model and proposed

methodology has been illustrated.
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The estimators α̂G, β̂G and λ̂G perform better than all other considered competitive estimators,

for (δ > 0, δ is loss parameter) i.e., when o.e. is more serious than u.e. and for (δ < 0) i.e.,

when u.e. is more serious than o.e., under both considered loss functions. Thus, the use of the

proposed estimator α̂G, β̂G and λ̂G are recommended under SELF and GELF. Moreover, a brief

study has done on the expected experiment time by taking the various combinations of effective

parameters n, p and m and it observed that on increases the value of p and m, the expected time

to test increases. While, for fixed m, on increases the value of n, the expected time to test

decreases. The LR test has performed the goodness of fit. The one sample Bayes prediction

has also presented. Furthermore, a real data set is fitted to show the practical applicability of

the model.

In Chapter 3, we present the E-Bayesian and Bayesian estimators of parameters of PIED under

SELF, GELF, and LINEX for PT-II CBRs. The E-Bayesian and Bayesian estimators are com-

pared through risk based on simulated samples. The effectiveness of proposed methodology is

applied on the survival time of multiple myeloma patients’ data.

The risk of the E-Bayesian and Bayesian estimators of λ and θ are compared under SELF,

GELF and LINEX. Generally, we found that the estimated risk of the E-Bayesian estimate

of λ and θ have minimum. Therefore, the simulated results shown in this chapter that the

E-Bayesian estimation is more efficient and better to perform than Bayesian estimation.

Chapter 4, deals with empirical Bayes estimators of parameter, reliability, and hazard function

for Kumaraswamy distribution under the LINEX loss function for PT-II CBRs and Type-II

censored samples. The proposed estimators have been compared with the respective Bayes

estimators for their simulated risks. The applicability of the proposed estimators has been

illustrated through ulcer patient data.

We may conclude that the proposed empirical Bayes estimators λ̂E , λ̂E2 and ĥE(t), ĥE2(t) are

better than Bayes estimators λ̂B, λ̂B2 and ĥB(t), ĥB2(t) for smaller or larger prior variance (σ =

1,3) of β with a = ±1.5. Also, we have seen that Table 4.1-4.2 under LINEX loss function

for the estimators R̂E(t) & R̂E2(t) are not always less than those of R̂B(t) and R̂B2(t). Since the
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risks associated with R̂B(t) and R̂B2(t) are smaller than the risk associated with reliability of

the empirical estimators. Thus, the use of propose estimator (λ̂E , R̂B(t), ĥE(t)) and (λ̂E2, R̂B2(t),

ĥE2(t)) under PT-II CBRs and Type-II censoring are used under LINEX loss function respec-

tively.

Chapter 5, deals with a Poisson Lindley distribution as a stochastic abundance model in which

the sample is according to the independent Poisson process. We have obtained the maximum

likelihood estimators through profile likelihood and the conditional likelihood of the number of

species. In the Bayesian estimation of the number of species, we have considered two priors

i.e., Jefferey’s and reference priors. We obtain the Bayes estimators of the number of species

through Jeffery’s prior and reference prior. The proposed Bayes estimators have been compared

with the corresponding profile and conditional ML estimators for their simulated samples. The

Jeffery’s and reference priors have considered and compared with the Bayesian approach based

on biological data.

The biological data, shows similar results are obtained in estimating the number of species

S between the posterior and the maximum likelihood estimators. The asymmetry in both the

profile likelihood confidence intervals and the credible intervals accounts for skewed profile

likelihoods and skewed posterior distribution. There is a large effect of the model on the esti-

mates, showing a need for more models and a careful model selection technique. The methods

of Jeffrey’s prior and reference prior give us a way to construct priors that are defined to be

non-informative or minimally informative. In the simulated result, we obtain model DIC lesser

of Poisson Lindley model with reference prior (PLR) than Poisson Lindley model with Jeffery’s

prior (PLJ). Therefore, we can propose that Bayes estimate i.e. posterior mean from PLR gives

the optimum number of species present there.

The R software is used for mathematical computations. This thesis contains a list of references

at the end. We realize that an exhaustive list of references related to the problem discussed in

the thesis is too big to be reproduced here. Therefore we have included only those references

that are cited in the thesis and are directly related to our work.



Chapter 2

Bayesian Inference for Weibull Poisson

Distribution Under Censored Data Using

Expectation Maximization Algorithm *

2.1 Introduction

Statistical literature have numerous distributions for modeling life-time data. Due to the enor-

mous use of the Poisson family distribution, we consider a very flexible Weibull Poisson Distri-

bution (WPD). It is one of the recent compounding of two most greeted probability distributions

i.e., Weibull and zero truncated Poisson distribution. This distribution was pioneered by Lu and

Shi (2012). The CDF of WPD with (α,β ,λ ) is

F(x) =
eλe−βxα

− eλ

1− eλ
; α > 0,λ > 0,β > 0,x > 0. (2.1)

*Part of this chapter has been published in reputed peer-reviewed journals with indexing SCI, SCIE, SCOPUS,

see Pathak et al. (2020b).

33
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The PDF is given by

f (x) =
αβλe−λ

1− e−λ
e−βxα

xα−1eλe−βxα

; α > 0,λ > 0,β > 0,x > 0, (2.2)

where, shape parameter α and scale parameters β of WPD, while λ is the rate parameter of zero

truncated Poisson distribution. This distribution has an edge over other Poisson-based distribu-

tions like Poisson-gamma, Poisson-log normal etc in the sense that it covers all types of failure

rates encountered in life testing experiments, see Gonzales-Barron and Butler (2011). We may

note here a typical feature of life testing experiments is censoring because, situations do arise

when items/ units are lost or removed from the experiment while they are alive; i.e., quite often,

it is very much difficult to get failure times of all the items/units put on test experiments owing

to various restriction related to time, cost and other resources. Type-I censoring takes place

when experimental time is fixed and hence number of failures become random. While type-II

censoring occurs when the number of failures is fixed, but experimental time remain random.

Even under these conditions, some items/ units may drop out of the experiment randomly due

to some unknown causes, which are beyond the control of the experimenter. For example, con-

sider that a medical experiment starts with n patients but after the death of first patient, some

patients who are alive leave the experiment and go for treatment elsewhere. Similarly, after

death of second patient a few more are leave and the process continues till predetermined num-

ber of failure (say m < n) are recorded. It may be assumed here that at each stage participating

patient may independently decide to leave the experiment with probability p. Thus the number

of patients who leave the experiment at a specified stage will follow binomial distribution with

probability p. It may be argued at this stage that probability p may vary at each stage. But

sake of simplicity, we shall assume that p is same at each stages. Collecting information in this

way results to a censored sample and the sampling technique used is called as PT-II CBRs. The

mathematical formulation of PT-II CBRs is presented in next Section. For details, one can see

Balakrishnan and Sandhu (1995), Balakrishnan and Aggarwala (2000).

In last few decades, parameter estimation for Weibull lifetime models based on progressive

Type-II, PT-II CBRs and optimal progressive censoring schemes are studied by several authors



Chapter 2. Weibull Poisson Distribution 35

((Balasooriya et al., 2000), Tse et al. (2000), (Tang et al., 2003), Ng et al. (2004) etc.). Esti-

mation of inverse Weibull parameters have been discussed by Sultan et al. (2014). Also, in last

few years and for other lifetime models by Soliman et al. (2015), Singh et al. (2014), Kumar

et al. (2015), Kumar et al. (2018), Kumar et al. (2019a), Kumar et al. (2019b) etc. But, it seems

as if no attempt has been made to develop estimators for the parameters of WPD under PT-II

CBRs; although estimation of parameters under classical set up has also been attempted by Lu

and Shi (2012).

Therefore, in this chapter we propose to develop an estimation procedure to obtain the ML Es-

timators (using EM algorithm) and Bayes estimators for parameters of WPD under symmetric

and asymmetric loss function when sample is obtained by the use of PT-II CBRs. An important

feature of this chapter is to develop the required mathematics for PT-II CBRs, EM algorithm

along with its application to the bladder cancer patients data (remission time in months).

2.2 Classical and Bayesian Estimation Under PT-II CBRs

In this section, we follow the PT-II CBRs discussed in Chapter-1, Subsection 1.11.2. For details

see. Viveros and Balakrishnan (1994) and Ng et al. (2004). Following Cohen (1963) for fixed

removals, say R1 = r1,R2 = r2,R3 = r3, · · · ,Rm = rm, the conditional likelihood function can

be written as,

L(α,β ,λ ;x|R = r) = c
m

∏
i=1

f (xi)[1−F(xi)]
ri; −∞ < x1 < ... < xm < ∞, (2.3)

n, m ε N, 1 ≤ i ≤ m and c =
m
∏
i=1

γi where γi =
m
∑
j=1

(r j + 1). Substituting f (xi) and F(xi) from

(2.1) and (2.2) into (2.3), we have

L(α,β ,λ ;x|R = r) = c
m

∏
i=1

αβλxα−1
i

1− e−λ
e−λ−βxα

i +λe−βxα
i

{
1− eλe−βxα

i

1− eλ

}ri

. (2.4)
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As mentioned earlier, in the experiment removal of the number of items/units is random and

independent of each other, therefore

p(R1 = r1; p) =
(

n−m
r1

)
pr1(1− p)n−m−r1 (2.5)

and for i = 2,3, ...,m−1

p(Ri; p) = p(Ri = ri|Ri−1 = ri−1, ...R1 = r1)

=

(n−m−
i−1
∑

l=0
rl

ri

)
pri(1− p)

n−m−
i−1
∑

l=0
rl
. (2.6)

Hence, likelihood function can be written as

L(α,β ,λ , p;x) = L(α,β ,λ ;x|R = r)p(R = r; p) (2.7)

where,

p(R = r; p) = p(R1 = r1)p(R2 = r2|R1 = r1)p(R3 = r3|R2 = r2,R1 = r1)...

p(Rm−1 = rm−1|Rm−2 = rm−2, ...R1 = r1).

(2.8)

Substituting from Equation (2.5) and (2.6) into (2.8), we have

p(R = r; p) =
(n−m)!p

m−1
∑

i=1
ri
(1− p)

(m−1)(n−m)−
m−1
∑

i=1
(m−i)ri

(n−m−
i−1
∑

l=1
rl)!

m−1
∏
i=1

ri!
, (2.9)

now using Equation (2.4), (2.7) and (2.9), the complete likelihood can be expressed in the

following form,

L(α,β ,λ , p;x) = ΦL1(α,β ,λ )L2(p)
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where,

Φ =
c(n−m)!

(n−m−
i−1
∑

l=1
rl)!

m−1
∏
i=1

ri!
,

L1(α,β ,λ ;x|R = r) = c
m

∏
i=1

αβλxα−1
i

1− e−λ
e−λ−βxα

i +λe−βxα
i

{
1− eλe−βxα

i

1− eλ

}ri

, (2.10)

L2(p) = p

m−1
∑

i=1
ri
(1− p)

(m−1)(n−m)−
m−1
∑

i=1
(m−i)ri

.

Now, ML Estimates of α,β and λ are computed by maximizing L1 and MLE of p by maximiz-

ing L2. Taking log of both sides to Equation (2.10), we get

l1 (α,β ,λ ) = ln(L1(α,β ,λ )) = m lnα +m lnβ +m lnλ +(α −1)
m

∑
i=1

lnxi −mλ −β

m

∑
i=1

xα
i

−m ln(1− e−λ )+λ

m

∑
i=1

e−βxα
i +

m

∑
i=1

ri

(
ln(eλe−βxα

i −1)− ln(eλ −1)
)
.

(2.11)

Differentiating the Equation (2.11) with respect to parameter α,β and λ and equating to zero,

we obtain following three normal equations. A simultaneous solution of these provide ML

Estimates of the parameters.

∂ l1(α,β ,λ )

∂α
=

m
α
+

m

∑
i=1

lnxi −β

m

∑
i=1

xα
i lnxi −λβ

m

∑
i=1

e−βxα
i (xα

i lnxi)

+
m

∑
i=1

ri

[
λe−βxα

i eλe−βxα
i

1− eλe−βxα
i

βxα
i lnxi

]
= 0, (2.12)

∂ l1(α,β ,λ )

∂β
=

m
β
−

m

∑
i=1

xα
i −λxα

i

m

∑
i=1

e−βxα
i +

m

∑
i=1

ri

[
λe−βxα

i eλe−βxα
i

1− eλe−βxα
i

xα
i

]
= 0, (2.13)

∂ l1(α,β ,λ )

∂λ
=

m
λ
−m−

m

∑
i=1

e−βxα
i − me−λ

1− e−λ
−

m

∑
i=1

ri

[
eλe−βxα

i −βxα
i

1− eλe−βxα
i
− meλ

1− eλ

]
= 0. (2.14)

Unfortunately, Equation (2.12), (2.13) and (2.14) can not be analytically solved simultane-

ously. Hence we propose the use of numerical iterative procedure, namely i.e. NR method

for solving these. The numerical procedure used here for obtaining the iteration function and
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the choice of initial guesses is based on maximum absolute row sum norms, which has been

discussed by Jain et al. (2003). The EM algorithm has been proposed in this chapter to get the

ML estimates of parameter α,β and λ , also discussed in Chapter 1, Subsection 1.10.1. Let Zik

be the unobserved observation for the kth items/ units moved out of the experiment at the time

of observing ith removal at time Xi; i = 1,2, ...,m and k = 1,2, ....,ri. Thus, the observed Xi’s

and Zik’s form the complete data. Hence the complete likelihood is

L(α,β ,λ ) =
m

∏
i=1

[
αβλxα−1

i

1− e−λ
e−λ−βxα

i +λe−βxα
i

ri

∏
k=1

αβλ zα−1
ik

1− e−λ
e−λ−β zα

ik+λe−β zα
ik

]
.

The log-L function is

lnL(α,β ,λ ) = n ln(α)+n ln(β )+n ln(λ )−nλ −n ln
(

1− e−λ

)
+(α −1)

m

∑
i=1

lnxi −β

m

∑
i=1

xα
i +λ

m

∑
i=1

e−βxα
i

+(α −1)
m

∑
i=1

ri

∑
k=1

lnzik −β

m

∑
i=1

ri

∑
k=1

zα
ik +λ

m

∑
i=1

ri

∑
k=1

e−β zα
ik .

(2.15)

Hence, ML estimate of the parameters are, obtained the simultaneous solution of the following

three nonlinear equations

∂ lnL(α,β ,λ )

∂α
=

n
α
−αβ

m

∑
i=1

xα−1
i −αβλ

m

∑
i=1

xα−1
i e−βxα

i +
m

∑
i=1

lnxi

−αβ

m

∑
i=1

ri

∑
k=1

zα−1
ik −αβλ

m

∑
i=1

ri

∑
k=1

zα−1
ik e−β zα

ik +
m

∑
i=1

ri

∑
k=1

lnzik = 0,
(2.16)

∂ lnL(α,β ,λ )

∂β
=

n
β
−

m

∑
i=1

xα
i −λ

m

∑
i=1

xα
i e−βxα

i −
m

∑
i=1

ri

∑
k=1

zα
ik

−λ

m

∑
i=1

ri

∑
k=1

zα
ike−β zα

ik = 0,
(2.17)

and
∂ lnL(α,β ,λ )

∂λ
=

n
λ
−n+

ne−λ(
1− e−λ

) + m

∑
i=1

e−βxα
i +

m

∑
i=1

ri

∑
k=1

e−β zα
ik = 0. (2.18)
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Now, to perform the EM algorithm, joint distribution of x and z can be written as

f (x,z;α,β ,λ ) = P(z;λ ) f (x|z;α,β ),

where,

P(z;λ ) =
e−λ λ z

z!
[
1− e−λ

] ; λ > 0, z = 1,2,3, · · · .

Since, the conditional PDF is

P(z|x;α,β ,λ ) =
f (x,z;α,β ,λ )

f (x;λ )
= αβ zxα−1e−β zxα

λ
z
Γ
−1(z+1)

(
eλ −1

)−1
; z = 1,2,3, · · · ,

(2.19)

where, α > 0,β > 0 and λ > 0. The E-step of EM algorithm needs the computation of the con-

ditional expectation (Z|X ,α t ,β t ,λ t), where, (α t ,β t ,λ t) is the current estimates of (α,β ,λ ).

Hence from Equation (2.19), we get

E(z|x;α
t ,β t ,λ t) =

(
1+λ

te−β txαt)
.

The EM algorithm is completed with M-step, with complete data, where missing Z’s are re-

placed by their conditional expectations (Z|X ,α t ,β t ,λ t). Thus, an EM iteration, takes (α t ,β t ,λ t)

into
(
α t+1,β t+1,λ t+1) obtained from the following

∂ lnL(α,β ,λ )

∂α
=

n
α
−αβ

m

∑
i=1

xα−1
i −αβλ

m

∑
i=1

xα−1
i e−βxα

i +
m

∑
i=1

lnxi

−αβ

m

∑
i=1

ri

∑
k=1

(
1+λ

te−β txαt
i

)α−1
−αβλ

m

∑
i=1

ri

∑
k=1

(
1+λ

te−β txαt
i

)α−1
e
−β

(
1+λ te−β t xαt

i

)α

+
m

∑
i=1

ri

∑
k=1

ln
(

1+λ
te−β txαt

i

)
= 0,

∂ lnL(α,β ,λ )

∂β
=

n
β
−

m

∑
i=1

xα
i −λ

m

∑
i=1

xα
i e−βxα

i −
m

∑
i=1

ri

∑
k=1

(
1+λ

te−β txαt
i

)α

−λ

m

∑
i=1

ri

∑
k=1

(
1+λ

te−β txαt
i

)α

e
−β

(
1+λ te−β t xαt

i

)α

= 0,
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and

∂ lnL(α,β ,λ )

∂λ
=

n
λ
−n+

ne−λ(
1− e−λ

) + m

∑
i=1

e−βxα
i +

m

∑
i=1

ri

∑
k=1

e
−β

(
1+λ te−β t xαt

i

)α

= 0.

The iterative procedure obtained for EM algorithm is given below

α
t+1 =

n
αβ

m

∑
i=1

xα−1
i +αβλ

m

∑
i=1

xα−1
i e−βxα

i −
m

∑
i=1

lnxi +αβ

m

∑
i=1

ri

∑
k=1

(
1+λ

te−β t xαt
i

)α−1

+αβλ

m

∑
i=1

ri

∑
k=1

(
1+λ

te−β t xαt
i

)α−1
e
−β

(
1+λ t e−β t xαt

i

)α

−
m

∑
i=1

ri

∑
k=1

ln
(

1+λ
te−β t xαt

i

)


β
t+1 =

n

m

∑
i=1

xα
i +λ

m

∑
i=1

xα
i e−βxα

i +
m

∑
i=1

ri

∑
k=1

(
1+λ

te−β t xαt
i

)α

+λ

m

∑
i=1

ri

∑
k=1

(
1+λ

te−β t xαt
i

)α

e
−β

(
1+λ t e−β t xαt

i

)α


and

λ
t+1 =

nn− ne−λ

(1−e−λ)
−∑

m
i=1 e−βxα

i −∑
m
i=1 ∑

ri
k=1 e

−β

(
1+λ te−β t xαt

i

)α

.

Then
(
α t+1,β t+1,λ t+1) is used as the current estimates of (α,β ,λ ) in the next iteration. The

ML estimates of (α,β ,λ ) can be obtained by repeating the E-step and M-step until convergence

is achieved.

2.2.1 Large Sample Test Procedure

Now, we shall discuss LR method for comparing the suitability of competitive models. Note

that if we take ri = 0 and n = m in Equation (2.16), (2.17), (2.18), these reduce to complete

sample normal Equations. The observed Fisher’s Information matrix is
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Jn (α,β ,λ ) =


−∂ 2 lnL(α,β ,λ )

∂α2 −∂ 2 lnL(α,β ,λ )
∂α∂β

−∂ 2 lnL(α,β ,λ )
∂α∂λ

−∂ 2 lnL(α,β ,λ )
∂β∂α

−∂ 2 lnL(α,β ,λ )
∂β 2 −∂ 2 lnL(α,β ,λ )

∂β∂λ

−∂ 2 lnL(α,β ,λ )
∂λ∂α

−∂ 2 lnL(α,β ,λ )
∂λ∂β

−∂ 2 lnL(α,β ,λ )
∂λ 2


(α̂,β̂ ,λ̂ )

where,

∂ 2 lnL(α,β ,λ )

∂α2 =
n

α2 +
n

∑
i=1

βxα
i (log(xi))

2(1+λe−βxα
i −βλxα

i e−βxα
i ),

∂ 2 lnL(α,β ,λ )

∂α∂β
=

∂ 2 lnL(α,β ,λ )

∂β∂α
=

n

∑
i=1

βxα
i log(xi)(1+λe−βxα

i −βλxα
i e−βxα

i ),

∂ 2 lnL(α,β ,λ )

∂α∂λ
=

∂ 2 lnL(α,β ,λ )

∂λ∂α
=

n

∑
i=1

βxα
i log(xi)e−βxα

i ,

∂ 2 lnL(α,β ,λ )

∂β 2 =
n

β 2 −λ

n

∑
i=1

(xα
i )

2e−βxα
i ,

∂ 2 lnL(α,β ,λ )

∂β∂λ
=

∂ 2 lnL(α,β ,λ )

∂λ∂β
=

n

∑
i=1

xα
i e−βxα

i ,

∂ 2 lnL(α,β ,λ )

∂λ 2 =
n

λ 2 −n
eλ

(1− eλ )2 .

