## **List of Tables**

| 2.1 | Expected Experiment time $E[X_m]$ under PT-II CBRs                                                                                                                                     | 48  |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 2.2 | The -log-L, K-S, p-value and the AIC and BIC values for the W), EP and Weibull fitted distributions                                                                                    | 52  |
| 2.3 | PT-II CBR samples under different censoring scheme $(S_{n:m})$ for fixed $n = 128, p = 0.5.$                                                                                           | 53  |
| 2.4 | Mean and 95 % predictive bounds for future ordered observations from the bladder cancer data set                                                                                       | 55  |
| 2.5 | Bayes and ML estimates, CI/HPD interval for WPD parameters $\alpha, \beta$ and $\lambda$ with pre-defined censoring schemes for the bladder cancer data set                            | 56  |
| 3.1 | Real data analysis of various schemes to obtain estimates of parameter, log-L, K-S distance, p-value                                                                                   | 89  |
| 3.2 | Risks and different estimators, CI and HPD interval for parameters $\lambda$ and $\theta$ under SELF for fixed $\lambda=1.1,\theta=0.8,\delta=0.1,p=0.05,c=4,\gamma=3.$                | 94  |
| 3.3 | Risks and different estimators, CI and HPD interval for parameters $\lambda$ and $\theta$ under SELF for fixed $\lambda=1.1$ and $\theta=0.8,\ \delta=-0.1,\ p=0.05,\ c=4,\ \gamma=3.$ | 102 |
| 3.4 | Risks of estimators of $\lambda$ and $\theta$ under GELF and LINEX with fixed value $\lambda = 1.1$ , $\theta = 0.8$ , $\delta = 0.1$ , $p = 0.05$ , $c = 4$ , $\gamma = 3$            | 110 |

List of Tables xxiv

| 3.5  | Risks of estimators of $\lambda$ and $\theta$ under GELF and LINEX with fixed value $\lambda =$    |     |
|------|----------------------------------------------------------------------------------------------------|-----|
|      | 1.1, $\theta = 0.8$ , $\delta = -0.1$ , $p = 0.05$ , $c = 4$ , $\gamma = 3$                        | 115 |
| 3.6  | PT-II CBRs under different censoring schemes $(n,m)$ with fixed $n=48,\ p=$                        |     |
|      | 0.05 for the survival time of multipal myeloma patients                                            | 120 |
| 3.7  | Bayesian and E-Bayesian estimates of $\theta,\lambda$ under SELF, GELF and LINEX                   |     |
|      | loss function for the survival time of multipal myeloma patients in presence of                    |     |
|      | PT-II CBRs under different censoring schemes $(n,m)$ with fixed $p = 0.05, c =$                    |     |
|      | $3, \gamma = 2, \& \delta = 1.5$                                                                   | 121 |
| 3.8  | Bayesian and E-Bayesian estimates of $\theta,\lambda$ under SELF, GELF and LINEX                   |     |
|      | loss function for the survival time of multipal myeloma patients in presence of                    |     |
|      | PT-II CBRs under different censoring schemes $(n,m)$ with fixed $p = 0.05, c =$                    |     |
|      | $4, \gamma = 3 \& \delta = 1.5.$                                                                   | 123 |
| 3.9  | Bayesian and E-Bayesian estimates of $\theta,\lambda$ under SELF, GELF and LINEX                   |     |
|      | loss function for the survival time of multipal myeloma patients in presence of                    |     |
|      | PT-II CBRs under different censoring schemes $(n,m)$ with fixed $p = 0.05, c =$                    |     |
|      | $3, \gamma = 2, \& \delta = -1.5$                                                                  | 125 |
| 3.10 | Bayesian and E-Bayesian estimates of $\theta, \lambda$ under SELF, GELF and LINEX                  |     |
|      | loss function for the survival time of multipal myeloma patients in presence of                    |     |
|      | PT-II CBRs under different censoring schemes $(n,m)$ with fixed $p = 0.05, c =$                    |     |
|      | $4, \gamma = 3 \& \delta = -1.5.$                                                                  | 127 |
| 3.11 | Quantiles and estimate of $\lambda$ , $\theta$ are obtained for fixed value of $\delta=0.1.\ldots$ | 133 |
| 3.12 | Quantiles and estimate of $\lambda$ , $\theta$ are obtained for fixed value of $\delta=-0.1.$      | 135 |
| 4.1  | Risks of the estimators of $\lambda$ , $R$ and $h$ under LINEX loss function for fixed             |     |
|      | $\alpha = 2, \lambda = 2$ and $t = 0.2$ under PT-II CBR                                            | 154 |

List of Tables xxv

| Risks of the estimators of $\lambda$ , $R$ and $h$ under LINEX loss function for fixed      |
|---------------------------------------------------------------------------------------------|
| $\alpha = 2, \lambda = 2$ and $t = 0.2$ under Type-II censoring                             |
| The -log-L values and the AIC and BIC values for the KD, EED and WD fitted                  |
| distributions                                                                               |
| Bayes and empirical Bayes estimates of $\lambda$ , $R()$ and $h()$ under LINEX loss func-   |
| tion for an ulcer patient with different ages $((10^{-2})*age)$ for the primary dis-        |
| ease with fixed $n = 43$ , $p = 0.5$ , and $t = 0.5074419$ under PT-II CBR 158              |
| Bayes and empirical Bayes estimates of $\lambda$ , $R()$ and $h()$ under LINEX loss func-   |
| tion for an ulcer patient with different ages $((10^{-2})*age)$ for the primary dis-        |
| ease with fixed $n = 43$ and $t = 0.5074419$ under Type-II censoring 159                    |
| PT-II CBR under different censoring schemes $(S_{n:m})$ for fixed $n = 43$ and $p =$        |
| 0.5 for an ulcer