Let Tn(α,β ,λ ) be the expectation of Fisher Information matrix, i.e.,

Tn(α,β ,λ ) = E(Jn(α,β ,λ )) = n


T11 T12 T13

T21 T22 T23

T31 T32 T33



where,

T11 =
1

α2 +βE
[
xα

z (log(xz))
2(1+λe−βxα

z −βλxα
z e−βxα

z )
]
,

T12 = T21 = E
[
xα

z log(xz)(1+λe−βxα
z −βλxα

z e−βxα
z )
]
,

T13 = T31 = βE
[
xα

z log(xz)e−βxα
z

]
,
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T22 =
1

β 2 −λE
[
(xα

z )
2e−βxα

z

]
,

T23 = T32 = E
[
xα

z e−βxα
z

]
,

T33 =
1

λ 2 −
eλ

(1− eλ )2 .

For large n, under the usual regularity condition, we obtain that (α̂, β̂ , λ̂ ) have multivariate nor-

mal distribution with attain mean (α,β ,λ ) and covariance matrix T−1
n (α,β ,λ ). The asymp-

totic property of normality is useful for performing a goodness of fit test. Here, we can test

the significance of the model parameters by comparing this full model with specified nested

models based on the LR test. By considering null hypothesis H01 : α = 1 against H11 : α ̸= 1

and H02 : λ = 0 against H12 : λ ̸= 0, one can compare the suitability of Exponential Poisson and

Weibull versus Weibull Poisson distribution respectively. The test statistic under H0i, i = 1,2,

are

R1 =−2ln

(
L(α0, β̂ , λ̂ )

L(α̂, β̂ , λ̂ )

)
and R2 =−2ln

(
L(α̂, β̂ ,λ0)

L(α̂, β̂ , λ̂ )

)
,

respectively, which are asymptotically distributed as χ2 with degrees of freedom equal to the

respective dimension of the parameter space under the null hypothesis.

2.2.2 Bayesian Estimation Under PT-II CBRs

To obtain the Bayes estimator of α,β and λ , we assume that these are independently distributed

prior pdfs for α and λ are chosen by using Jeffery’s method i.e., log of the parameters are

uniformly distributed; resulting to the following distributions:

g1(α) ∝
1
α

; α > 0. (2.20)

g2(λ ) ∝
1
λ

; λ > 0. (2.21)
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Keeping in mind the wide coverage of variety of prior beliefs, we have chosen gamma distribu-

tion given below as prior distribution; see for details, Nassar and Eissa (2005), Box and Tiao

(2011).

g3(β ) ∝ e−aβ
β

b−1; a > 0,b > 0, (2.22)

where, gamma distribution have scale parameter a and shape parameter b. Thus the posterior

distribution of α,β and λ can easily be obtained as

π(α,β ,λ |x,r) ∝
αm−1λ m−1β m+b−1e

−mλ−β
m
∑

i=1
xα

i −aβ+λ
m
∑

i=1
e−βxα

i

(1− eλ )m

m

∏
i=1

xα−1
i

[
1− eλe−βxα

i

1− e−λ

]ri

,

and the respective marginal posterior pdfs of α,β and λ can be computed from the following

π1(α|x,r) =
∫

∞

0

∫
∞

0
π(α,β ,λ |x,r)dβ dλ ,

π2(β |x,r) =
∫

∞

0

∫
∞

0
π(α,β ,λ |x,r)dα dλ ,

and

π3(λ |x,r) =
∫

∞

0

∫
∞

0
π(α,β ,λ |x,r)dα dβ .

Now, let us consider that the very much popular symmetric loss function i.e., SELF has equal

weight to the o.e. and u.e. of the same magnitude. Also, consider the asymmetric loss function

i.e. GELF has unequal weight to the o.e. is more serious than u.e. and vice versa. The SELF

and GELF are discussed in Chapter 1, Subsection 1.8. The expressions for the Bayes estimators

of the parameters α,β and λ , denoted by α̂G, β̂G and λ̂G respectively, are given below

α̂G =

[∫
∞

0
α
−δ

π1(α|x,r)dα

]− 1
δ

, (2.23)

β̂G =

[∫
∞

0
β
−δ

π2(β |x,r)dβ

]− 1
δ

, (2.24)
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and

λ̂G =

[∫
∞

0
λ
−δ

π3(λ |x,r)dλ

]− 1
δ

. (2.25)

It may be noted that the integrals in Equation (2.23), (2.24) and (2.25) can not be reduced to

closed forms. Hence, numerical computational techniques are suggested for their calculations

following Tierney (1994). Who has suggested the use of well-known technique namely MCMC

technique in which the samples are generated from posterior distribution by Gibbs sampler via

M-H algorithms. The samples thus obtained are then used to evaluate the Bayes estimates

under SELF and GELF. It may be noted that Gibbs sampler uses to generate samples from full

conditionals to generate samples posterior distribution and for details Gelman et al. (2013). Full

conditional posterior distributions of the parameters α,β , and λ can be written in the following

form:

π
∗
1 (α|β ,λ ,x,r) ∝ α

m−1e
−β

m
∑

i=1
xα

i +λ
m
∑

i=1
e−βxα

i m

∏
i=1

xα−1
i {1− eλe−βxα

i }ri, (2.26)

π
∗
2 (β |α,λ ,x,r) ∝ β

m+b−1e
−β

m
∑

i=1
xα

i −aβ+λ
m
∑

i=1
e−βxα

i m

∏
i=1

{1− eλe−βxα
i }ri, (2.27)

and

π
∗
3 (λ |α,β ,x,r) ∝

λ m−1e
−mλ+λ

m
∑

i=1
e−βxα

i

(1− e−λ )m

m

∏
i=1

{
1− eλe−βxα

i

1− eλ

}ri

. (2.28)

The Bayes estimators of parameter α , β and λ are evaluated from the required sample of

Equation (2.26), (2.27) and (2.28), generated by using MCMC procedure. The algorithm used

for obtaining Bayes estimates and HPD credible intervals is given below:

I. Set α0, β0 and λ0 be the initial guess of α , β and λ .

II. Set i = 1 .

III. Generate αi from π∗
1 (α|βi−1,λi−1,x,r), βi from π∗

2 (β |λi−1,αi−1,x,r) and λi from

π∗
3 (λ |αi−1,βi−1,x,r) respectively.

IV. Repeat steps 2-3, N times.
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V. Obtain the Bayes estimates of α , β and λ under GELF as[
E(α−δ |x,r)

]− 1
δ

=
[

1
N−N0

∑
N−N0
i=1 α

−δ

i

]− 1
δ ,
[
E(β−δ |x,r)

]− 1
δ

=
[

1
N−N0

∑
N−N0
i=1 β

−δ

i

]− 1
δ and[

E(λ−δ |x,r)
]− 1

δ

=
[

1
N−N0

∑
N−N0
i=1 λ

−δ

i

]− 1
δ , where N0 is the burn in period. Substituting

δ =−1 in step V, we get Bayes estimates of α , β and λ under SELF.

VI. For computing the highest posterior density (HPD) credible interval of α , β and λ . We or-

der the MCMC sample values α , β and λ (say α1,α2,α3, · · · ,αN as α(1),α(2),α(3), · · · ,α(N),

β1,β2,β3, · · · ,βN as β(1),β(2),β(3), · · · ,β(N) and λ1,λ2,λ3, · · · ,λN as λ(1),λ(2),λ(3), · · · ,λ(N)).

Then construct all the 100(1-Ψ )% credible intervals of α , β and λ , say {(α(1),αN[(1−Ψ)]+1),

· · · ,(α[NΨ ],αN)},{(β(1),βN[(1−Ψ)]+1), · · · ,(β[NΨ ],βN)} & {(λ(1),λ[N(1−Ψ)]+1), · · · ,

(λ[NΨ ],λN)} respectively. Where [η] mentioned the largest integer less than or equal to η .

Therefore, the HPD credible interval of α , β and λ is that interval which has the shortest

length.

2.3 Bayes Prediction

In this Section, we have derived an expression for one sample Bayes prediction, if the experi-

menter is interested to know the lifetimes of the (n−m) removed surviving units on the basis

of observed sample. Let Ys = Xm+s,m < s ≤ n, represents the failure lifetime of the remaining

units, then conditional distribution of Y th
(s) order statistics given PT-II CBRs sample x is given

by, see Singh et al. (2013b)

f
(
y(s)|x(m),α,β ,λ

)
=

(n−m)!
[
1−F

(
y(s)
)]n−m−s

(s−1)!(n−m− s)!
[
1−F

(
x(m)

)]n−m

[
F
(
y(s)
)
−F

(
x(m)

)]s−1 f
(
y(s)
)
.

(2.29)

Substituting Equation (2.1) and Equation (2.2) in (2.29), we have

f
(
y(s)|x(m),α,β ,λ

)
= αβyα−1

(s) ζ (y(s))log
(
ζ (y(s))

) (n−m)!
(s−1)!(n−m− s)![

1−ζ (y(s))
1−ζ (x(m))

]n−m [
1−ζ (y(s))

]−s [
ζ (x(m))−ζ (y(s))

]s−1
,
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where, ζ (z) = eλe−β zα

. One sample Bayes predictive density of yth
(s) ordered future sample can

be obtained as follows

f
(
y(s)|x

)
=
∫

∞

0

∫
∞

0

∫
∞

0
f
(
y(s)|x,α,β ,λ

)
π (α,β ,λ |x)dαdβdλ

The above equation for f
(
y(s)|x

)
cannot be expressed in closed form and hence it cannot be

evaluated analytically. Therefore, MCMC techniques is proposed to be used for obtaining the

approximate solution of the above predictive density.

{(αi,βi,λi) ; i = 1,2, · · · ,N −N0} obtained from π (α,β ,λ |x) using Gibbs sampling can be uti-

lized to obtain the consistent estimate of f
(
y(s)|x

)
. It can be obtained by

f
(
y(s)|x

)
=

1
N −N0

N−N0

∑
i=1

f
(
y(s)|αi,βi,λi

)
. (2.30)

Thus, we can obtain the two-sided 100(1−ψ)% prediction interval (l,u) for future sample by

solving the following two equations:

P
(
Y(s) > u|x

)
= ψ

2 and P
(
Y(s) > l|x

)
= 1− ψ

2 .

We are facing difficulties to obtain the explicit solution. Therefore, we need to apply as per

required numerical technique for the purpose of solution of non-linear equations. Also we

opted that an alternative method is MCMC discussed by Chen and Shao (1998), in the following

way: Let
(
y(i:s)

)
; i = 1,2, · · · ,N−N0 be the corresponding ordered MCMC sample of (yi:s) ; i =

1,2, · · · ,N −N0 from Equation (2.30). Then, the 100(1−ψ)% HPD intervals for y(s) is y( j∗:s),

y j∗+[(1−ψ)M]:s, where j∗ is chosen so that

y j∗+[(1−ψ)N−N0]:s − y( j∗:s) =
min

1≤ j≤N−N0−[(1−ψ)N−N0]

[
y j∗+[(1−ψ)N−N0]:s − y( j∗:s)

]
.

For considered real data set, we calculated the mean and 95% credible intervals (predictive

bounds) for future samples using one sample prediction technique. The results are summarized

in Table (2.4).



Chapter 2. Weibull Poisson Distribution 47

2.4 Expected Experiment Time

Cost is an very effective element in an experiment that is directly related to the time of ex-

periment. Therefore, for a proper planning of the experimentation one is always interested in

knowing the expected experiment time; which can be defined PT-II CBRs

E[Xm] = ER[E[Xm|R = r]] (2.31)

=
g(r1)

∑
r1=0

g(r2)

∑
r2=0

...
g(rm−1)

∑
rm−1=0

p(R, p)E[Xm:m:n|R = r].

Where g(ri) = n−m− r1 − ...− ri−1 and p(R = r; p) is given in Equation (2.9). Conditioning

on R the expected experiment time is

E[Xm|R] =
∫

∞

0
x fXm(x)dx,

where, fX(m)
=Cm−1 f (x)

m
∑
j=1

a j,m(1−F(x))γ j ,1 ≤ m ≤ n and cm−1 =
m
∏
i=1

γi,1 ≤ m ≤ n

and a j,m =
m
∏
i=1

1
γi−γ j

; i ̸= j,1 ≤ j ≤ m ≤ n. For more details about the procedure of evaluation

of conditional expectation of Xm for given R, see Balakrishnan and Aggarwala (2000), Singh
et al. (2013b), Tse et al. (2000). Using the suggested procedure, expected experiment times
under PT-II CBRs are computed for different combinations of m and n listed in Table (2.1).
The values of p, considered here are 0.1,0.3,0.5,0.7 and 0.9 while model parameters α,β and
λ are arbitrarily taken as 1,2 and 2 respectively. The results obtained are summarized below
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TABLE 2.1: Expected Experiment time E[Xm] under PT-II CBRs.

n m p = 0.1 p = 0.3 p = 0.5 p = 0.7 p = 0.9

10 0.15660 0.57392 0.86262 0.93033 0.96077
15 0.37201 0.99414 1.09666 1.13149 1.13086

30 20 0.76695 1.23138 1.27059 1.30419 1.25337
25 0.93638 1.35836 1.37069 1.34487 1.35232
30 1.47650 1.45380 1.49828 1.45718 1.47108
10 0.28018 0.73055 0.91508 0.95055 0.95818

20 15 0.71918 1.10303 1.13051 1.15929 1.14585
20 1.27924 1.28742 1.27601 1.28292 1.28714
3 0.08832 0.12157 0.19727 0.31295 0.43709
4 0.13669 0.22246 0.36903 0.50305 0.58098

10 6 0.29297 0.51585 0.67842 0.75186 0.76813
10 0.99404 0.98307 0.97925 0.98829 0.99048

Now we can obtain ratio of the expected experiment time (REET) between PT-II CBRs and the

complete sampling as

REET =
E[Xm] under PT − II CBRs

E[Xn] under complete sampling
. (2.32)

It may be noted that REET indicates the reduction in experiment time. Figure (2.1) shows

REET for various values of n for m = 10 and different removal probability p = 0.1,0.3,0.5,0.7

and 0.9. It can be seen from the Figure that for each values of p, the REET decreases as n

increases. It may be, noted that for larger value of (> 0.5) and larger n(> 25); the values of

REET do not change for change in the value of p. For p ≤ 0.5 and moderate sample size (25)

larger valuers of REET is noted for smaller valuers of p.
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FIGURE 2.1: REET under PT-II CBRs to under complete sample.

2.5 Monte Carlo Simulation Study and Comparison of Esti-

mators

We have seen above that proposed estimators are not obtained in the closed form; therefore,

an analytical study of behavior of the estimators is not possible and we propose to study it

numerically. For this purpose, we suggest the use of MCMC technique as suggested by Tierney

(1994) also, for the calculation of risk (average loss over sample space) of estimators of the

parameters α , β and λ . Hence, samples are generated from specified WPD and PT-II CBRs

samples are obtained from these. ML estimator along with Bayes estimators under SELF and

GELF are calculated. The ML estimators are denoted as; α̂M, β̂M, λ̂M where as α̂S, β̂S, λ̂S

and α̂G, β̂G, λ̂G denote SELF and GELF estimates of the parameters α,β and λ , respectively.

Similarly, (αc
L,α

c
U),(β

c
L,β

c
U),(λ

c
L,λ

c
U) and (αh

L,α
h
U),(β

h
L ,β

h
U),(λ

h
L ,λ

h
U) indicate 100(1−Ψ)%

CI and HPD credible intervals. Risk are estimated on the basis of 8000 samples. Since risk

of the estimators under PT-II CBRs will be function of n,m, p,α,β ,λ , δ , a and b. The choice



Chapter 2. Weibull Poisson Distribution 50

of hyper parameter are made by assuming that the prior information about the parameter is

available in the form of its expected value µ and its variance σ2 reflecting the confidence in

expected value. Thus a and b are calculated from equations, which can be taken in such a way

that if we consider any two independent pieces of information as prior mean and variance of β

are µ = b
a and σ2 = b

a2 , where µ is taken as true values of the parameter β and smaller, moderate

and large values of variances namely 0.5,1 and 5 which gave (a = 4, b = 8), (a = 2, b = 4)

and (a = 0.4, b = 0.8) respectively. We vary the effective samples size m = 10[5]30. The value

of α,β and λ are arbitrarily taken as 1, 2 and 2 respectively. The value of loss parameter δ is

taken as 1.5 for o.e. to be more serious than u.e. and see Singh et al. (2011). After an extensive

study of results thus obtained, conclusions are drawn regarding the behavior of the estimators.

It may be mention here that the space restriction, results of various variation in the parameters

are not shown. Only selected Figures are included.

2.6 Discussion of Results

We shall discuss the impact of variation of effective sample size m under PT-II CBRs, and

compare the risks of all estimators of α,β and λ , obtained under GELF with the corresponding

Bayes estimators under SELF and ML estimator. We observed, the risks of all the estimators

of α,β and λ decrease as effective sample observations m increases. The risks of (α̂G, β̂G) and

(α̂S, β̂S) are found to be close respectively to each other for all the considered situations. A

similar trend is observed for λ̂G and λ̂S also. It is further observed that, in general, the risks of

the estimators under SELF and GELF decreases, as for δ =+1.5 and δ =−1.5 with each prior

belief of the parameter β (see Figure (2.2−2.4)). For large number of effective sample sizes,

the difference between the risks of the estimators are less. The decrease in the risks is more for

α̂M as compared to the other estimators. For almost all values of prior belief of the parameter

β and δ , the risk of α̂G under GELF is found to be least among the considered estimators. It is

also interesting to remark here that α̂G has the least risk under SELF. For positive values of δ ,
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the behavior of risks of estimators under GELF is more or less similar to the one obtained for

negative δ (see Figure (2.2−2.4)).

Similarly, we have studied the risks of Bayes estimators β and λ respectively under SELF and

GELF based on PT-II CBRs. The trend remains more or less the same as stated above under

both loss functions see results in graphs, which has shown in supplementary material. Further

we observed that the risk of β̂G and λ̂G under GELF and SELF are found to be least among the

considered estimators respectively.

The Figure (2.5) shows the CI/HPD credible intervals for α . It may also noted, average CL of

CI/HPD credible intervals consistently narrow down as m increases. The HPD credible intervals

are better than CIs in respect of average CL. While studying the effect of large effective sample

sizes m, the difference of average CL between the CIs and HPD credible intervals are negligibly

small. For β and λ also, the trend of CI/HPD credible intervals, is similar to that of α . Due

to space restriction, results for variations in m of CI/HPD credible intervals of β and λ are not

shown here. The CI/HPD credible intervals of β and λ are given in supplementary material.

Thus, we can not deny from the fact that estimates under Bayesian are more precise and accurate

than ML estimates.

We also discussed the expected time to test and shown in Table (2.1), it is meaningful to com-

ment that as the value p and m increase the expected time to test also increases. It is also

observed that for fixed m, if increases the value of the sample size i.e., n, the expected time to

test decreases.

2.7 An application to Bladder Cancer Data

For the application purpose, we have taken a real data set given by Lee and Wang (2003). It

contains a set of remission times (in months) related to 137 cancer patients, and some patients

are not present in the follow-up. The remission time in months are a subset of the data from a

bladder cancer study. We have considered here a random set of 128 observations from it which
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are given follow: 4.50, 32.15, 3.88, 13.80, 19.13, 4.87, 5.85, 14.24, 5.71, 7.09, 7.87, 7.59,

20.28, 5.32, 5.49, 3.02, 46.12, 2.02, 4.51, 5.17, 2.83, 9.22, 1.05, 0.20, 8.37, 3.82, 9.47, 36.66,

14.77, 26.31, 79.05, 10.06, 8.53, 2.02, 4.98, 11.98, 2.62, 4.26, 5.06, 1.76, 0.90, 11.25, 16.62,

4.40, 21.73, 10.34, 12.07, 34.26, 10.66, 6.97, 2.07, 0.51, 12.03, 0.08, 17.12, 3.36, 2.64, 1.40,

12.63, 43.01, 14.76, 2.75, 7.66, 0.81, 1.19, 7.32, 4.18, 3.36, 8.66, 1.26, 13.29, 1.46, 14.83, 6.76,

23.63, 5.62, 3.25, 18.10, 7.62, 7.63, 17.14, 25.74, 3.52, 2.87, 15.96, 17.36, 9.74, 3.31, 7.28,

1.35, 0.40, 2.26, 4.33, 9.02, 5.41, 2.69, 22.69, 6.94, 2.54, 11.79, 2.46, 7.26, 2.69, 5.34, 3.48,

8.26, 6.93, 4.23, 3.70, 0.50, 10.75, 6.54, 3.64, 5.32, 13.11, 8.65, 3.57, 5.09, 7.39, 5.41, 11.64,

2.09, 2.23, 6.25, 7.93, 4.34, 25.82, 12.02.

First of all, we checked the suitability of WPD to the above said data and compared, some
specified lifetime models; Exponential Poisson (EP) and Weibull distribution. For testing the
goodness of fit we used the method based on ML function, the K-S distance, the AIC, pro-
posed by Akaike (1978), BIC proposed by Schwarz et al. (1978). The best distribution is that
which has the lowest -log-L, AIC, BIC and K-S statistic and corresponding highest p values.
Further, we have used a goodness of fit of distributions. We draw a Q-Q plots for the said
three lifetime distribution and are shown in the Figure (2.14). A Q-Q plot shows the points{

F−1 ( i−0.5
n ;Θ̂M,x(i)

)}
, i = 1,2,3, · · · ,n, where Θ̂M is the ML estimates of the parameters of

lifetime model. The values of ML estimates of the parameters of the considered lifetime mod-
els, -log-L, AIC, BIC, K-S statistic and their associated p values are reported in Table (2.2).

TABLE 2.2: The -log-L, K-S, p-value and the AIC and BIC values for the W), EP and Weibull
fitted distributions.

Estimates -log-L K-S p-value AIC BIC

WP(α,β ,λ ) (1.26853,0.01629,4.26518) -410.189 0.046875 0.99896 826.3782 834.9343

EP(β ,λ ) (0.106371,0.0000047) -414.343 0.078125 0.82955 834.6856 843.2417

Weibull(α,β ) (1.04784,0.09389) -414.087 0.0703125 0.90972 834.1738 842.7298

This Table shows that WPM provide better fit than EP and Weibull distribution. Further, we

tested the hypothesis: H01 : α = 1 (Data follow Exponential Poisson) vs H11 : α ̸= 1 (Data

follow Weibull Poisson) and H02 : λ = 0 (Data follow Weibull) vs H12 : λ ̸= 0 (Data follow

Weibull Poisson), using the large sample test described in Subsection (2.2.1). The value of the
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test statistic R1 and R2 are obtained as 8.30737 and 7.79551 respectively. Which reject H01 and

H02.

Now for the purpose of illustrating the method discussed in this chapter, PT-II CBR samples

are generated from this data set under different schemes. The number of removals are shown

in Table (2.3) under different schemes. The ML estimates of parameter α,β and λ are used to

compute by EM algorithm. The initial value of parameters are chosen through contour plots of

parameters, and their corresponding log-L are plotted; using R software (Figure (2.16)).

As we have no prior information about the parameter β , and we use non informative prior for

which the hyper parameter of β is taken to be (a = 0 : 000001;b = 0 : 000001). When imple-

menting MCMC algorithm, the values of ML estimates are used as initial guess and CUMSUM

plots are plotted, and to verified the convergence of Markov chain. Then, we evaluate Bayes

estimates and HPD intervals using the formulae given in previous Section (2.3) under different

censoring schemes based on Table (2.3), the Bayes estimate of parameter α , β and λ under

SELF and GELF for δ = ±1.5 are presented in Table (2.5). It may be observed from Table

(2.5) that various parameter estimates, obtained using PT-II CBRs, are quite close to those

obtained under complete samples.

TABLE 2.3: PT-II CBR samples under different censoring scheme (Sn:m) for fixed n = 128, p =
0.5.

S128:64 S128:77 S128:102

i Xi Ri Xi Ri Xi Ri Xi Ri Xi Ri

1 0.08 23 0.08 18 20.28 0 0.08 7 10.34 0
2 2.69 17 2.26 9 21.73 0 1.19 4 10.66 0
3 4.23 7 3.02 8 22.69 0 1.76 3 10.75 0
4 4.98 2 3.7 6 23.63 0 2.09 4 11.25 0
5 5.17 3 4.34 2 25.74 0 2.62 0 11.64 0
6 5.41 1 4.51 3 25.82 0 2.64 2 11.79 0
7 5.49 5 5.09 2 26.31 0 2.75 2 11.98 0
8 6.76 4 5.32 1 32.15 0 3.02 0 12.02 0
9 7.26 0 5.41 1 34.26 0 3.25 2 12.03 0
10 7.28 1 5.49 0 36.66 0 3.36 0 12.07 0

Continued on next page
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Table 2.3 – Continued from previous page

S128:64 S128:77 S128:102

i Xi Ri Xi Ri Xi Ri Xi Ri Xi Ri

11 7.39 1 5.62 0 43.01 0 3.48 1 12.63 0
12 7.62 0 5.71 0 46.12 0 3.57 0 13.11 0
13 7.63 0 5.85 0 79.05 0 3.64 0 13.29 0
14 7.66 0 6.25 1 3.7 1 13.8 0
15 7.87 0 6.76 0 3.88 0 14.24 0
16 7.93 0 6.93 0 4.18 0 14.76 0
17 8.26 0 6.94 0 4.23 0 14.77 0
18 8.37 0 6.97 0 4.26 0 14.83 0
19 8.53 0 7.09 0 4.33 0 15.96 0
20 8.65 0 7.26 0 4.34 0 16.62 0
21 8.66 0 7.28 0 4.4 0 17.12 0
22 9.02 0 7.32 0 4.5 0 17.14 0
23 9.22 0 7.39 0 4.51 0 17.36 0
24 9.47 0 7.59 0 4.87 0 18.1 0
25 9.74 0 7.62 0 4.98 0 19.13 0
26 10.06 0 7.63 0 5.06 0 20.28 0
27 10.34 0 7.66 0 5.09 0 21.73 0
28 10.66 0 7.87 0 5.17 0 22.69 0
29 10.75 0 7.93 0 5.32 0 23.63 0
30 11.25 0 8.26 0 5.32 0 25.74 0
31 11.64 0 8.37 0 5.34 0 25.82 0
32 11.79 0 8.53 0 5.41 0 26.31 0
33 11.98 0 8.65 0 5.41 0 32.15 0
34 12.02 0 8.66 0 5.49 0 34.26 0
35 12.03 0 9.02 0 5.62 0 36.66 0
36 12.07 0 9.22 0 5.71 0 43.01 0
37 12.63 0 9.47 0 5.85 0 46.12 0
38 13.11 0 9.74 0 6.25 0 79.05 0
39 13.29 0 10.06 0 6.54 0
40 13.8 0 10.34 0 6.76 0
41 14.24 0 10.66 0 6.93 0
42 14.76 0 10.75 0 6.94 0
43 14.77 0 11.25 0 6.97 0
44 14.83 0 11.64 0 7.09 0

Continued on next page
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Table 2.3 – Continued from previous page

S128:64 S128:77 S128:102

i Xi Ri Xi Ri Xi Ri Xi Ri Xi Ri

45 15.96 0 11.79 0 7.26 0
46 16.62 0 11.98 0 7.28 0
47 17.12 0 12.02 0 7.32 0
48 17.14 0 12.03 0 7.39 0
49 17.36 0 12.07 0 7.59 0
50 18.1 0 12.63 0 7.62 0
51 19.13 0 13.11 0 7.63 0
52 20.28 0 13.29 0 7.66 0
53 21.73 0 13.8 0 7.87 0
54 22.69 0 14.24 0 7.93 0
55 23.63 0 14.76 0 8.26 0
56 25.74 0 14.77 0 8.37 0
57 25.82 0 14.83 0 8.53 0
58 26.31 0 15.96 0 8.65 0
59 32.15 0 16.62 0 8.66 0
60 34.26 0 17.12 0 9.02 0
61 36.66 0 17.14 0 9.22 0
62 43.01 0 17.36 0 9.47 0
63 46.12 0 18.1 0 9.74 0
64 79.05 0 19.13 0 10.06 0

TABLE 2.4: Mean and 95 % predictive bounds for future ordered observations from the bladder
cancer data set.

One sample prediction

s Mean
Bounds

l u

1 79.04829 77.18001 80.46525
2 79.42236 78.31463 80.52509
3 79.59276 78.47721 80.69601
4 79.89351 78.78346 81.01349
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2.8 Conclusion

On the basis of the discussion of results given in the previous Section, we may conclude that

the proposed estimators α̂G, β̂G and λ̂G perform better than all other considered competitive

estimators, for (δ > 0) i.e., when o.e. is more serious than u.e. and for (δ < 0), when u.e. is

more serious than o.e., under both the loss functions. Thus, the use of the proposed estimator

α̂G, β̂G and λ̂G are recommended under SELF and GELF. Moreover, a brief study has done on

the expected experiment time by taking the various combinations of effective parameters n, p

and m and it observed that on increases the value of p and m, the expected time to test increases.

While, for fixed m, on increases the value of n, the expected time to test decreases. The LR

test has performed the goodness of fit. The one sample Bayes prediction has also presented.

Furthermore, a real data set is fitted to show the practical applicability of WPD.
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FIGURE 2.2: Risks for the estimators of parameter α for fixed n = 30, p = 0.5,α = 1,β =
2,λ = 2 with small prior variance, β = 0.5; for panels (a) and (b) δ = 1.5; for panels (c) and

(d) δ = - 1.5.
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FIGURE 2.3: Risks for the estimators of parameter α for fixed n = 30, p = 0.5,α = 1,β =
2,λ = 2 with moderate prior variance, β = 1; for panels (a) and (b) δ = 1.5; for panels (c) and

(d) δ = - 1.5.
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FIGURE 2.6: Risks for the estimators of parameter β for fixed n = 30, p = 0.5,α = 1,β =
2,λ = 2 with small prior variance, β = 0.5; for panels (a) and (b) δ = 1.5; for panels (c) and

(d) δ = - 1.5.
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FIGURE 2.7: Risks for the estimators of parameter β for fixed n = 30, p = 0.5,α = 1,β =
2,λ = 2 with moderate prior variance, β = 1; for panels (a) and (b) δ = 1.5; for panels (c) and

(d) δ = - 1.5.
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FIGURE 2.8: Risks for the estimators of parameter β for fixed n = 30, p = 0.5,α = 1,β =
2,λ = 2 with high prior variance, β = 5; for panels (a) and (b) δ = 1.5; for panels (c) and (d) δ
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FIGURE 2.9: Risks for the estimators of parameter λ for fixed n = 30, p = 0.5,α = 1,β =
2,λ = 2 with small prior variance, β = 0.5; for panels (a) and (b) δ = 1.5; for panels (c) and
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FIGURE 2.10: Risks for the estimators of parameter λ for fixed n = 30, p = 0.5,α = 1,β =
2,λ = 2 with moderate prior variance, β = 1; for panels (a) and (b) δ = 1.5; for panels (c) and

(d) δ = - 1.5.
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FIGURE 2.12: The CI and HPD intervals for β when prior variance is 0.5,1 and 5 with left
panel: δ = 1.5; right panel: δ =−1.5, respectively.
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FIGURE 2.14: Top row: WP, Middle row: EP, Last row: WD shows the P-P and Q-Q plot for
bladder cancer data set.
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FIGURE 2.15: Top row: WP, Middle row: EP, Last row: WD shows the PDF and CDF Plot of
bladder cancer data set.
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FIGURE 2.16: The Contour and -log-L plot of α,β and λ for bladder cancer data set.





Chapter 3

E-Bayesian Inference for Poisson Inverse

Exponential Distribution Under Different

Loss Functions *

3.1 Introduction

In the previous chapter, we have discussed the procedure for obtaining the classical and Bayesian

estimation under PT-II CBRs. This chapter, we obtain the E- Bayes estimator of the consid-

ered Poisson family, we know that the distribution as a Poisson inverse exponential distribution

(PIED). Here, experimental units generally deal with truncated data in studies pertaining to

medical and survival analysis. However, data might be a set of some samples or censored data

from an experiment. The literature has witnessed the different type of censoring techniques to

effectively reduce the time and cost of the life testing experimentation. The Type-I and Type-II

censoring are the very useful real life problems. Type-I (pertains to time constraint) and Type-II

(pertains to cost constraint) censoring; time and number of experimental units are pre-specified

*Part of this chapter has been published in reputed peer-reviewed journals with indexing SCIE, SCOPUS,

PubMed see Pathak et al. (2020a).
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or fixed, which has been controlled by experimenter. However, it may not be always true for

data related with medical studies. Because some of the surviving experimental units are re-

moved randomly at each stage of failure from the experiment due to some unforeseen reasons,

which are beyond the control of the experimenter. For example, let us suppose that n, number

of multiple myeloma patients have a malignant disease characterized by the accumulation of

abnormal plasma cell, a type of white blood cell, in the bone marrow, and are put under medi-

cation in hospital. It is decided to observe the survival lifetime of m patients out of n. During

medication it may happens that after death (first death, second death or so on) some patients

may leave the hospital due to various reasons like loss in faith with hospital, treatment etc. The

process of taking observations continues till survival times of m patients are recorded. It may

also be noted that the number of patients dropping out from the test at each stage is random

and can not be predetermined. The above said censoring and their mathematical formulation,

expression have been discussed in Chapter 1, Subsection 1.11.2.

In last few years, the estimation of parameters of different lifetime distribution based on pro-

gressive censored samples have been discussed by several authors such as (Childs and Balakr-

ishnan (2000), Kundu (2008), Kim and Han (2009), Gholizadeh et al. (2011), Kim et al. (2011),

Huang and Wu (2012)).

Some early works based on the estimation of parameters of different lifetime distribution un-

der PT-II CBRs has been done by (Tse and Yuen (2000), Wu and Chang (2002), Singh et al.

(2013b), Singh et al. (2014), Kumar et al. (2015), Kumar et al. (2018), Kumar et al. (2019a)).

Firstly, han has discussed the E-Bayesian inference, which is an alternative to Bayesian infer-

ence. This method has been used as prior for the unknown hyper parameters. The hierarchical

prior distribution may be used as prior for the unknown hyper parameters, and has required

to set the at least two stages of prior setting (see Lindley and Smith (1972)). But in practice,

under censoring mechanism through this prior, the Bayesian estimates of the unknown param-

eters that have been obtained is quite complicated for the purpose of data analysis as well as
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computations. For this contrary, we are approaching to follow E-Bayesian estimation method

for PIED parameters under PT-II CBRs.

The detailed discussions about the E-Bayesian method see, (Han (2007), Han (2011a), Han

(2011b)). The E-Bayesian estimation for the parameters of different lifetime distributions (see

Gupta (2017), Yousefzadeh (2017), Han (2017a), Han (2017b), Han (2019b) etc.). Further-

more, a few number of authors dealt with the E-Bayesian estimation of parameters for lifetime

distribution with type-II censoring (see Jaheen and Okasha (2011), Okasha (2014), Reyad and

Ahmed (2016) etc.).

Also, El-Sagheer (2017) considered the Rayleigh distribution for E-Bayesian estimation under

progressive type-II censoring. The hierarchical and E-Bayesian estimations for the proportional

reversed hazard rate model based on record values have been discussed by Kızılaslan (2017).

Moreover, some more relevant literature related to the study of E-Bayesian estimation for E-

posterior and E-MSE has been done (see Han (2018), Han (2019a), Han (2019b), Han (2019c),

Han (2020)).

Recently, PIED as a parametric compounding based upon Poisson lifetime distribution which

has been introduced by Kumar et al. (2018). The various parametric compounding based on

Poisson lifetime distributions ((Barreto-Souza and Cribari-Neto (2009), Louzada-Neto et al.

(2011), Lu and Shi (2012), Kumar et al. (2018)) have been used for parameter estimation, but

no one attempted to work on E-Bayesian inference for the parameters under PT-II CBRs. This

is the beauty of this chapter.

Finally, in this chapter we obtain the E-Bayesian and Bayesian estimators of parameters of

PIED under SELF, GELF and LINEX for PT-II CBRs. The E-Bayesian estimators are com-

pared with Bayesian estimators and obtained under different loss function in terms of their

risks.
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3.2 Mathematical Formulation

We begin by summarizing PIED model and likelihood under PT-II CBRs along with Bayesian

and E-Bayesian approach that will be used through out the chapter.

3.2.1 The Model

The two-parameter PIED is one of the latest compounding of two most useful probability dis-

tributions termed as Poisson inverse exponential distribution i.e., zero truncated Poisson and

inverse exponential, and their PDF is

f (x;θ ,λ ) =
θλe−θ− λ

x +θe−
λ
x(

1− e−θ
)

x2 ; x > 0,λ > 0,θ > 0, (3.1)

where, the parameter θ and λ are represented as shape and scale, respectively. The correspond-

ing CDF of PIED (λ ,θ) is given by

F(x;θ ,λ ) =

e−θ

(
eθe−

λ
x −1

)
1− e−θ

; x > 0,λ > 0,θ > 0. (3.2)

It is a lifetime distribution with initially increasing then decreasing failure distribution. The HF

can be defined as

h(x;θ ,λ ) =
f (x;θ ,λ )

1−F(x;θ ,λ )
=

θλe−θ− λ

x +θe−
λ
x

x2
(

1− e−θ+θe−
λ
x
) ; x > 0,λ > 0,θ > 0. (3.3)

It is very much plausible statistical distribution and alternative to common mixture of lifetime

distributions when it is heavy-tailed with monotone failure data. As per applied mathematical
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formulation of PT-II CBR mechanism are discussed in Chapter 1, Section 1.11.2. The condi-

tional likelihood function can be written as (see Cohen (1963) and Kamps and Cramer (2001))

L(λ ,θ ;x|R = r) = f(X1,··· ,Xm)(x1, · · · ,xm)

= c
m

∏
i=1

f (xi) [1−F (xi)]
ri ; −∞ < x1 < · · ·< xm < ∞,

(3.4)

where n=m+∑
m
i=1 ri, n,m∈N,ri ∈N0,1≤ i≤m, ri ∼B(n−m−∑

i−1
l=0 rl, p) for i= 1,2,3, · · · ,m−

1 and r0 = 0 and c = ∏
m
i=1 γi with γi = ∑

m
j=i(r j +1) and for γ1 = n. Substituting f (xi) and F(xi)

from Equations (3.1) and (3.2) into Equation (3.4), it reduces to

L(λ ,θ ;x|R = r) = c
m

∏
i=1

θλe−θ− λ

xi
+θe

− λ
xi

(1− e−θ )xi2

1−
e−θ

(
eθe

− λ
xi −1

)
(1− e−θ )


ri

. (3.5)

The number of the experimental unit Ri removed at ith failure Xi; i = 1,2, · · ·(m−1), follows a

Binomial distribution with parameters
(
n−m−∑

i−1
l=1 ri, p

)
. Therefore,

P(R1 = r1; p) =
(

n−m
r1

)
pr1(1− p)n−m−r1, (3.6)

and for i = 2,3, · · · ,m−1,

P(Ri; p) = P(Ri = ri|Ri−1 = ri−1, · · ·R1 = r1)

=

(
n−m−∑

i−1
l=0 rl

ri

)
pri(1− p)n−m−∑

i−1
l=0 rl .

(3.7)

We also assume that Ris are independent of Xi for all i. Thus, the joint likelihood function

Xi, i = 1,2,3, · · · ,m and Ri, i = 1,2,3, · · · ,m can take the following form

L(θ ,λ , p;x) = L(θ ,λ ;x|R = r)P(R = r; p) , (3.8)
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where

P(R = r; p) = P(R1 = r1)P(R2 = r2|R1 = r1)P(R3 = r3|R2 = r2,R1 = r1)

· · ·P(Rm−1 = rm−1|Rm−2 = rm−2, · · ·R1 = r1) .

(3.9)

Substituting Equations (3.6) and (3.7) into Equation (3.9), we get

P(R = r; p) =
(n−m)!p∑

m−1
i=1 ri (1− p)(m−1)(n−m)−∑

m−1
i=1 (m−i)ri(

n−m−∑
i−1
l=1 ri

)
!∏

m−1
i=1 ri!

. (3.10)

Now using Equations (3.5), (3.8) and (3.10) the complete likelihood function can be written

as

L(λ ,θ , p;x) = ηL1 (λ ,θ)L2 (p) , (3.11)

where η = c(n−m)!
(n−m−∑

i−1
l=1 ri)!∏

m−1
i=1 ri!

,

L1(λ ,θ) =
m

∏
i=1

θλe−θ− λ

xi
+θe

− λ
xi

(1− e−θ )xi2

1−
e−θ

(
eθe

− λ
xi −1

)
(1− e−θ )


ri

, (3.12)

and

L2 (p) = p∑
m−1
i=1 ri (1− p)(m−1)(n−m)−∑

m−1
i=1 (m−i)ri . (3.13)

3.3 Maximum Likelihood Estimation under PT-II CBRs

3.3.1 Point Estimation

As we observed that L1(λ ,θ) has independent of L2 (p). Therefore, the ML estimates of λ

and θ can derived by maximizing Equation (3.12) directly. The log-L function of the above
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Equation (3.12) becomes

lnL1(λ ,θ) =−mθ +m ln(θ)+m ln(λ )−λ

m

∑
i=1

1
xi
+θ

m

∑
i=1

e−
λ

xi

−

(
m+

m

∑
i=1

ri

)
ln
(

1− e−θ

)
−

m

∑
i=1

2ln(xi)+
m

∑
i=1

ri ln

1− e
−θ

(
1−e

− λ
xi

).

(3.14)

The ML estimates of (λ ,θ) can be directly obtained by maximizing the log-L function Equation

(3.14), or alternatively, by finding the solution for the following two nonlinear Equations,

m
λ
−

m

∑
i=1

1
xi
−θ

m

∑
i=1

1
xi

e−
λ

xi −
m

∑
i=1

rie
− λ

xi

xi

e
θ

(
1−e

− λ
xi

)
−1

 = 0, (3.15)

and

m
θ
−m+

m

∑
i=1

e−
λ

xi −

(
m+

m

∑
i=1

ri

)
e−θ

1− e−θ
−

m

∑
i=1

ri(1− e−
λ

xi )e
θ

(
1−e

− λ
xi

)
−1

 = 0. (3.16)

The above Equations (3.15) and (3.16) can not be solved simultaneously to provide any explicit

solution for Ψ = (λ ,θ). Therefore, these normal equations are to be solved numerically using

some adequate iteration such as the NR method or an algorithm such as nlm of software R

(Ihaka and Gentleman (1996)).

3.3.2 Confidence Intervals

Now, we discussed CIs of the parameters λ and θ under PT-II CBRs. Therefore we have,

 Var(λ̂M) Cov(λ̂M, θ̂M)

Cov(λ̂M, θ̂M) Var(θ̂M)

=

 −∂ 2 lnL1(λ ,θ)
∂λ 2 −∂ 2 lnL1(λ ,θ)

∂λ∂θ

−∂ 2 lnL1(λ ,θ)
∂θ∂λ

−∂ 2 lnL1(λ ,θ)
∂θ 2


−1

λ=λ̂M ,θ=θ̂M

, (3.17)
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where,
∂ 2 lnL1(λ ,θ)

∂λ 2 =− m
λ 2 +θ

m

∑
i=1

(
1
xi

)2

e−
λ

xi −
m

∑
i=1

Ti,

and,

Ti =

rie
− λ

xi

1− e
θ

(
1−e

− λ
xi

)
− e

θ

(
1−e

− λ
xi

)
e−

λ

xi


x2

i

e
θ

(
1−e

− λ
xi

)
−1

2 ,

∂ 2 lnL1(λ ,θ)

∂λ∂θ
=−

m

∑
i=1

e−
λ

xi

xi
+

m

∑
i=1

rie
− λ

xi e
θ

(
1−e

− λ
xi

)(
1− e−

λ

xi

)

xi

e
θ

(
1−e

− λ
xi

)
−1

2 ,

∂ 2 lnL1(λ ,θ)

∂θ∂λ
=−

m

∑
i=1

e−
λ

xi

xi
+

m

∑
i=1

rie
− λ

xi

e
θ

(
1−e

− λ
xi

)(
θ(1− e−

λ

xi )−1
)
+1


xi

e
θ

(
1−e

− λ
xi

)
−1

2 ,

∂ 2 lnL1(λ ,θ)

∂θ 2 =− m
θ 2 +

(
m+

m

∑
i=1

ri

)
e−θ

(1− e−θ )2 +
m

∑
i=1

rie
θ

(
1−e

− λ
xi

)(
1− e−

λ

xi

)2

e
θ

(
1−e

− λ
xi

)
−1

2 .

The λ̂M and θ̂M are denoted as ML estimates of λ and θ . For the asymptomatic variance-

covariance of λ and θ are computed by invert og the Fisher’s information matrix,

I = E

 −∂ 2 lnL1(λ ,θ)
∂λ 2 −∂ 2 lnL1(λ ,θ)

∂λ∂θ

−∂ 2 lnL1(λ ,θ)
∂θ∂λ

−∂ 2 lnL1(λ ,θ)
∂θ 2

 .

Thus, an approximate 100(1−α)% CIs for the parameters λ and θ are given by

(
λ̂M − zα/2

√
Var(λ̂M), λ̂M + zα/2

√
Var(λ̂M)

)
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and (
θ̂M − zα/2

√
Var(θ̂M), θ̂M + zα/2

√
Var(θ̂M)

)
,

respectively, where zα/2 is the percentile (α/2)th of the standard normal distribution, also

Var(λ̂M) and Var(θ̂M) represent asymptotic variances of ML estimates.

3.4 Bayesian and E-Bayesian Estimation

We discuss the process of obtaining the Bayesian and E-Bayesian estimator of PIED parame-

ters λ and θ based under PT-II CBRs. Bayesian and E-Bayesian estimators of the respective

parameters are shown below.

3.4.1 Bayesian Estimation

Based on PT-II CBRs, observations from the PIED, the likelihood function given by Equation

(3.12), prior distributions for the parameters in the distribution is g1(λ |a,b) of λ is given by

Equation (3.18) and g2(θ |α,β ) of θ is given by Equation (3.19) respectively,

g1(λ |a,b) =
ba

Γ(a)
e−bλ

λ
a−1; λ > 0,a > 0,b > 0, (3.18)

g2(θ |α,β ) =
β α

Γ(α)
e−βθ

θ
α−1; θ > 0,α > 0,β > 0. (3.19)

It may also be noted that the gamma prior g1(λ |a,b) and g2(θ |α,β ) are independent and take

on wide variety of shapes (prior believes of experimenter) depending on the value of hyper

parameters, the joint prior pdf of λ and θ is

g(λ ,θ) = g1(λ |a,b)∗g2(θ |α,β ). (3.20)



Chapter 3. Poisson Inverse Exponential Distribution 78

Combining the priors given by Equation (3.20) with likelihood given by Equation (3.12), we

can easily obtain joint posterior PDF of (λ ,θ ) as

π(λ ,θ |x) = ζ0

ζ
, (3.21)

where

ζ0 =
m

∏
i=1

θλe−θ− λ

xi
+θe

− λ
xi

1− e
−θ

(
1−e

− λ
xi

)ri

baβ αe−bλ−βθ λ a−1θ α−1

Γ(a)Γ(α)(1− e−θ )ri+1xi2

and

ζ =
∫

∞

0

∫
∞

0
ζ0dλdθ .

Hence, the respective marginal posterior PDF’s of λ and θ are given by

π1(λ |x,r) =
∫

∞

0

ζ0

ζ
dθ , (3.22)

π2(θ |x,r) =
∫

∞

0

ζ0

ζ
dλ . (3.23)

Further, in this context of loss function is the very essential element of the parameter estimation

problem. SELF is very frequently used loss function and the weakness of this loss function is

symmetric and put on equal weight to o.e. and u.e. of the same magnitude. Also, considered

asymmetric loss function is GELF and LINEX are discussed in Chapter 1, Section 1.8.
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Expressions for the Bayesian estimators
(

λ̂S, θ̂S

)
,
(

λ̂L, θ̂L

)
and

(
λ̂G, θ̂G

)
for (λ ,θ) under

SELF, LINEX and GELF respectively can be given as

λ̂S =
∫

∞

0
λπ1(λ |x,r)dλ ,

θ̂S =
∫

∞

0
θπ2(θ |x,r)dθ ,

 (3.24)

λ̂L =− 1
δ

ln
(∫

∞

0
e−δλ

π1(λ |x,r)dλ

)
,

θ̂L =− 1
δ

ln
(∫

∞

0
e−δθ

π2(θ |x,r)dθ

)
,

 (3.25)

λ̂G =

(∫
∞

0
λ
−δ

π1(λ |x,r)dλ

)− 1
δ

,

θ̂G =

(∫
∞

0
θ
−δ

π2(θ |x,r)dθ

)− 1
δ

.

 (3.26)

Here, δ is the shape parameter of loss function. Substituting the posterior PDF from Equation

(3.22) and (3.23) in Equations (3.24), (3.25) and (3.26) respectively and then simplifying,

we get the Bayesian estimators
(

λ̂S, θ̂S

)
,
(

λ̂L, θ̂L

)
and

(
λ̂G, θ̂G

)
of (λ ,θ). It may also be

noted that the above integrals involved in the expressions for the Bayesian estimators
(

λ̂S, θ̂S

)
,(

λ̂L, θ̂L

)
and

(
λ̂G, θ̂G

)
are not possible to reduce in closed form. Therefore, we propose the use

of numerical method for obtaining the estimates. We have used MCMC method. For this, we

proceed by generating observations from posteriors Equations (3.22) and (3.23) respectively.

These posteriors does not follow any standard form density, since with help of Metropolis

and Ulam (1949), we use M-H algorithm to generate sample observations from each of these

posterior distributions as, see Gelman et al. (2013)

π
∗
1 (λ |θ ,x,r) ∝ λ

m+a−1e−λ ∑
m
i=1

(
1
xi
+b
)
eθ ∑

m
i=1 e

− λ
xi

m

∏
i=1

1− e
−θ

(
1−e

− λ
xi

)ri

, (3.27)
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π
∗
2 (θ |λ ,x,r) ∝

θ m+α−1e−θ(m+β )eθ ∑
m
i=1 e

− λ
xi

∏
m
i=1

1− e
−θ

(
1−e

− λ
xi

)ri

(1− e−θ )∑
m
i=1 ri+m , (3.28)

respectively. For detailed see Aggarwala and Balakrishnan (1998), Louzada-Neto et al. (2011),

Wu and Chang (2002)

3.4.2 E-Bayesian Estimation

The prior distribution of λ and θ are g1(λ |a,b) and g2(θ |α,β ) respectively, which are decreas-

ing function of λ , θ with respective hyper parameter (a,b) and (α,β ), for more detailed see

Han (2007). The derivative of g1(λ |a,b) and g2(θ |α,β ) with respect to λ ,θ is

d[g1(λ |a,b)]
dλ

=
baλ a−2e−bλ

Γ(a)
[(a−1)−bλ ] , (3.29)

d[g2(θ |α,β )]

dθ
=

β αθ α−2e−βθ

Γ(α)
[(α −1)−βθ ] , (3.30)

where (a,b)> 0,(α,β )> 0 and (λ ,θ)> 0. From above Equation (3.29) and Equation (3.30),

it is clear that for 0 < (a,α) < 1,(b,β ) > 0, and since g1(λ |a,b), g2(θ |α,β ) is decreasing

function of λ ,θ . It also observed for given 0 < (a,α) < 1 and (b,β ) > 0 are, the very less

probability in the tail of the gamma density function. According to Berger (2013), the thinner

tailed prior distribution often reduces the robustness of Bayesian estimate. Since, the value of

(b,β ) should not be larger than a given upper bound (c,γ), where (c,γ) > 0 is a given upper

bound. Therefore, the hyper parameter (a,b) and (α,β ) should be selected with the restriction

of 0 < (a,α) < 1 and 0 < b < c, 0 < β < γ (where constant (c,γ) would be considered later

in simulation study). Then we are obtained the E-Bayesian estimate of λ and θ based on three

different distribution of the hyper parameters (a,b) and (α,β ). These distributions are used to

investigate the influence of the different prior distributions on the E-Bayesian estimation of λ
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and θ . The following distribution of hyper parameter a,b are used for λ

π11(a,b) =
1

c(B(u,v))
a(u−1)(1−a)(v−1); 0 < a < 1;0 < b < c,

π12(a,b) =
2(c−b)
c2B(u,v)

a(u−1)(1−a)(v−1); 0 < a < 1;0 < b < c,

π13(a,b) =
2b

c2B(u,v)
a(u−1)(1−a)(v−1); 0 < a < 1;0 < b < c.


(3.31)

We may also notice from above Equations (3.31), if u > 1, v > 1 then π1i(a,b)→ 0 as a → 0

or a → 1; i = 1,2,3. But 0 < u < 1, then π1i(a,b) → ∞ as a → 0, and if 0 < v < 1, then

π1i(a,b) → ∞ as a → 1; i = 1,2,3. Therefore, u > 1, v > 1 then π1i(a,b) has unique optimal

solutions for each i = 1,2,3. Also, distribution of hyper parameter α,β are used for θ

π21(α,β ) =
1

γB(u1,v1)
α
(u1−1)(1−α)(v1−1); 0 < α < 1;0 < β < γ,

π22(α,β ) =
2(γ −β )

γ2B(u1,v1)
α
(u1−1)(1−α)(v1−1); 0 < α < 1;0 < β < γ,

π23(α,β ) =
2β

γ2B(u1,v1)
α
(u1−1)(1−α)(v1−1); 0 < α < 1;0 < β < γ.


(3.32)

Similarly, from above Equations (3.32), if u1 > 1, v1 > 1 then π2i(α,β ) → 0 as α → 0 or

α → 1; i = 1,2,3. But 0 < u1 < 1, then π2i(α,β ) → ∞ as α → 0, and if 0 < v1 < 1, then

π2i(α,β )→∞ as α → 1; i= 1,2,3. Therefore, u1 > 1, v1 > 1 then π2i(α,β ) has unique optimal

solutions for each i = 1,2,3. Since, the above Equations (3.31) and (3.32) are said to be the

prior of the hyper parameter a and b for λ ; α and β for θ respectively. The corresponding

E-Bayesian estimation of λ and θ under SELF, GELF and LINEX are given as follows:

λ̂EBSi =
∫ ∫

D
λ̂Sπ1i(a,b)dadb; i = 1,2,3;D ∈ {(a,b) : 0 < a < 1, 0 < b < c},

θ̂EBSi =
∫ ∫

D
θ̂Sπ2i(α,β )dαdβ ; i = 1,2,3;D ∈ {(α,β ) : 0 < α < 1, 0 < β < γ},


(3.33)
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λ̂EBGi =
∫ ∫

D
λ̂Gπ1i(a,b)dadb; i = 1,2,3;D ∈ {(a,b) : 0 < a < 1, 0 < b < c},

θ̂EBGi =
∫ ∫

D
θ̂Gπ2i(α,β )dαdβ ; i = 1,2,3;D ∈ {(α,β ) : 0 < α < 1, 0 < β < γ},


(3.34)

and

λ̂EBLi =
∫ ∫

D
λ̂Lπ1i(a,b)dadb; i = 1,2,3;D ∈ {(a,b) : 0 < a < 1, 0 < b < c},

θ̂EBLi =
∫ ∫

D
λ̂Lπ2i(a,b)dadb; i = 1,2,3;D ∈ {(α,β ) : 0 < α < 1, 0 < β < γ}.


(3.35)

We observe the above Equations (3.33), (3.34) and (3.35) in integrals form of E-Bayesian esti-

mate under SELF, GELF and LINEX loss functions are not possible to get the solution. There-

fore, we perform the computational method Markov Chain Monte Carlo (MCMC) through R

software and get the estimates of E-Bayesian under SELF, GELF and LINEX (see Zellner

(1994) and Zellner (1986a)). In the next subsection, we deal with the MCMC algorithm.

3.4.3 The MCMC Algorithm

We now generate sample observation from π∗
1 (λ |θ ,x,r) and π∗

2 (θ |λ ,x,r), and taking normal

distribution, N
(

λ̂M,Var
(

λ̂M

))
and N

(
θ̂M,Var

(
θ̂M
))

as proposal density respectively. The

following steps of the algorithm is given as

(i) Set the initial guess of λ and θ say λ0 = λ̂M and θ0 = θ̂M

(ii) Set i = 1

(iii) Generate a candidate point λ ∗
i and θ ∗

i from proposal distribution Φ1 ∼ N
(

λ̂M,Var
(

λ̂M

))
and Φ2 ∼ N

(
θ̂M,Var

(
θ̂M
))

respectively and take a point x from uniform distribution

U(0,1).

Let τ1

(
λ
(i−1)
i ,λ ∗

)
= min

(
π∗

1 (λ
∗
1 |λ(i−1),x,r)Φ1(λ

i−1)

π∗
1 (λ

∗|λi−1,x,r)Φ1(λ ∗) ,1
)

,
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τ2

(
θ
(i−1)
i ,θ ∗

)
= min

(
π∗

2 (θ
∗
1 |θ(i−1),x,r)Φ2(θ

i−1)

π∗
2 (θ

∗|θi−1,x,r)Φ2(θ∗) ,1
)

Set λ (i) = λ ∗, θ (i) = θ ∗ if u ≤ τ1

(
λ
(i−1)
i ,λ ∗

)
, u ≤ τ2

(
θ
(i−1)
i ,θ ∗

)
otherwise set

λ (i) = λ (i−1), θ (i) = θ (i−1)

(iv) Set i = i+1

(v) Repeat steps (ii)-(iv) for sufficiently large number of time i.e., N sufficiently large number.

After the convergence of chain of observations, we have λ1,λ2,λ3, · · · ,λN and θ1,θ2,θ3, · · · ,θN .

(vi) Obtain the Bayesian estimates of λ and θ under GELF and LINEX as

λ̂G =
[

1
N−N0

∑
N−N0
i=1 λ

−δ

i

]− 1
δ , θ̂G =

[
1

N−N0
∑

N−N0
i=1 θ

−δ

i

]− 1
δ and

λ̂L = − 1
δ

ln
[

1
N−N0

∑
N−N0
i=1 e−δλi

]
, θ̂L = − 1

δ
ln
[

1
N−N0

∑
N−N0
i=1 e−δθi

]
, where, N0 is the burn-

in-period of Markov Chain. When substituting δ equal to -1 in step (vi), of λ̂G, θ̂G, we get

Bayesian estimates of λ and θ under SELF.

(vii) The E-Bayesian estimates of λ and θ under different loss functions, firstly we generate

a and b from Beta distribution and Uniform distribution for the values of prior parame-

ters (u,v) and (0,c) respectively as stated Equation (3.31). Similarly, generate α and β

from Beta distribution and Uniform distribution for the values of prior parameters (u1,v1)

and (0,γ) respectively as stated Equation (3.32). Using step (vi) with above Equations

(3.31), (3.32) to get E-Bayesian estimates of λ and θ under SELF, GELF and LINEX

respectively.

3.4.4 Bayesian Intervals

In this subsection, we obtain Bayesian credible and HPD intervals of λ and θ , which is ana-

log of a frequentest method of CIs. We use the sample λ and θ (say λ[1],λ[2],λ[3], · · · ,λ[N])

and (θ[1],θ[2],θ[3], · · · ,θ[N]) obtained from posterior distribution through the MCMC method

in the previous subsection and apply the algorithm of Wu and Chang (2002) to get Bayesian

credible and HPD intervals for λ and θ . In this algorithm, we first order the obtained sample

observations as (λ[1] < λ[2] < λ[3] < · · ·< λ[N]) and (θ[1] < θ[2] < θ[3] < · · ·< θ[N]) and then
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(i) The 100(1−ψ)% Bayesian credible interval of λ and θ are given as (λ[(ψ/2)N],λ[(1−ψ/2)N])

and (θ[(ψ/2)N],θ[(1−ψ/2)N]); where [(ψ/2)N] and [(1−ψ/2)N] are integer parts of [(ψ/2)N]

and [(1−ψ/2)N] respectively.

(ii) For HPD of λ and θ , we first obtain all 100(1−ψ)% credible intervals given as

(λ[i],λ[i+(1−ψ/2)N]); i = 1,2,3, · · · ,ψN;

(θ[i],θ[i+(1−ψ/2)N]); i = 1,2,3, · · · ,ψN;

along with their corresponding lengths

L(λ )i = λ[i+(1−ψ/2)N]−λ[i]; i = 1,2,3, · · · ,ψN;

L(θ)i = θ[i+(1−ψ/2)N]−θ[i]; i = 1,2,3, · · · ,ψN;

and thereafter pick up the interval of λ and θ of which have smallest length L(λ )i and L(θ)i

respectively.

3.5 Monte Carlo Simulation Study and Comparison of Esti-

mators

We are obtaining some numerical illustrations based on MC simulation study. Because, analyt-

ically the Bayesian and E-Bayesian estimators are not obtained in closed form. Therefore, we

need to simulate propose estimators under PT-II CBR samples from PIED. The Balakrishnan

and Sandhu (1995)’s algorithm has been used for simulation under PT-II CBR samples. Then,

we also compare the various estimators computed in Sections 3.3 and 3.4 under PT II-CBRs.

The set of estimators
(

λ̂M, θ̂M

)
,
(

λ̂S, θ̂S

)
,
(

λ̂G, θ̂G

)
and

(
λ̂L, θ̂L

)
denote the ML estimators

and Bayesian estimators of the parameters (λ ,θ) under SELF, GELF and LINEX respectively,



Chapter 3. Poisson Inverse Exponential Distribution 85

while
(

λ̂EBSi, θ̂EBSi

)
,
(

λ̂EBGi, θ̂EBGi

)
and

(
λ̂EBLi, θ̂EBLi

)
with i = 1,2,3 are corresponding E-

Bayesian estimators under SELF, respectively. Now, we are comparing the estimators obtained

under symmetric and asymmetric loss functions with corresponding Bayesian and E-Bayesian

estimators respectively. The comparisons are based on the simulated risks under SELF, GELF

and LINEX. It may also be mentioned here that the exact expressions for the risks can not be

computed because the estimators are not found in closed form. Therefore, the risks of the es-

timators are estimated on the basis of MC simulation study of 10000 samples. It may also be

cleared that the risks of the estimators will depend on values of n,m, p,λ ,θ ,γ , δ and c.

In this study the effect of variation in the value of the combination of total sample size n with

different size of effective sample size m, we have obtained the simulated risks for n = 20,m =

12 [2]4; n = 30,m = 18 [3]6 and n = 40,m = 24 [4]8 and with loss parameter δ = +0.1, (o.e.

is more serious than u.e.), δ = −0.1 (u.e. is more serious than o.e.), p = 0.05 (probability

of removals). The selection of the hyper parameter based on the prior distribution setting,

here we are choosing the prior mean as a true parameter value and prior variance is σ2 = 0.9.

Then the hyper parameter a = λ 2

σ2 and b = λ

σ2 , similarly α = θ 2

σ2 and β = θ

σ2 and hyper prior

parameter is u = a, v = b, c = 4 and u1 = α, v1 = β , γ = 3. Using PT-II CBR samples and

obtained simulated risks for the estimators of λ and θ under SELF, GELF and LINEX have

been obtained for selected values of n,m, p,λ ,θ ,γ , δ and c. The results are summarized in

Table (3.2), Table (3.4), Table (3.3) and Table (3.5) respectively.

The computations in Table (3.2) and Table (3.3) show that ML estimates, Bayesian and E-

Bayesian estimates of parameter λ and θ based on SELF, GELF and LINEX. The estimated

risks of the different estimators are compared on SELF. Table (3.2) shows that the O.e. is more

serious than u.e. cases i.e, for δ > 0 while Table (3.3) represents that for u.e. is more serious

than o.e. cases i.e, for δ < 0 of
(

λ̂G, θ̂G

)
and

(
λ̂L, θ̂L

)
;
(

λ̂EBGi, θ̂EBGi

)
and

(
λ̂EBLi, θ̂EBLi

)
with i = 1,2,3 are corresponding E-Bayesian estimators. We observed from Table (3.2), Table

(3.3) that estimated risks of Bayesian and E-Bayesian estimators decrease as effective sample

size m (and fixed n) increases. Generally, in most of the cases, risks of the proposed E-Bayesian

estimator of λ and θ i.e,
(

λ̂EBL3, θ̂EBL3

)
has minimum risks as compared to other competitive
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estimators of λ and θ . Also, in Table (3.2) and Table (3.3) show average Bayesian and E-

Bayesian (in parenthesis) estimate, average length of CI and HPD intervals. The Average length

of CI and HPD interval of λ and θ are also decreases when m increases.

However, in Table (3.4) shows that the risks of estimators of λ and θ under GELF and LINEX

for δ > 0. Under both losses we show that the proposed E-Bayesian estimator
(

λ̂EBS3, θ̂EBS3

)
has minimum risk as compared to other competitive estimators and the trend of risks of the

estimators of λ and θ have similar trend as previous tables. But Table (3.5) shows risks of

estimators of λ and θ under GELF and LINEX for δ < 0. In this table we also found that

the proposed E-Bayesian estimator
(

λ̂EBL3, θ̂EBL3

)
perform better than other estimators. For

fixed n, when the effective sample size m increases risks of Bayesian and E-Bayesian estimators

decreases.

3.6 An application to Survival of Multiple Myeloma Patients

Data

Here, we consider a Multiple myeloma patients data set from Collett (2014). The observed data

of survival time (in months) of multiple myeloma patients are 13, 52, 6, 40, 10, 7, 66, 10, 10,

14, 16, 4, 65, 5, 11, 10, 15, 5,76, 56, 88, 24, 51, 4, 40, 8, 18, 5, 16, 50, 40, 1, 36, 5, 10, 91,

18, 1, 18, 6, 1, 23, 15, 18, 12, 12, 17, 3, which are related to 48 patients, all of whom are aged

between 50 to 80 years. Suppose the survival time of multiple myeloma patients who have a

malignant disease characterized by the accumulation of abnormal plasma cell, a type of white

blood cell, in the bone marrow can be modeled by PIED as a lifetime model.

Goodness of Fit Tests

The χ2 goodness of fit and the K-S test to check whether PIED has properly accommodate the

data. The simultaneous optimal solution of λ and θ are 2.575034 and 3.872177 respectively,
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which is verified by Figure (3.3). Now we want to test the null hypothesis that the distribution

function F(x) from which the data came PIED with λ̂ = 2.575034 and θ̂ = 3.872177 respec-

tively. Thus, F(x) is completely specified.

The χ2 test

The random sample of size 48 is drawn from a population with unknown CDF F0(x). We wish

to test the null hypothesis

H0 : F0(x) = F(x),

H1 : F0(x) ̸= F(x).

Let us start with six intervals (0,5],(5,8],(8,14],(14,23],(23,53] and (53,100] with equal bins.

The sample size of each interval is Y1 = 6, Y2 = 7, Y3 = 10, Y4 = 10, Y5 = 9, and Y6 = 6

respectively. Corresponding probabilities are p(Y1) = 0.19366, p(Y2) = 0.13691, p(Y3) =

0.18103, p(Y4) = 0.14482, p(Y5) = 0.17226 and p(Y6) = 0.07559. The calculated value of

χ2
cal = 4.34604 has less than tabulated value of χ2

3,0.05 = 7.81473. Sine, we cannot reject H0

at α% level of significance. Thus F(x) is suitable for the data set. But the χ2 test is essen-

tially applicable for large samples. Although it is also observed that the latter treats individual

observations directly, whereas the former discretized the data and sometimes loses information

through grouping. Therefore, the K-S test is applicable even in the case of very small samples

as well as large samples.

The K–S test

This test assumes continuous of the distribution function, to check difference between Fn(x)

and F(x). Since, to test

H0 : Fn(x) = F(x),

H1 : Fn(x) ̸= F(x),
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where Fn(x) is the sample (empirical) distribution function, F(x) is specified for all x. The test

statistic

Dn = sup|Fn(x)−F(x)|,

is less then tabulated value of K-S distance Dn,α then accept H0. For complete data set K-S

distance and p-value are 0.125 and 0.8475, respectively. Also for various censoring schemes

under PT-II CBRs, we calculate the K-S distance and corresponding p-value, see in Table (3.1).

Other hand, the Dn statistic is used to obtain the confidence bands on Fn(x) for all x, where

Fn(x) is a consistent estimator for CDF F(x). The number Dn,α is obtain from the K-S table

(Standard), such that

P [sup|Fn(x)−F(x)|< Dn,α ] = 1−α,

where, 0 ≤ F(x)≤ 1 ∀x. Thus we define

Ln(x) = max [Fn(x)−Dn,α ,0] ,

and

Un(x) = min [Fn(x)+Dn,α ,1] ,

where Ln(x) and Un(x) are lower and upper confidence band for the cdf F(x), with (1−α)%

confidence coefficient. Of course, the F(x) lies completely within the limits if and only if the

hypothesis cannot be rejected at α% level of significance. The K-S bound for various scheme

are shown in the Figure (3.7).
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Also, we considered, a graphical method based on TTT plot as a crude indicator see Aarset

(1987). The empirical TTT is given as

Sr

Sn
=

∑
r
i=1 x(i)+(n− r)x(r)

∑
n
i=1 x(i)

,

where r = 1,2, · · · ,n and x(r) is the order statistics of the sample. Figure (3.1), represents the

TTT plot for given data set and it indicate the increasing then decreasing failure rate functions

along with PDF/CDF plot. Figure (3.2), represents the PP plot, sample QQ plot, and KMP plot

i.e., Kaplan–Meier plot respectively, which can be suitable to PIED. Figure (3.3), represents

the K-S plot, hazard plot and Likelihood plots, Contour plot, Contour3D plot respectively.

Data Analysis

Figure (3.4), shows the PDF in first column and CDF in second column, Figure (3.5) shows

the P-P plot in first column and Q-Q plot in second column, Figure (3.6) shows the TTT plot

in first column and KM plot in second column, it all for different combinations n = 48,m =

10,19,24,28. These figures are helpful for showing which features of the data sets are well

captured by the PIED model. We may also see from Figure (3.7) at several combination (n =

48,m = 10,19,24,28) of EDF (empirical distribution function) plot with K-S bound and hazard

plot. From all the graphs, we have not shown the major discrepancies between the sampled

distribution (Observed values) and PIED. Further, Table (3.6) shows various combinations of

censoring schemes (n,m) i.e., (48,28),(48,24),(48,19),(48,14),(48,10) under PT-II CBR for

survival of multiple myeloma patients data set with arbitrary choice of probability of removal

p = 0.05. Based on all these combinations (n,m) of PT-II CBR, we obtained ML, Bayesian,

E-Bayesian estimates of λ ,θ under SELF, GELF and LINEX loss function, when δ > 0 and

δ < 0 are presented in Tables ((3.8), (3.8)) and Tables ((3.9), (3.10)) with different set of

values (c,γ) = (3,2);(4,3). We also observed that for all combination of censoring schemes

ML, Bayesian and E-Bayesian estimates of λ ,θ under SELF, GELF and LINEX loss functions

always lies in CI and HPD interval. Even though the each an every combination of censoring
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scheme for Table (3.6), the length of HPD always less than length of CI, see Tables (3.7),

(3.8), (3.9) and Table (3.10) respectively. We now discuss some quantiles and estimate of λ ,θ

results obtained from PIED model with different samples, which are shown in Table (3.11)

and Table (3.12) for δ = 0.1 and δ = −0.1 respectively. It is very interesting to note that

through E-Bayesian approach covers the more survival time of myeloma patients in respect of

two existing approach i.e. ML method and Bayesian method.

3.7 Conclusion

In this chapter, firstly we have studied on E-Bayesian method to compare with Bayesian esti-

mators for both unknown parameters of PIED under PT-II CBRs. On the other hand, the risk

of the E-Bayesian and Bayesian estimators of λ and θ are compared under SELF, GELF and

LINEX. Generally, we found that the estimated risk of the E-Bayesian estimate of λ and θ have

minimum. Therefore, the simulated results showed that the E-Bayesian estimation method is

more efficient and better to perform than Bayesian estimation. Beside this, we have shown

the interest with application to survival time of multiple myeloma patients data and applying

E-Bayesian inferential procedures for the PIED as underline distribution with PT-II CBRs.
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TABLE 3.6: PT-II CBRs under different censoring schemes (n,m) with fixed n = 48, p = 0.05
for the survival time of multipal myeloma patients.

(n,m) (48,28) (48,24) (48,19) (48,14) (48,10)

i xi Ri xi Ri xi Ri xi Ri xi Ri

1 1 2 1 1 1 1 1 3 1 2
2 3 1 1 1 1 1 4 4 3 7
3 4 2 4 4 4 4 5 3 6 2
4 5 1 5 2 5 3 8 2 10 2
5 6 2 7 3 8 2 10 0 10 3
6 8 2 10 0 10 2 10 2 12 1
7 10 0 10 0 11 1 12 3 14 3
8 10 1 10 1 12 4 15 2 16 2
9 11 0 12 0 16 2 16 0 18 1

10 12 0 12 0 18 2 17 3 18 15
11 12 2 13 0 18 1 18 1
12 15 1 14 0 24 0 24 0
13 16 0 15 2 36 1 36 2
14 16 0 16 0 40 0 40 9
15 17 1 17 1 40 1
16 18 0 18 3 51 0
17 18 0 24 1 52 0
18 18 0 40 0 56 0
19 23 0 40 0 65 4
20 24 2 40 0
21 40 0 50 0
22 40 1 51 1
23 51 0 56 0
24 52 0 65 4
25 56 0
26 65 0
27 66 0
28 76 2
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FIGURE 3.4: In the left column is PDF plot and right column is CDF plot for different scheme
of the survival time of multipal myeloma patients data.
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of the survival time of multipal myeloma patients data.
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TABLE 3.11: Quantiles and estimate of λ , θ are obtained for fixed value of δ = 0.1.

n λ̂ θ̂ ξ0.05 ξ0.25 ξ0.50 ξ0.75 ξ0.95 Sample

48 MLE 2.575 3.872 2.213 6.144 13.497 34.210 197.341 l13,52,6,40,10,7,
SELF 2.578 4.172 2.412 6.647 14.538 36.756 211.737 66,10,10,14,16,4,
GELF 2.476 3.036 1.669 4.659 10.346 26.403 152.919 65,5,11,10,15,5,76,
LINEX 2.567 3.998 2.287 6.329 13.879 35.140 202.589 56,88,24,51,4,40,
EBS1 2.574 4.164 2.403 6.624 14.488 36.633 211.031 8,18,5,16,50,40,1,
EBS2 2.586 4.176 2.423 6.675 14.599 36.909 212.614 36,5,10,91,18,
EBS3 2.568 4.152 2.390 6.590 14.417 36.457 210.029 1,18,6,1,23,
EBG1 2.475 3.031 1.666 4.650 10.327 26.355 152.641 15,18,12,
EBG2 2.484 3.040 1.676 4.678 10.389 26.510 153.536 12,17,3
EBG3 2.467 3.022 1.656 4.622 10.265 26.199 151.748
EBL1 2.566 3.991 2.281 6.316 13.851 35.070 202.193
EBL2 2.574 4.003 2.297 6.356 13.937 35.286 203.426
EBL3 2.557 3.979 2.266 6.275 13.764 34.855 200.964

28 MLE 2.677 4.608 2.825 7.677 16.684 42.036 241.688 1,3,4,5,6,8,10,
SELF 2.778 7.756 5.712 14.125 29.698 73.548 418.925 10,11,12,12,15,
GELF 2.194 5.033 2.584 6.921 14.953 37.557 215.565 16,16,17,18,18,
LINEX 2.722 6.965 4.880 12.295 26.009 64.615 368.676 18,23,24,40,
EBS1 2.782 7.767 5.729 14.165 29.782 73.751 420.075 6,40,51,52,
EBS2 2.798 7.818 5.811 14.351 30.160 74.676 425.298 56,65,66,7
EBS3 2.761 7.715 5.638 13.953 29.347 72.688 414.062
EBG1 2.194 5.040 2.590 6.934 14.980 37.622 215.935
EBG2 2.209 5.073 2.629 7.032 15.184 38.125 218.795
EBG3 2.180 5.006 2.551 6.838 14.778 37.123 213.096
EBL1 2.723 6.975 4.891 12.318 26.056 64.730 369.323
EBL2 2.742 7.021 4.966 12.492 26.414 65.605 374.276
EBL3 2.705 6.928 4.817 12.145 25.701 63.860 364.403

24 MLE 2.749 3.828 2.333 6.483 14.252 36.136 208.496 1,1,4,5,7,10,
SELF 2.736 4.305 2.658 7.294 15.921 40.210 231.492 10,10,12,12,13,
GELF 2.563 3.045 1.732 4.836 10.738 27.401 158.688 14,15,16,18,24,
LINEX 2.717 4.105 2.495 6.888 15.079 38.146 219.809 40,17,18,24,
EBS1 2.730 4.294 2.643 7.257 15.844 40.019 230.404 40,40,40,50,
EBS2 2.734 4.301 2.653 7.282 15.897 40.148 231.143 51,56,65

Continued on next page
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Table 3.11 – Continued from previous page

n λ̂ θ̂ ξ0.05 ξ0.25 ξ0.50 ξ0.75 ξ0.95 Sample

EBS3 2.730 4.288 2.639 7.245 15.820 39.958 230.063
EBG1 2.559 3.038 1.726 4.818 10.698 27.301 158.114
EBG2 2.561 3.043 1.730 4.829 10.722 27.361 158.461
EBG3 2.557 3.033 1.722 4.807 10.674 27.240 157.768
EBL1 2.713 4.095 2.484 6.860 15.020 37.998 218.970
EBL2 2.715 4.101 2.491 6.877 15.056 38.088 219.479
EBL3 2.711 4.088 2.478 6.842 14.984 37.909 218.461

19 MLE 2.849 3.543 2.226 6.214 13.714 34.855 201.382 1,1,4,5,8,10,
SELF 2.847 3.851 2.432 6.755 14.845 37.633 217.109 11,12,16,18,18,
GELF 2.684 2.734 1.659 4.601 10.242 26.193 151.899 24,36,40,40,51,
LINEX 2.828 3.692 2.307 6.427 14.155 35.931 207.449 52,56,65
EBS1 2.834 3.833 2.409 6.692 14.710 37.296 215.186
EBS2 2.845 3.841 2.423 6.732 14.795 37.510 216.410
EBS3 2.835 3.826 2.404 6.680 14.685 37.234 214.833
EBG1 2.677 2.721 1.648 4.571 10.176 26.025 150.933
EBG2 2.682 2.727 1.654 4.587 10.212 26.115 151.454
EBG3 2.672 2.716 1.643 4.555 10.140 25.934 150.414
EBL1 2.820 3.675 2.290 6.380 14.055 35.683 206.037
EBL2 2.826 3.682 2.299 6.404 14.108 35.815 206.787
EBL3 2.815 3.667 2.281 6.355 14.003 35.553 205.289

14 MLE 2.276 3.984 2.020 5.592 12.264 31.055 179.050 1,4,5,8,10,
SELF 2.561 10.365 7.509 17.838 37.001 90.985 516.226 10,12,15,16,17,
GELF 1.870 6.712 3.196 8.107 17.188 42.750 244.072 18,24,36,40
LINEX 2.495 8.967 6.142 14.860 31.017 76.521 434.950
EBS1 2.563 10.375 7.525 17.874 37.074 91.163 517.232
EBS2 2.547 10.323 7.433 17.664 36.647 90.121 511.352
EBS3 2.575 10.428 7.605 18.054 37.440 92.053 522.250
EBG1 1.870 6.719 3.201 8.117 17.207 42.797 244.336
EBG2 1.860 6.684 3.162 8.027 17.023 42.345 241.775
EBG3 1.880 6.753 3.239 8.207 17.393 43.252 246.911
EBL1 2.495 8.976 6.150 14.877 31.051 76.605 435.422
EBL2 2.481 8.930 6.079 14.714 30.719 75.794 430.844
EBL3 2.509 9.022 6.222 15.041 31.386 77.420 440.024

Continued on next page
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Table 3.11 – Continued from previous page

n λ̂ θ̂ ξ0.05 ξ0.25 ξ0.50 ξ0.75 ξ0.95 Sample

10 MLE 2.112 3.184 1.486 4.154 9.210 23.476 135.872 1,3,6,10,10,
SELF 3.135 14.758 13.819 31.786 65.178 159.276 900.562 12,14,16,
GELF 2.125 9.659 5.727 13.720 28.543 70.295 399.177 18,18
LINEX 3.008 12.085 10.559 24.687 50.923 124.845 707.167
EBS1 3.138 14.771 13.845 31.843 65.294 159.558 902.151
EBS2 3.124 14.711 13.719 31.561 64.723 158.171 894.339
EBS3 3.147 14.831 13.947 32.068 65.748 160.658 908.341
EBG1 2.125 9.667 5.733 13.733 28.568 70.355 399.516
EBG2 2.117 9.628 5.684 13.622 28.343 69.806 396.418
EBG3 2.133 9.707 5.782 13.844 28.795 70.907 402.626
EBL1 3.008 12.095 10.569 24.709 50.968 124.953 707.768
EBL2 2.997 12.046 10.481 24.511 50.567 123.979 702.280
EBL3 3.019 12.144 10.658 24.908 51.371 125.930 713.277

TABLE 3.12: Quantiles and estimate of λ , θ are obtained for fixed value of δ =−0.1.

n λ̂ θ̂ ξ0.05 ξ0.25 ξ0.50 ξ0.75 ξ0.95 Sample

48 GELF 2.498 3.139 1.735 4.848 10.753 27.420 158.731 13,52,6,40,10,7,
LINEX 2.699 6.182 4.148 10.684 22.769 56.783 324.659 66,10,10,14,16,4,
EBG1 2.501 3.146 1.740 4.863 10.786 27.502 159.198 65,5,11,10,15,5,76,
EBG2 2.511 3.157 1.753 4.898 10.863 27.695 160.311 56,88,24,51,4,40,8,
EBG3 2.491 3.135 1.728 4.827 10.709 27.309 158.089 18,5,16,50,40,1,36,
EBL1 2.702 6.195 4.164 10.721 22.845 56.967 325.702 5,10,91,18,1,18,6,
EBL2 2.713 6.216 4.199 10.805 23.019 57.395 328.125 1,23,15,18,12,
EBL3 2.692 6.173 4.128 10.638 22.672 56.542 323.288 12,17,3

28 GELF 2.201 5.432 2.860 7.553 16.233 40.662 233.044 1,3,4,5,6,8,10,
LINEX 3.370 19.748 20.483 46.299 94.313 229.634 1295.705 10,11,12,12,15,
EBG1 2.202 5.435 2.864 7.561 16.251 40.705 233.287 16,16,17,18,18,
EBG2 2.219 5.482 2.917 7.689 16.517 41.359 237.000 18,23,24,40,
EBG3 2.186 5.389 2.811 7.434 15.987 40.056 229.605 40,51,52,56,
EBL1 3.371 19.762 20.506 46.349 94.414 229.878 1297.075 65,66,76
EBL2 3.396 19.930 20.851 47.109 95.947 233.589 1317.951
EBL3 3.346 19.593 20.164 45.594 92.893 226.196 1276.366

Continued on next page
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Table 3.12 – Continued from previous page

n λ̂ θ̂ ξ0.05 ξ0.25 ξ0.50 ξ0.75 ξ0.95 Sample

24 GELF 2.607 3.175 1.830 5.113 11.339 28.905 167.298 1,1,4,5,7,10,10,
LINEX 2.933 6.654 4.958 12.596 26.720 66.476 379.591 10,12,12,13,
EBG1 2.609 3.180 1.834 5.124 11.361 28.961 167.617 14,15,16,17,
EBG2 2.609 3.183 1.836 5.130 11.374 28.993 167.804 18,24,40,40,
EBG3 2.608 3.177 1.831 5.118 11.348 28.928 167.430 40,50,51,
EBL1 2.935 6.665 4.971 12.625 26.779 66.619 380.397 56,65
EBL2 2.936 6.671 4.979 12.642 26.813 66.703 380.866
EBL3 2.934 6.659 4.964 12.609 26.745 66.536 379.928

19 GELF 2.708 2.967 1.789 4.989 11.086 28.305 163.987 1,1,4,5,8,10,
LINEX 3.061 5.747 4.278 11.177 23.933 59.832 342.548 11,12,16,18,
EBG1 2.710 2.967 1.791 4.993 11.096 28.330 164.128 18,24,36,40,
EBG2 2.694 2.949 1.771 4.937 10.972 28.017 162.328 40,51,52,
EBG3 2.726 2.986 1.811 5.050 11.221 28.645 165.940 56,65
EBL1 3.063 5.748 4.282 11.187 23.954 59.885 342.853
EBL2 3.046 5.712 4.223 11.046 23.663 59.168 338.787
EBL3 3.081 5.783 4.342 11.329 24.248 60.606 346.943

14 GELF 1.916 7.331 3.668 9.157 19.312 47.905 273.105 1,4,5,8,10,10,
LINEX 3.391 34.354 37.163 82.321 166.354 403.218 2269.300 12,15,16,17,
EBG1 1.917 7.334 3.670 9.163 19.325 47.936 273.277 18,24,36,
EBG2 1.918 7.338 3.676 9.175 19.351 47.999 273.639 40
EBG3 1.915 7.329 3.665 9.150 19.299 47.872 272.916
EBL1 3.392 34.366 37.187 82.373 166.460 403.473 2270.734
EBL2 3.394 34.388 37.238 82.483 166.681 404.008 2273.741
EBL3 3.389 34.344 37.137 82.263 166.238 402.938 2267.730

10 GELF 2.261 10.173 6.484 15.437 32.045 78.830 447.361 1,3,6,10,10,
LINEX 4.958 57.511 92.676 203.184 408.862 988.624 5556.204 12,14,16,
EBG1 2.266 10.212 6.527 15.532 32.238 79.298 449.999 18,18
EBG2 2.258 10.187 6.487 15.440 32.051 78.840 447.413
EBG3 2.274 10.236 6.568 15.625 32.427 79.758 452.593
EBL1 4.968 57.733 93.231 204.390 411.280 994.457 5588.938
EBL2 4.951 57.595 92.690 203.211 408.912 988.741 5556.842

Continued on next page
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Table 3.12 – Continued from previous page

n λ̂ θ̂ ξ0.05 ξ0.25 ξ0.50 ξ0.75 ξ0.95 Sample

EBL3 4.984 57.871 93.774 205.573 413.654 1000.1885621.124





Chapter 4

Empirical Bayesian Estimation for

Kumaraswamy Distribution Using

Informative Prior *

4.1 Introduction

In the previous chapter, we have discussed the procedure for obtaining the classical, Bayesian

and E-Bayesian estimation under PT-II CBRs. In this chapter, we are introducing the Empirical

Bayes estimator of the Kumaraswamy distribution (KD). It is one of the simplest distribution

in the sense of being parsimonious in parameter. It is applicable to many natural phenomena

whose outcomes have lower and upper bound, such as the height of individuals, age of person,

scores obtained on a test, atmospheric temperatures, hydro logical data such as daily rain fall,

daily stream flow etc see Kumaraswamy (1980). The PDF and CDF of KD (α,λ ) are given by

f (x;α,λ ) = αλxα−1 (1− xα)λ−1 ; x > 0, α > 0, λ > 0, (4.1)

*Part of this chapter has been published in reputed peer-reviewed journals with indexing EBSCO Discovery

Service, see Kumar et al. (2019b).
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and

F(x;α,λ ) = 1− (1− xα)λ ; x > 0, α > 0, λ > 0, (4.2)

respectively; where α and λ are shape parameters. Figure (4.1) shows PDF and CDF for

α = 0.5,5,1,2,2 and λ = 0.5,1,3,2,5 respectively.

The reliability function (i.e. the probability of failure after time t) and the HF for distribution

Equation (4.1) are given by

R(t) = (1− tα)λ ,
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and

h(t) =
αλ tα−1

(1− tα)
.

respectively. The HF h(t) is shown in Figure (4.2) for α = 0.5,5,1,2,2 and λ = 0.5,1.5,3,2,5

respectively. It may be noted here that the HF has a non-monotonic shape which decreases

initially remains constant in the mid and lastly increases. For the statistical and probabilistic

properties and other distributions obtained under the influence of KD for the use in life testing

and reliability analysis, see Jones (2009), Lemonte (2011), Xiaohu et al. (2011), Santana et al.

(2012) etc. The problem of the estimation of the parameters of KD have been discussed by

Lemonte (2011) and Gholizadeh et al. (2011) etc. But it seems that the empirical Bayesian

inferences have not been attempted to the extent of classical and Bayesian inferences, although

it is well known that empirical Bayes is a good compromise between these two. According to

Morris (1983), an empirical Bayesian inference, which is, as expected, a hybrid of frequentist

and Bayesian inference.

The use of KD in life testing and reliability problems have been suggested by various authors,

see Jones (2009), Lemonte (2011), Kohansal (2017), Amin (2017) etc. A general problem

associated with life testing is that in most of the situation one can not wait for the failure of all

the items put on test. In such situation, censoring becomes unavoidable. A number of censoring

schemes are available in statistical literature. One of the popular censoring scheme under use

is progressive Type-II censoring scheme. On one hand it provides flexibility because it allows

the intermediate removals of the items from test and on other hand it guarantees for a minimum

efficiency of the estimators by fixing the number of complete observations.

In the point estimation an important element is the loss function specification. A very popular

loss function is SELF, used in estimation of parameter. Which can be appropriate on the space

of minimum variance-unbiased estimation. However, main drawback of this loss function is

that it have equal magnitude for o.e. and u.e., can say it is symmetric loss function. In the

literature, many asymmetric loss functions are available, and one of the most frequently used
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asymmetric loss function is the LINEX loss function, originally it was proposed by Varian

(1975) and popularized by Zellner (1986a), discussed in Chapter 1, Section (1.8).

In this chapter presented a piece of work, aims to develop the empirical Bayes estimators for

an unknown shape parameter of KD based on PT-II CBR under LINEX loss function. In KD,

one shape parameter known α > 1 i.e. α = 2 with λ > 1 (unknown) have been taken due

to the distribution with one mode of the KD. For α > 1, λ > 1, limx→1 f (x;α,λ ) = 0 and

limx→0 f (x;α,λ ) = 0. Therefore, it is mathematically deal with, the characteristics of KD for

different parameter values see Mitnik (2013).

4.2 Likelihood Function under PT-II CBRs

Suppose that in a life testing experiment having items put on test, the lifetime of which follow

the KD. Also, we considered that the lifetime experiment perform under PT-II CBR, discussed

in Chapter 1, Subsection (1.11.2). The conditional likelihood function can be written as

L(α,λ ;x|R = r) = c
m

∏
i=1

f (xi)[1−F(xi)]
ri; −∞ < x1 < ... < xm < ∞, (4.3)

where n = m+
m
∑

i=1
ri, n,m ε N,1 ≤ i ≤ m and c =

m
∏
i=1

γi where γi =
m
∑
j=1

(r j +1) , ri ∼ B(n−m−

i−1
∑

l=0
rl, p) for i = 1,2,3, ...m− 1 and r0 = 0 substituting f (.) and F(.) from Equation (4.1) and

(4.2) respectively, into Equation (2.3), we have

L(α,λ ;x|R = r) = c
m

∏
i=1

αλxα−1
i (1− xα

i )
λ−1

{
(1− xα

i )
λ
}ri

. (4.4)

Since at the every stage the removals are independent of each other with probability p for each

unit, the removals are following a binomial distribution i.e.,

ri ∼ B(n−m−
i−1

∑
l=0

rl, p),
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where i = 1,2,3, ...m−1. Therefore;

p(R1 = r1; p) =
(

n−m
r1

)
pr1(1− p)n−m−r1, (4.5)

and for i = 2,3, ...,m−1

p(Ri; p) = p(Ri = ri|Ri−1 = ri=1, ...R1 = r1)

=

(n−m−
i−1
∑

l=0
rl

ri

)
pri(1− p)

n−m−
i−1
∑

l=0
rl
. (4.6)

It is further assumed that Ris are independent of Xi:m:n for all i. Thus full likelihood function

can be written as:

L(α,λ , p;x) = L(α,β ,λ ;x|R = r)p(R = r; p), (4.7)

where;

p(R = r; p) = p(R1 = r1)p(R2 = r2|R1 = r1)p(R3 = r3|R2 = r2,R1 = r1)...

p(Rm−1 = rm−1|Rm−2 = rm−2, ...R1 = r1).

(4.8)

Making the substitution from the Equation (2.5) and (2.6) into Equation (2.8), we get

p(R = r; p) =
(n−m)!p

m−1
∑

i=1
ri
(1− p)

(m−1)(n−m)−
m−1
∑

i=1
(m−i)ri

(n−m−
i−1
∑

l=1
rl)!

m−1
∏
i=1

ri!
, (4.9)

now using Equations (2.4), (2.7) and (2.9), the full likelihood can be represented in the fol-

lowing form:

L(α,λ , p;x) = HL1(α,λ )L2(p). (4.10)
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where

H =
c(n−m)!

(n−m−
i−1
∑

l=1
rl)!

m−1
∏
i=1

ri!
,

L1(α,λ ;x|R = r) =
m

∏
i=1

αλxα−1
i (1− xα

i )
−(λ (−1−ri)+1) , (4.11)

L2(p) = p

m−1
∑

i=1
ri
(1− p)

(m−1)(n−m)−
m−1
∑

i=1
(m−i)ri

. (4.12)

It may be noted here that the likelihood function is product of three terms H, L1 and L2 ; where

H is a constant term, L1 is function of the parameters but does not involve p and L2 is function

of p but does not involve other parameters.

4.3 Estimation of Parameters

4.3.1 Maximum Likelihood Estimator

As mentioned above, only L1 involves the parameters, hence ML estimates of the parameters

are those values which maximizes L1, we have

lnL1(α,λ ) = m ln(α)+m ln(λ )+(α −1)
m

∑
i=1

ln(xi)

−
m

∑
i=1

(λ (−1− ri)+1) ln(1− xα
i )

(4.13)

Thus, the likelihood equations can be obtained by differentiating the log-L function given above

with respect to parameter α and λ and equating to zero; i.e., ML estimates are α̂ and λ̂ of α

and λ respectively, can be obtained by simultaneously solving the likelihood equations:

m
α
+

m

∑
i=1

ln(xi)+
m

∑
i=1

(λ (−1− ri)+1)
(
x−α

i −1
)−1 ln(xi) = 0, (4.14)
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and

m
λ
−

m

∑
i=1

(−1− ri) ln(1− xα
i ) = 0. (4.15)

The above mentioned normal equation solved simultaneously but do not provided closed form

solution for the estimators. Then we opted NR method to compute the ML estimators, then we

are using the invariance property to the ML estimators of the reliability function R(t) and the

failure rate h(t) at time t can be evaluated from the following:

R̂(t) = (1− tα)λ ; t > 0, (4.16)

and

ĥ(t) =
αλ tα−1

(1− tα)
; t > 0. (4.17)

4.3.2 Bayes Estimator

In this sequence, we obtain the Bayes estimator of the parameter λ , when we assume that λ has

a conjugate prior density,

π(λ ,β ) = β exp(−βλ ) ; λ > 0, β > 0. (4.18)

That is to say, we regard random variable λ with prior density an exponential distribution

exp(β ), which is used in detail Bayesian theory, see Berger (2013). It may be noted that, the

exponential family prior π(λ ,β ) has been used by Nassar and Eissa (2005), Kim et al. (2011)

possibly because of the fact that it is flexible enough to cover a wide range of prior believes

of the experimenter. Hence, mathematical formula to evaluate the posterior distribution of λ is

given below,

π (λ |x) = π(λ ,β )L1(α,λ ;x|R = r)∫+∞

0 π(λ ,β )L1(α,λ ;x|R = r)dλ
. (4.19)
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Substituting L1(α,λ ;x|R = r) and π(λ ;β ) from Equation (2.10) and (4.18), respectively, in

Equation (4.19). We obtain the posterior distribution after simplification as,

π (λ |T ) =
β exp(−βλ )c

m
∏
i=1

αλxα−1 (1− xα)−(λ (−1−ri)+1)

∫+∞

0 β exp(−βλ )c
m
∏
i=1

αλxα−1 (1− xα)−(λ (−1−ri)+1) dλ

=
(β +T )m+1λ m exp(−λ (β +T ))

Γ(m+1)
. (4.20)

where T = −∑
m
i=1 (ri +1) ln(1− xα

i ). Randomly generated posterior distribution for complete

sample size 20 having x = (4.602501e− 07,9.335994E − 07,1.306320E − 02,1.351230E −

02,4.355106E−02,9.641328E−02,1.842315E−01,2.266576E−01,2.577245E−01,4.145024E−

01,7.714380E−01,7.891063E−01,8.778412E−01,8.926065E−01,9.723090E−01,9.963840E−

01,9.986856E − 01,9.990788E − 01,9.999941E − 01,1.000000E + 00) are presented in Fig-

ure (4.3).
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FIGURE 4.3: Informative prior π(λ ) and the posterior π (λ |x,β ): left panel, Informative prior
π(λ ) and the posterior π (λ |x, β̂ ) : right panel of λ .

Note that the posterior distribution of λ is gamma distribution with parameters (m+1) and

(β +T ). The Bayes estimator of λ under LINEX loss function for posterior Equation (4.20) is

obtained, after simplification, as

λ̂B =−1
a

ln
∫

∞

0
e−aλ

π (λ |T )dλ =
m+1

a
ln
(

1+
a

β +T

)
. (4.21)
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Similarly, the Bayes estimators of R(t) and h(t) at time t are obtained under LINEX loss func-

tion

R̂B(t) =−1
a

ln
∫

∞

0
e−a(1−tα )λ

π
∗(λ |T )dλ =−1

a
ln

(
∞

∑
s=0

(−a)s

s!

(
1− s ln(1− tα)

(β +T )

)−(m+1)
)
,

(4.22)

and

ĥB(t) =−1
a

ln
∫

∞

0
e
−aαλ tα−1
(1−tα ) π

∗(λ |T )dλ =
m+1

a
ln
(

1+
aαtα−1

(β +T )(1− tα)

)
, (4.23)

respectively.

4.3.3 Empirical Bayes Estimator

In view of this fact, Shi et al. (2005) and Yan and Gendai (2003) used the ML estimator to

estimate hyper parameter of prior distribution for analyzing the Bayesian reliability quantitative

indexes of cold stand by system. In Equation (4.21), the hyper parameter β is an unknown

constant, so λ can not be used directly. Therefore, we make use of the ML estimator to estimate

β .

f (x) =
∫

∞

0
f (x;α,λ )π(λ ;β )dλ

=
∫

∞

0
αλxα−1 (1− xα)λ−1

β exp(−βλ )dλ

=
αβxα−1

(1− xα)(β − ln(1− xα))2 ,
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and

1−F(x) =
∫

∞

x
f (x)dx

=
∫

∞

x

αβxα−1

(1− xα)(β − ln(1− xα))2 dx

=
β

β − ln(1− xα)
.

Hence, Equation (2.3) can be expressed as

L(α,λ ;x|R = r) = c
m

∏
i=1

f (xi)[1−F(xi)]
ri (4.24)

substituting f (x) and F(x) in to (4.24)

L(α,λ ;x|R = r) = c
m

∏
i=1

αβxα−1

(1− xα)(β − ln(1− xα))2

(
β

β − ln(1− xα)

)ri

,

lnL(α,λ ;x|R = r) = lnc+m lnα +m lnβ +(α −1)
m

∑
i=1

lnx−
m

∑
i=1

ln(1− xα)

+
m

∑
i=1

ri lnβ −
m

∑
i=1

(ri +2) ln(β − (1− xα)) ,

∂ lnL(α,λ ;x|R = r)
∂β

=
m
β
+

m

∑
i=1

ri

(
1
β
− 1

(β − ln(1− xα))

)
−2

m

∑
i=1

1
(β − ln(1− xα))

.

Now, we have considered,

k1(β ) =
m
β
+

m

∑
i=1

ri

(
1
β
− 1

(β − ln(1− xα))

)
, k2(β ) = 2

m

∑
i=1

1
(β − ln(1− xα))

.

Using iterative numerical computing method to obtain the ML estimate of β . We just draw a

conclusion that k1(β ) = k2(β ) has a root i.e, β̂ , numerically solved through R software. Since
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the empirical Bayes estimate of λ is

λ̂E =
m+1

a
ln
(

1+
a

β̂ +T

)
(4.25)

where β is replaced by β̂ in Equation (4.21). Substituting β̂ in Equation (4.22), the empirical

Bayes estimation of R̂(t) is obtained

R̂E(t) =−1
a

ln

 ∞

∑
s=0

(−a)s

s!

(
1− s ln(1− tα)

(β̂ +T )

)−(m+1)
 . (4.26)

Similarly, the empirical Bayes estimation of ĥ(t) is given as

ĥE(t) =
m+1

a
ln

(
1+

aαtα−1

(β̂ +T )(1− tα)

)
(4.27)

As it has been mentioned earlier, using (Ri = ri = 0; i = 1, · · · ,m−1) in Equation (2.3) and

Equation (4.24) and proceed to above subsequent equations, we can get the Bayes and empir-

ical estimators λ̂B2, λ̂E2 , R̂B2(t), R̂E2(t) and ĥB2(t), ĥE2(t) of λ ,R(t),h(t) for Type-II censoring

at time t, respectively. For the assessment of the above equations, we numerically calculate

through R software.

4.4 Monte Carlo Simulation Study and Comparison of Esti-

mators

An analytical study of the behavior of the estimators are not possible. Therefore, we make a

study based on simulated results and hence, we need to simulate PT-II CBR samples from KD.

The algorithm proposed by Balakrishnan and Sandhu (1995) have been used for simulation of

samples, Since, we simulate PT-II CBR from specified KD and propose the use of following

algorithm
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i. Specify the value of n.

ii. Specify the value of m.

iii. Specify the value of parameters α,λ and p.

iv. Generate random number ri from B
(
n−m−∑

i−1
l=0 rl, p

)
, for i = 1,2,3, · · · ,m−1.

v. Set rm according to the following relation.

vi. rm =


n−m−∑

m−1
l=1 rl if n−m−∑

m−1
l=1 rl > 0

0 otherwise

vii. Generate m independent U(0,1) random variables W1,W2, · · · ,Wm.

viii. For given values of the progressive type-II censoring scheme ri(i = 1,2, · · · ,m)

set Vi =W 1/(i+rm+·+rm−i+1)
i (i = 1,2, · · · ,m).

ix. Set Ui = 1−VmVm−1 · · ·Vm−i+1(i= 1,2, · · · ,m), then U1,U2, · · · ,Um are PT-II CBR samples

of size m from U(0,1).

x. Finally, for given values of parameters α and λ , set xi = F−1(U)(i = 1,2, · · · ,m). Then

(x1,x2, · · · ,xm) is the required PT-II CBR sample of size m from the KD.

Comparison of Estimators

Here, we compare the different estimators obtained through PT-II CBR and Type-II censored

samples. The comparison of the risks (average loss over sample space) under LINEX loss func-

tion. The estimators λ̂B, λ̂B2 , λ̂E , λ̂E2; R̂B(t), R̂B2(t), R̂E(t), R̂E2(t) and ĥB(t), ĥB2(t), ĥE(t), ĥE2(t)

of λ ,R(t) and h(t) are respective Bayes and empirical Bayes estimators for PT-II CBR and

Type-II censoring samples under LINEX loss function, respectively. Through MC simulation

obtained the risks of the estimators of 1000 samples. Here, we note that the risks of the es-

timators are function of n,m,a,α,λ ,β and t. The choice of hyper parameters of the prior
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distribution of λ can be taken in such a way that if we consider any two independent informa-

tion as prior mean and variance of λ , then, (µ = 1/β ,σ2 = 1/β 2) whereas µ is considered as

true values of the parameter λ for different confidence in terms of smaller and larger variances.

On the basis of this information, the hyper parameter of λ can be easily evaluated from this

relation, (β = µ/σ2).

In order to consider the variation of these values, we obtained the simulated risks for n =

20[10]90,m = 10[10]80, t = 0.2,α = 2(known), λ = 2 = µ (say prior mean of λ ), σ2 = (1,3)

(say prior variance of λ ), since β = (2/1,2/3), a = ±1.5. We use the symbol RL to denote

the risk under LINEX loss function, and the simulated risks under LINEX loss functions are

given in Tables (4.1−4.2). Table (4.1) present the risks of estimators for PT-II CBR. The next

Table (4.2) show the risks of estimators for Type-II censored samples. From Table (4.1), we

can observe that for PT-II CBR, the risk of the estimators of λ̂E and ĥE(t) under LINEX loss

function is the least (for both small and large prior variances i.e. σ2 = 1,3) for both a =+1.5

(when o.e. is more serious than u.e.) and a = −1.5 (when u.e. is more serious than o.e.).

But the risk of the estimators of R̂B(t) under PT-II CBR is minimum for LINEX loss function

with a = ±1.5 for small and large prior variances. Due to the change in the value of n and m

(effective sample size), the risks of the estimators change, but follow a particular trend. Further,

the risk of the estimator λ̂E and ĥE(t) under LINEX loss function was found to be least always.

It is also observed that as the failure proportion (m/n) increases, the magnitude of the risk of

the estimator λ̂E and ĥE(t) decreases. However, the magnitude of the risk of the estimator R̂B(t)

increases as failure proportion increases.

From Table (4.2), we can observe that for Type-II censoring, the risk of the estimators of

λ̂E2, ĥE2(t) and R̂B2(t) have also the least (for both small and large prior variances) for a =±1.5

under LINEX loss function. When the change in the value of (n,m) with respective for small

and large prior variances, the risks of the estimators change, they have follow a similar trend

as discuss above in Table (4.1). But, the risk of the estimators at λ̂E2, ĥE2(t) and R̂B2(t) were

also found to be the least always. From Tables (4.1− 4.2), it can be seen that the behavior

of the risks of the estimators under PT-II CBR is more similar to that of the estimators under
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Type-II censoring. The risks were found to be least for the empirical Bayes estimators λ̂E , λ̂E2

and ĥE(t), ĥE2(t) of λ and h(t) with an informative prior Γ(1,β ) respectively. Therefore, we

propose that empirical Bayesian estimator of parameter and reliability characteristics can use

planning of the experiment. Hence, the reliability practitioners can save much time and cost of

the experiment.

4.5 An application to Ulcer Patients Data

Now, we extract 43 primary disease (ulcer) patients data set from Collett (2014) to show prac-

tical applicability of proposed work. It have been taken for the analysis of PT-II CBRs dis-

cussed in the context of a study based on age
(
(10−2)∗age

)
data. In order to have an idea

about the associated primary disease (ulcer) patient’s age failure rate, we considered, a graph-

ical method based on TTT plot as a crude indicator see Aarset (1987). The empirical TTT

is given as T ( r
n) =

∑
r
i=1 x(i)+(n−r)x(r)

∑
n
i=1 x(i)

, where r = 1,2, · · · ,n and x(r) is the order statistics of the

sample. For this data set in Figure (4.4) shows concave TTT plots, indicating increasing failure

rate functions along with Figure (4.5), (4.6) and (4.7) represent PDF/CDF plot, sample Q-Q

plot and hazard plots respectively, which can be properly accommodated by KD. However,

we fitted three competitive distributions, F(x;α,λ ) =
(

1− e−λx
)α

, x > 0, α > 0,λ > 0 and

F(x;α,λ ) = 1− e−(λx)α

, x > 0, α > 0,λ > 0 are CDFs of the EED (Exponentiated exponen-

tial distribution) and WD (Weibull distribution) respectively. Table (4.3) provides the -log-L

values and the AIC, BIC and p-values for these distributions. They indicate evidence in favor

of KD. The ML estimates (and their corresponding standard errors in parentheses) of the KD,

EED and WD parameters are given by α̂ = 3.2490(0.0108917), λ̂ = 5.64104(0.03766); α̂ =

15.44731(0.12571), λ̂ = 6.531165(0.01933) and α̂ = 3.55875(0.01012), λ̂ = 1.76975(0.00186)

respectively. But for the purpose of illustrating the method discussed in this chapter, PT-II CBR

samples are generated from this data set under different schemes see Table (4.6). The box plot

of different censoring schemes as well as descriptive statistics is also presented in Figure (4.8)

and Table (4.7) respectively. The required numerical calculations for the considered schemes
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are carried out using the formula given in Section (4.3) through R software see Ihaka and

Gentleman (1996). The Bayes estimates, empirical Bayes estimates of λB, RB(.), hB(.) and

λE ,RE(.), hE(.) under LINEX loss for a = ±1.5 are presented in Table (4.4). While, Table

(4.5) shows the Bayes, empirical Bayes estimates of λB2 , RB2(.), hB2(.) and λE2 ,RE2(.), hE2(.)

for Type-II censoring under LINEX loss for a = ±1.5. From Tables (4.4− 4.5), it may also

be observed that the behavior of the estimators under PT-II CBRs are more similar to that of

the estimators under Type-II censoring. The estimates were found to be decreases as effective

sample size increases.

4.6 Conclusion

On the basis of the previous discussion given in the above Section (4.5), we may conclude that

the proposed empirical Bayes estimators λ̂E , λ̂E2 and ĥE(t), ĥE2(t) are better than Bayes estima-

tors λ̂B, λ̂B2 and ĥB(t), ĥB2(t) for smaller or larger prior variance (σ = 1,3) of β with a =±1.5.

Also, we have seen that Table (4.1−4.2) under LINEX loss function for the estimators R̂E(t)

and R̂E2(t) is not always less than those of R̂B(t) and R̂B2(t). Since the risks associated with

R̂B(t) and R̂B2(t) is smaller than the risk associated with reliability of the empirical estimators.

Thus, the use of propose estimator (λ̂E , R̂B(t), ĥE(t)) and (λ̂E2 , R̂B2(t), ĥE2(t)) under PT-II CBRs

and Type-II are recommended under LINEX loss function respectively.
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FIGURE 4.4: TTT plot for an ulcer patient with different ages
(
(10−2)∗age

)
for the primary

disease.
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(
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)
for the primary disease. Left panel: PDF; right panel: CDF.

TABLE 4.3: The -log-L values and the AIC and BIC values for the KD, EED and WD fitted
distributions.

distribution -log-L AIC BIC KS p-value
KD 15.6765 27.35302 23.83062 0.082175 .9923

EED 18.6053 33.21062 29.68822 0.102652 .9333
WD 18.0699 32.13973 28.61733 0.086067 .9901
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(
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right panel:WD.
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TABLE 4.6: PT-II CBR under different censoring schemes (Sn:m) for fixed n = 43 and p = 0.5
for an ulcer patient with different ages

(
(10−2)∗age

)
for the primary disease.

Sn:m i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

S43:20 Xi 0.23 0.37 0.49 0.58 0.58 0.58 0.58 0.59 0.59 0.61 0.62 0.71 0.72 0.73 0.74
Ri 8 10 5 0 0 0 0 0 0 0 0 0 0 0 0
Xi 0.75 0.75 0.75 0.76 0.76
Ri 0 0 0 0 0

S43:23 Xi 0.23 0.38 0.47 0.52 0.53 0.54 0.58 0.58 0.58 0.58 0.59 0.59 0.61 0.62 0.71
Ri 9 5 4 0 1 1 0 0 0 0 0 0 0 0 0
Xi 0.72 0.73 0.74 0.75 0.75 0.75 0.76 0.76
Ri 0 0 0 0 0 0 0 0

S43:25 Xi 0.23 0.36 0.41 0.49 0.49 0.53 0.54 0.54 0.58 0.58 0.58 0.58 0.59 0.59 0.61
Ri 7 5 4 0 1 0 0 1 0 0 0 0 0 0 0
Xi 0.62 0.71 0.72 0.73 0.74 0.75 0.75 0.75 0.76 0.76
Ri 0 0 0 0 0 0 0 0 0 0

S43:30 Xi 0.23 0.38 0.41 0.47 0.47 0.48 0.49 0.49 0.52 0.53 0.54 0.54 0.56 0.58 0.58
Ri 10 1 2 0 0 0 0 0 0 0 0 0 0 0 0
Xi 0.58 0.58 0.59 0.59 0.61 0.62 0.71 0.72 0.73 0.74 0.75 0.75 0.75 0.76 0.76
Ri 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

S43:33 Xi 0.23 0.28 0.37 0.38 0.41 0.44 0.47 0.47 0.48 0.49 0.49 0.52 0.53 0.54 0.54
Ri 4 3 1 2 0 0 0 0 0 0 0 0 0 0 0
Xi 0.56 0.58 0.58 0.58 0.58 0.59 0.59 0.61 0.62 0.71 0.72 0.73 0.74 0.75 0.75
Ri 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Xi 0.75 0.76 0.76
Ri 0 0 0

S43:35 Xi 0.23 0.28 0.37 0.38 0.38 0.41 0.41 0.44 0.47 0.47 0.48 0.49 0.49 0.52 0.53
Ri 4 3 0 0 1 0 0 0 0 0 0 0 0 0 0
Xi 0.54 0.54 0.56 0.58 0.58 0.58 0.58 0.59 0.59 0.61 0.62 0.71 0.72 0.73 0.74
Ri 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Xi 0.75 0.75 0.75 0.76 0.76
Ri 0 0 0 0 0

S43:38 Xi 0.23 0.23 0.27 0.34 0.37 0.38 0.38 0.38 0.41 0.41 0.44 0.47 0.47 0.48 0.49
Ri 0 2 2 1 0 0 0 0 0 0 0 0 0 0 0
Xi 0.49 0.52 0.53 0.54 0.54 0.56 0.58 0.58 0.58 0.58 0.59 0.59 0.61 0.62 0.71
Ri 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Xi 0.72 0.73 0.74 0.75 0.75 0.75 0.76 0.76
Ri 0 0 0 0 0 0 0 0

S43:40 Xi 0.23 0.27 0.28 0.33 0.34 0.36 0.37 0.38 0.38 0.38 0.41 0.41 0.44 0.47 0.47
Ri 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Xi 0.48 0.49 0.49 0.52 0.53 0.54 0.54 0.56 0.58 0.58 0.58 0.58 0.59 0.59 0.61
Ri 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Xi 0.62 0.71 0.72 0.73 0.74 0.75 0.75 0.75 0.76 0.76
Ri 0 0 0 0 0 0 0 0 0 0
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FIGURE 4.8: Box plot for PT-II CBR under different censoring schemes Sn:m for an ulcer
patient with different ages

(
(10−2)∗age

)
for the primary disease.

TABLE 4.7: Summary of the different censoring schemes (Sn:m) for PT-II CBR.

Sn:m Min Q1 Median Mean Q3 Max SD Skewness Kurtosis

S43:20 0.23 0.580 0.6150 0.62450 0.74250 0.76 0.1402807 -1.1887960 0.9533382

S43:23 0.23 0.560 0.5900 0.61170 0.73500 0.76 0.1344907 -0.9352590 0.6451634

S43:25 0.23 0.540 0.5900 0.59960 0.73000 0.76 0.1370669 -0.7446627 0.1144300

S43:30 0.23 0.498 0.5800 0.58370 0.71750 0.76 0.129973 -0.4230723 -0.1033113

S43:33 0.23 0.480 0.5800 0.56360 0.71000 0.76 0.140886 -0.3267876 -0.5493007

S43:35 0.23 0.470 0.5600 0.55400 0.66500 0.76 0.1423789 -0.1981708 -0.7473111

S43:38 0.23 0.433 0.5500 0.54630 0.71250 0.76 0.156757 -0.2054257 -0.9473064

S43:40 0.23 0.403 0.5350 0.52680 0.61250 0.76 0.1522546 -0.0128692 -1.0644150





Chapter 5

Bayesian Estimation of the Number of

Species Using Poisson Lindley Stochastic

Abundance Model

5.1 Introduction

Previous chapters are based on the lifetime problem. While this chapter deals with ecological

problem to estimating the number of species are present in an organism. The problem of esti-

mating the number of species has been discussed extensively in the biological and ecological

literature (Wilson and Collins (1992), Colwell and Coddington (1994), Bunge et al. (1995)).

Various approaches have been proposed like parametric and non-parametric respectively. Both

of these approaches have some optimal properties. In a parametric distribution, we can fit the

observed frequency counts and use the estimated parameter values to estimate the number of

species see Greenwood and Yule (1920). A non-parametric approach of ML version has been

given by Norris and Pollock (1998). In non-parametric, the estimators are based on the cov-

erage of the sample and the fraction of the population. These concepts were first proposed by

Chao and Lee (1992).

163
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But authors are interested to estimate the total number of species. When the total number of

species have not been caught during the experiment. The estimators have been developed in

this chapter through a parametric approach when observed samples were induced a parametric

model. The estimation methods needed in this chapter are based on a Poisson mixed sampling

model. Because each species independently contributed as representatives of the sample ac-

cording to a Poisson process. When the rate or abundance parameters for these processes are

taken to be i.i.d. RV from some fixed well-known distribution, see Chao and Bunge (2002).

One parameter Lindley (1958) distribution has been used for this process. Ghitany et al. (2008)

studied some properties of the one-parameter Lindley distribution. In the application part, they

showed that it is more flexible and works better in modeling for different types of data than well-

known exponential distribution. Now we mixed this distribution with Poisson, and get discrete

Poisson Lindley distribution. For applicability of Poisson mixed distributions, authors are refer-

ring to see Sankaran (1970). Furthermore the distributions based on Poisson mixture model for

species abundance problems have been study by many authors such as (Bulmer (1974), Ord and

Whitmore (1986), Sichel (1986)) etc. But in estimation problem for the number of species, ac-

cording to Fisher et al. (1943) and Sichel (1986), it has required a suitable Poisson mixed model

for a given problem. Thus we need to Poisson mixed as well as in-truncated distributions as

per the demand of the problem see, Leite et al. (2000). Bunge and Fitzpatrick (1993) shows an

interesting review of the problem of estimating the number of species. Therefore, we motivated

by the above study is that no attempt has been made to use Poisson Lindley distribution as a

model in species problems. Therefore, in this chapter we propose to develop such an estimator

and estimation procedure for the parameters. The details of the mathematical formulations are

discussed in a further Section.

In the past few decades, Bayesian estimation for the number of species population parame-

ter based on Poisson mixed models have been studied by several authors such as Lewins and

Joanes (1984), Leite et al. (2000) and Barger et al. (2010), etc. Fully hierarchical and em-

pirical Bayesian estimation of the number of species based on Poisson-Gamma mixed model

has been discussed by Rodrigues et al. (2001), and for other Poisson-mixed models by Wang
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et al. (2007), Barger et al. (2010), etc. But, it seems as if no attempt has been made to develop

Bayes estimators of the number of species based on Poisson mixed Lindley distribution. Al-

though estimation of the number of species based on Poisson mixed models under classical set

up has been attempted by Gotelli and Colwell (2011), Chao and Lee (1992), Sichel (1986), etc.

Therefore, we propose to develop a Bayesian estimation procedure to obtain the estimate of the

number of species (using a Lindley model as a stochastic abundance model in which the sample

according to independent Poisson process i.e., Poisson Lindley). Jeffery’s and Bernardo’s ref-

erence priors have been obtaining and proposed the Bayes estimators of the number of species

for this model. An important feature of this chapter is to develop the required mathematics for

the number of species parameters and priors along with its application to biological data.

5.2 Model and Likelihood Function

In biological sampling there are S species present, it has for some time been observed. When

the successive, independent and unequal samples with sizes x1,x2,x3, · · · ,xS be taken from

heterogeneous abundance of species. The number of individuals observed in different samples

will vary in a different manner in study period [0, t]. The distribution of the number of observed

species depends only on one parameter Poisson distribution (tλi) may be easily expressed in

terms of the number expected (λi), which is given e−tλ (tλ )xi

xi!
, i = 1,2,3, · · · ,S. Where Xi is

the variate representing the number, which has been observed in any sample. And λi is the

parameter, which is average value of Xi, and need not be whole number. This is an extension of

the Poisson process, and is provided by supposition that the values of λ are distributed as well-

known Lindley distribution with density function fη , where η is a low dimensional parameter

vector. In the Lindley distribution case, η = θ and fη(λ ) = fθ (λ ) and empirical CDF is Fθ (λ ).

Thus λ must be positive, and it has followed a well known form the distribution of Lindley (θ),

such that the element of frequency or probability with which it falls in any infinitesimal range.
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Fθ (λ ) = F(λ |θ) = 1− (1+θ +λθ)e−λθ

1+θ
; λ > 0;θ > 0,

fθ (λ ) = f (λ |θ) = θ

θ +1
(1+λ )e−λθ ; λ > 0;θ > 0.

We can only observe the number of individuals contributed to the sample by each species.

When contribution is greater than 0 i.e. Xi > 0. The species that contribute zero individuals to

the sample are unobserved. The observed data are therefore S j =∑
S
i=1 I(Xi = j) for j ≥ 1. Thus,

S j represent the number of species that contribute j individuals to the sample. The observed

number of species is w = ∑ j≥1 s j, and the observed number of individual is s = ∑ j≥1 js j, where

s j are realized values of S j. The goal is to estimate S (or equivalently to predict s0) based on the

observed frequency counts {s j : j ≥ 1}. Without loss of generality, we can and do take t = 1

because the time scale does not affect any of our estimates of S.

Therefore, the marginal distribution of Xi is pθ ( j) =
∫ e−λ λ j

j! f (λ |θ)dλ representing the zero

truncated P-mixed Poisson distribution, where f (λ |θ) = ∂

∂λ
F(λ |θ). Sankaran (1970) derived

the zero truncated P-mixed Poisson Lindley distribution given below,

pθ ( j) =
(

θ

1+θ

)2 j+θ +2
(θ +1) j+1 ; θ > 0; j = 0,1,2,3, · · · , (5.1)

when j = 0 then Equation (5.1) become

pθ (0) =
(

θ

1+θ

)2(
θ +2
θ +1

)
; θ > 0. (5.2)

5.2.1 Likelihood and Information of Parameters

The likelihood can be written as

L(S,θ |x) = ∑
j∈∆

S

∏
j=1

pθ ( j).
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Where ∆ is the set of x1,x2,x3, · · · ,xS which correspond to the observed frequencies (s1,s2, · · · ,sS).

Sanathanan (1972) has demonstrated that the likelihood can be written as

L(S,θ |x) =
(

S
w

)
(1− pθ (0))w(pθ (0))S−w w!

∏ j≥1 s j!
∏
j≥1

(
pθ ( j)

1− pθ (0)

)s j

=

(
S
w

)(
1−
(

θ

1+θ

)2(
θ +2
θ +1

))w((
θ

1+θ

)2(
θ +2
θ +1

))S−w

w!
∏ j≥1 s j!

∏
j≥1

( θ

1+θ

)2
(

j+θ+2
(θ+1) j+1

)
1−
(

θ

1+θ

)2 (θ+2
θ+1

)
s j

= A(S,θ)B(θ), (5.3)

where S ≥ w, i.e. S−w = s0 is the number of unobserved species. Now, the likelihood are func-

tion of parameters S and θ in the Equation (5.3), where θ = (θ1,θ2, ...,θm). Since, we consider

θ is a nuisance parameter, and our interest is in estimating S. Which shows the likelihood can

be factored into a binomial likelihood for w that corresponds A(S,θ), and a multinomial like-

lihood for the observed frequencies corresponds the B(θ). This factorization of the integrated

likelihood has an important role. It was first formulated by Sanathanan (1972) who derived the

asymptotic theory for the ML estimation for S and θ . Fisher Information matrix can only be

found for likelihoods which are differentiable with respect to the parameters. In the species

likelihood, S is discrete parameter, S = 1,2, .... This likelihood is not differentiable with respect

to S. Lindsay and Roeder (1987) define information for discrete parameters using the LDS

defined as

LDS(S) =
L(S)−L(S−1)

L(S)
,

were L(S) is the likelihood for an integer parameter S.
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FIGURE 5.1: Plot of LDS for S with respect different θ for fixed in (a) w = 30, N = 50, and
(b) w = 45, N = 50.

If LDS(S) satisfies the form LDS(S) = (Y − µS)/cS, where µS and cS are function of S and

Y is random data, then 1/Var(LDS(S)) is the information in S. In Figure (5.1), shows that

LDS(S) = 0 then it gives the maxima of S with respective to different choice of θ . Using the

method described by Lindsay and Roeder (1987) to calculate the information for S and θ , we

obtain,

F(S,θ) =

( 1
S

1−pθ (0)
pθ (0)

(
− ∂

∂θ
logpθ (0)

)T

− ∂

∂θ
logpθ (0) S(−ρ(θ))

)
.

Where, ∂

∂θ
pθ (0) is the column vector of partial derivatives. The ρ(θ) =

(
Ex

∂ 2

∂θ 2 logpθ ( j)
)

,

has taken expectation with respect to pθ . We may also observed that the diagonal elements

of partitioned matrix contain elements which factor into a function of S times a function of θ .

Thus we have,

F(S,θ) =

( 1
S
(1+θ)3−θ 2(θ+2)

θ 2(θ+1) −
(

2θ 2+θ−4
θ(θ+1)(θ+2)

)T

−
(

2θ 2+θ−4
θ(θ+1)(θ+2)

)
S
(

2
θ
− 2+8θ+13θ 2+10θ 3+3θ 4

θ(θ+1)5 +ψ( j,θ)
) ), (5.4)
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where, ψ( j,θ) = ∑
∞
j=0

e−θ j( j+1)θ 2

(θ+1)( j+θ+2)2 .

5.3 Bayes Estimators of Parameters

In Bayesian paradigm, the parameter of interest θ and S are consider to be RV, and having

their prior distribution. The selection of prior distribution is often based on the type of prior

information available to us. When we have minimal or no information about the parameter then

a non-informative prior should be used.

5.3.1 Bayes Estimators of Parameters Using Jeffery’s Priors

The Jeffrey’s prior (see Jeffreys (1946)) is one of the general rule. Using the fisher information

matrix as shown above F(S,θ) in Equation (5.4). The Jeffery’s prior for (S,θ) is gJ(S,θ).

It based on invariance property under one to one re-parameterization. The Jeffery’s prior is

defined to be proportional to the square root of the Fisher information matrix. For multidimen-

sional model, the determinant of the Fisher information is used, which preserve the invariance

property. By calculating the determinant of the partitioned matrix in Equation (5.4) is,

gJ(S,θ) ∝ det[F(S,θ)]1/2 (5.5)

∝ S
m−1

2 g(θ),

where g(θ) is some function of θ , which will depend on the dimension of the information

matrix. When the dimension increases this will become complex,

gJ(S,θ) ∝

(((θ +1)3 −θ 2(θ +2)
θ 2(θ +2)

)(
2

θ 2 −
2+8θ +13θ 2 +10θ 3 +3θ 4

θ(θ +1)5 +ψ( j,θ)
)

(5.6)

−
(

2θ 2 +θ −4
θ(θ +1)(θ +2)

)2) 1
2
.
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Several authors have presented a general rule, and for using Jeffery’s prior for an exponential

family by showing that a proper posterior is produced (Jeffreys (1961), Barger and Bunge

(2008) and Barger et al. (2010)). The product of two independent prior has been discussed by

Jeffery. They suggest to use an idea about reasonable Jeffery’s prior for integer parameter S and

continuous parameter θ . Integer parameter is the interest of our study parameter. Using Bayes

theorem for computing likelihood in Equation (5.3) and Jeffery’s prior in Equation (5.7). We

get the joint posterior distribution of πJ(S,θ) is,

πJ(S,θ |x) ∝ L(S,θ |x)gJ(S,θ),

πJ(S,θ |x) ∝

(
S
w

)(
1−
(

θ

1+θ

)2(
θ +2
θ +1

))w((
θ

1+θ

)2(
θ +2
θ +1

))S−w

w!
∏ j≥1 s j!

∏
j≥1

( θ

1+θ

)2
(

j+θ+2
(θ+1) j+1

)
1−
(

θ

1+θ

)2 (θ+2
θ+1

)
s j

(((θ +1)3 −θ 2(θ +2)
θ 2(θ +2)

)(
2

θ 2 −
2+8θ +13θ 2 +10θ 3 +3θ 4

θ(θ +1)5 +ψ( j,θ)
)

−
(

2θ 2 +θ −4
θ(θ +1)(θ +2)

)2) 1
2
. (5.7)

Now full conditional posterior for S is

πJ(S|θ ,x) ∝

(
S
w

)(
1−
(

θ

1+θ

)2(
θ +2
θ +1

))w+1((
θ

1+θ

)2(
θ +2
θ +1

))S−w

,

∝ NB

(
w+1,

(
1−
(

θ

1+θ

)2(
θ +2
θ +1

)))
, (5.8)
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and full conditional posterior for θ is

πJ(θ |S,x) ∝
w!

∏ j≥1 n j!
∏
j≥1

((
θ

1+θ

)2( j+θ +2
(θ +1) j+1

))s j
 1

1−
(

θ

1+θ

)2 (θ+2
θ+1

)
w+1

(((θ +1)3 −θ 2(θ +2)
θ 2(θ +2)

)(
2

θ 2 −
2+8θ +13θ 2 +10θ 3 +3θ 4

θ(θ +1)5 +ψ( j,θ)
)

−
(

2θ 2 +θ −4
θ(θ +1)(θ +2)

)2) 1
2
. (5.9)

Full conditional posterior for S, we can use direct sampling from negative binomial distribution

with size (w+1) and probability
(

1−
(

θ

1+θ

)2 (θ+2
θ+1

))
, and full conditional posterior for θ does

not come in closed form then using the M-H steps uses a normal proposal distribution to get

posterior samples.

5.3.2 Bayes Estimators of Parameters Using Bernardo’s Reference Priors

Now, we have proposed for considering the Bernardo’s reference prior. This prior is a quite

general and powerful tool for obtaining automatic prior to be used in Bayesian analysis. Be-

cause of that reference prior are firstly useful with large sample but may also be helpful where

the data analysis is unsure whether a sample is large. Typically the Bernardo’s reference prior is

the same as the Jeffery’s prior in the one dimensional case, but where the parameter space Θ is

bivariate or more. Non-informative prior is Bernardo’s reference prior (Bernardo (1979)) based

on maximizing and expected entropy (measurement of loss of information). The Bernardo’s

reference prior algorithm take into account (see Bernardo and Ramon (1998). It may also noted

that in the standard Bayesian approach, the Bernardo’s reference prior is used to obtain the

joint posterior for (S,θ)≡ Θ. In this approach, we only discuss the two groups case, where the

parametric space Θ or vector is split in the parameter of interest S, and the nuisance parame-

ter, θ under certain regularity conditions (see Bernardo (1979), Bernardo and Ramon (1998),

Bernardo and Smith (2009)) for the existence of a consistent and asymptotically normal es-

timator of the parameters. Thus the reference prior for S, when θ is known, is used Fisher
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information matrix in Equation (5.4). The construction of the reference prior takes into ac-

count the order of interest of the parameters S and θ is a nuisance parameter.

Now we obtain the Bernardo’s reference prior for a nuisance parameter, m= 1. Thus, the Fisher

information matrix in Equation (5.4) will be 2× 2. Let us assume H = F−1 be the variance-

covariance matrix. (h11)
−1/2 = a0(S)b0(θ) and ( f22)

1/2 = a1(S)b1(θ) are the elements of the

covariance and information matrices, respectively. The nuisance parameter θ and number of

species S are independent to each other. The joint Bernardo’s reference prior gR(S,θ) will

become,

gR(S,θ) ∝ (a0(S))−1/2(b1(θ))
1/2 (5.10)

∝ S−1/2(ρ(θ))1/2.

gR(S,θ) ∝ S−1/2
(
− 2

θ 2 +
2+8θ +13θ 2 +10θ 3 +3θ 4

θ(θ +1)5 −ψ( j,θ)
)1/2

. (5.11)

From above Equation (5.11), we may also seen the joint gR(S,θ) factorized into a marginal

distribution function of S and θ . Now, the joint posterior distribution of π(S,θ) is based on

likelihood and Bernardo’s reference prior is,

πR(S,θ |x) ∝ L(S,θ |x)gR(S,θ),

πR(S,θ |x) ∝

(
S
w

)(
1−
(

θ

1+θ

)2(
θ +2
θ +1

))w((
θ

1+θ

)2(
θ +2
θ +1

))S−w

w!
∏ j⩾1 s j!

∏
j⩾1

( θ

1+θ

)2
(

j+θ+2
(θ+1) j+1

)
1−
(

θ

1+θ

)2 (θ+2
θ+1

)
s j

S−1/2
(
− 2

θ 2 +
2+8θ +13θ 2 +10θ 3 +3θ 4

θ(θ +1)5 −ψ( j,θ)
)1/2

. (5.12)
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Now full conditional posterior for S is

πR(S|θ ,x) ∝ S−1/2
(

S
w

)(
1−
(

θ

1+θ

)2(
θ +2
θ +1

))w((
θ

1+θ

)2(
θ +2
θ +1

))S−w

, (5.13)

and full conditional posterior for θ is

πR(θ |S,x) ∝
w!

∏ j⩾1 s j!
∏
j⩾1

( θ

1+θ

)2
(

j+θ+2
(θ+1) j+1

)
1−
(

θ

1+θ

)2 (θ+2
θ+1

)
s j (

− 2
θ 2 +

2+8θ +13θ 2 +10θ 3 +3θ 4

θ(θ +1)5 −ψ( j,θ)
)1/2

. (5.14)

Here, full conditional posterior distribution of S and θ are not obtainable in closed form then

using the M-H steps. For posterior samples of S and θ , we used a negative binomial distribution

and normal distribution as a proposal distribution for S and θ , respectively.

5.4 An application to Microbial Organisms Species Data

Let us consider a sample of microbial organisms species data set, taken from Barger and

Bunge (2008). The data set may be assumed to be a sample from a P-mixed Poisson model

having a non- monotonic HR as that of Poisson Lindley model. The data set was origi-

nally reported by Behnke et al. (2006), and it represents the classification of the organisms

into species based on 18S rRNA similarity. The samples of microbes were taken from 18

meter below the water surface of the Framvaren Fjord in Norway. Diversity of these or-

ganisms is largely unknown and estimating the total number of species of microbes. Cor-

respond the observed frequency (nonzero) and the number of species are listed as ( j,s j) :

(1,15),(2,6),(3,7),(4,2),(5,1),(6,1),(7,1),(8,1),(9,1),(12,1),(15,1),(20,1),(164,1). The

observed number of species and observed number of individual organisms are found to be

w = 39 and s = 302 respectively.
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First of all, we checked the graphical method to the data set, have come from Poisson Lindley

model. Figure (5.2) shows the (observed) relative frequency histogram and the postulated (or

expected) relative histogram on the same graph. Which shows that Poisson Lindley model

provides a satisfactory close to the agreement between two histogram appears. But there is

little difference between the two histogram due to some chance fluctuation. Since, we study

the chi-square test of goodness of fit. Hence, χ2
cal = 3.70 and χ2

tab,95%,3 = 7.82 then χ2
tab is

greater than χ2
cal , so we can say that observed frequency has no significance difference between

expected (hypothesized) frequency. Thus this data set has been proposed for Poisson Lindley

model and compared with some well-established models, namely, Poisson and exponential-

mixed Poisson model (discuss it in details Barger and Bunge (2008)). Here we used values of

frequencies up to 10 selected by the criteria described therein (goodness-of-fit).

The full data includes observed frequencies greater than ten, but we only model the observed

frequencies less than equal to ten. This can be interpreted as assuming the most abundant

species are from a known sub population. For final estimate of the number of species were

added later when observed frequencies greater than 10.
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FIGURE 5.2: Observed and Expected relative frequency histogram plot of Poisson Lindley
Model.
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For Bayesian estimation we use MCMC sampler with M-H steps to simulate from the posterior

distributions. Expression for the full conditionals posterior distribution of proposed model with

Jeffery’s prior is given by πJ(S|θ ,x) and πJ(θ |S,x) in Equation (5.8) and (5.9), respectively

and with Bernardo’s reference prior is given by πR(S|θ ,x) and πR(θ |S,x) in Equation (5.13)

and (5.14), respectively. The posterior samples are taken to have an approximate effective

sample size of 5000. Acceptance rates for parameters are kept below 40% and 30% for S and

θ respectively.

In M-H step we use a normal proposal distribution for sampling of (nuisance) parameter θ . To

obtain the sample from full conditional distribution for S in Equation (5.8) and (5.13). Figure

(5.5) shows posterior simulations from each of the two models for species posterior distribution

derived in Section (5.3). The proposed Poisson Lindley model parameter for Jeffrey’s and

Bernardo’s reference priors, the posteriors are described in Subsection (5.3.1) and (5.3.2). It

is well known that MCMC analysis provides reliable results only when the chains have run

sufficiently large number of times and reached to the stationary distribution. In the existing

literature of MCMC, a number of tools to assess the convergence of chain like mixing of chain

and auto correlation are mentioned in Figure (5.3) and Figure (5.4). These Figures is enough

to show that the chains in the present analysis have converged. Now, we may be mentioned

here that Bayes estimators and credible intervals (with 95% confidence) have been obtained

above using the MCMC procedures. The frequentist estimates for S are summarized in Table

(5.1). While under Bayesian paradigm the estimate of S are summarized in Table (5.2). It

has shown the posterior modes, means, median and central credible intervals. Also, we are

drawn an comparison between Bayesian estimates and ML estimates; symmetric CI based on

asymptotic normality, and asymptotic profile likelihood interval (described in Cormack (1992))

are included in Table (5.2). We can also see that the Bayesian estimates are always more than

the ML estimates for PLJ and PLR. Further we observed that the profile likelihood intervals

are comparable with credible interval estimates and the posterior mean estimates for S are also

more than ML estimates. It may also notice that asymptotic 95% symmetric CI for the ML

estimate in the consider Lindley model falls above the observed number of species, w = 39.
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FIGURE 5.3: Trace plot of parameter S with (a) Jeffery’s prior and (b) Bernardo’s reference
prior.
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FIGURE 5.4: Auto Correlation Plot (ACF) of parameter S with (a) Jeffery’s prior and (b)
Bernardo’s reference prior.
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FIGURE 5.5: Posterior histogram plot of parameter S with (a) Jeffery’s prior and (b) Bernardo’s
reference prior.

TABLE 5.1: ML estimate and 95% CI of parameter S obtained with profile likelihood θp and
conditional likelihood θc.

Model MLE 95%Confidence Interval

Poisson Lindley model Sp = 52.67544 (42.56637,62.78451)
Sc = 53.01631 (42.77726,63.25537)

TABLE 5.2: Summary statistics for posterior π(S|x) with PLJ and PLR.

PLJ PLR

Mode 55 58
Mean 58.02068 58.37274

Median 57 58
95% Credible Interval (47,74) (47,75)

We next check the fit of the each model as well as the relative fit among the models. For the

relative fit of models we have derived the deviance averaged over values from posterior sample

for each considered model. The model deviance is defined as
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DE(x,S,θ) =−2logL(S,θ |x). (5.15)

Now, using the posterior samples θ i, k = 1,2, ...,N to obtain the average deviance, where I

is the total number of posterior samples. Model deviance estimates (DE) formula is as given

below,

D̂E(x) =
1
N

N

∑
k=1

DE(x,θ j). (5.16)

Table (5.3) is shown to DE of the models, lower DE shows a better fit. From Barger and Bunge
(2008) considered the same data set for various models, that mentioned in the Table (5.3), such
as PJ: Poisson model with Jeffrey’s prior, PR: Poisson model with Bernardo’s reference prior;
EJ: exponential-mixed Poisson model with Jeffrey’s prior and ER: exponential-mixed Poisson
model with Bernardo’s reference prior. Here we consider these models to compare deviance of
PLJ and PLR. We obtained PLR have very minimum model DE as well as better fit for the data
set.

TABLE 5.3: DIC for PJ: Poisson model with Jeffrey’s prior; PR: Poisson model with Bernardo’s
reference prior; EJ: exponential-mixed Poisson model with Jeffrey’s prior; ER:exponential-

mixed Poisson model with Bernardo’s reference prior; PLJ and PLR.

Model DIC

PJ 58.05805
PR 58.06852
EJ 35.63834
ER 35.61999

PLJ 32.5128
PLR 30.83205

In this sequence, we plot the expected frequencies using posterior samples of the parameters S

for PLJ and PLR. We see that for this small data set PLR fit is acceptable, see in Figure (5.6).
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FIGURE 5.6: Expected frequency plot of S with (a) Jeffrey’s prior and (b) Bernardo’s reference
prior.

The Jeffrey’s and Bernardo’s reference prior for the Poisson Lindley model give very similar

results. These priors have been very minimal effect on resulting estimates. Hence, the model

selection is highly influence by the final estimates. It is a very important problem for the choice

of models.

5.5 Monte Carlo Simulation Study and Comparison of Esti-

mators

We shall compute and set side by side the estimators obtained under ML and Bayesian esti-

mators. The estimators Ŝp, Ŝc, ŜJ and ŜR denotes the profile ML estimator, conditional ML

estimator, Bayes estimator with Jeffery’s prior and Bernardo’s reference prior, respectively.

Here, S stands for the total number of species as a discrete parameter and θ were abundance

parameter generated from Lindley distribution as a nuisance parameter. For the stochastic abun-

dance of the model we have stopping time t and w stands for the observed number of species in
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the sample experiment. The comparisons are based on the square root of average risk (expected

loss over sample space) of the estimators of the parameters S, denoted by R(S).

In the simulation study number of species was to be fixed to be S = 50,60 and 70. The abun-

dance parameters were generated from Lindley distribution with parameter θ = 0.5 and 1.2.

We considered the two stopping time i.e. t = 0.4 and 1.2. So we observed that the capture frac-

tion are (C.F.=w
S ∗100) lies between 70% and 98%. For each simulated data set, four estimates

were reported Ŝp, Ŝc, ŜJ and ŜR. The estimates average risk based on the asymptotic formula

for each estimator was also obtained.

We excluded those data sets for which the iterative steps for any ML estimates did not get

solution or the overlap fraction was negative. (This occurred only when the capture fraction

was 50%). The procedure continued until 5000 data sets had been generated. The estimates

are obtained through ML method using NR iterative method for nuisance parameter. For the

proposed estimator also observed the acceptance rate through M-H algorithm nearly 28% and

40%. For the 5000 generated datasets, the average estimates and their square root of average

risk of parameter estimates were given in Table (5.4) and (5.5). All estimates were computed

using frequencies f j. The problem of cut off point selected did not arise because only few

species were observed more than 10 times in most generated data sets. In the mentioned Table

(5.4) and (5.5), we observed on various fixed frequencies j, when it was increases then coverage

fraction also increases and we obtain in a trend that risk of the estimators decreases gradually.

We also list the observed CI/HPD interval for the nominal 95%. Also, in this Table (5.4) and

(5.5), we observed that coverage fraction increase as increases the frequencies than the observed

number of species gets more closer to estimated number of species (as most of the time we got

over estimate of parameter).
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5.6 Conclusion

We observed that the ML estimation plays an important role in estimating the number of ob-

served species or unobserved species. Intuitively, when there are low coverage fractions i.e. few

overlaps of observed species and estimated species, we know that the true number of species is

much higher than the observed. On the other hand, if the coverage fraction is high then we are

likely to have seen most of the species. Based on this idea, we have proposed a consistent esti-

mator for the number of species, under a P-mixed Poisson Lindley model. Here the model has

low dimensional parameter space then computation became easy. Also, in the parameter space

known as hyper parameter or nuisance parameter. For these hyper parameters we have non-

informative prior or objective prior i.e. Jeffery’s and Bernardo’s reference prior, it can be based

on one’s belief. Both Jeffrey’s and Bernardo’s reference prior have simple forms in the case

when there is only one nuisance parameter, and become increasingly complex as the dimension

of the parameter space grows. For the comparison of these considered models based on model

deviance criteria in Table (5.3), PLR has the lesser deviance then we can say that PLR gives

a more optimum estimate of the number of species. In simulated Table (5.4) and (5.5), shows

the posterior mean (estimate of number of species) as Bayes estimate under squared error loss

function (see Pathak et al. (2020a)) and square root of average risk. When j increases then CF

increases but the estimate of S and R(S) decreases and the estimate of the number of species

Ŝ is the case of o.e., i.e. Ŝ > w. We observed that R(S) under Bayes estimate of Bernardo’s

reference prior have a minimum than R(S) under Bayes estimate of Jeffery’s prior.
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Ŝ c

91
.0

63
3

32
.4

21
4

(7
2.

48
,1

09
.6

4)
88

.9
89

5
30

.6
25

8
(7

1.
46

,1
06

.5
1)
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Ŝ c
10

4.
29

59
37

.3
35

3
(8

3.
75

,1
24

.8
3)

10
5.

77
69

37
.6

50
2

(8
6.

07
,1

25
.5

4)
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Ŝ p

67
.9

51
5

19
.2

07
2

(5
5.

96
,7

9.
94

)
94

.7
8

64
.0

29
3

14
.6

73
2

(5
4.

76
,7

3.
29

)
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Ŝ
R
(S
)

C
I/

H
PD

9
90

.2
4
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Ŝ c

63
.9

11
4

14
.6

08
4

(5
4.

45
,7

3.
36

)
60

.0
17

3
10

.4
51

9
(5

2.
98

,6
7.

04
)
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Ŝ J

11
0.

51
50

43
.7

61
0

(7
6.

11
,1

46
.6

5)
10

6.
71

20
38

.5
80

3
(7

7.
22

,1
36

.9
9)
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Ŝ J

91
.4

32
7

23
.2

05
4

(7
6.

2,
10

6.
49

)
84

.4
37

7
15

.0
26

4
(7

4.
53

,9
4.

07
)
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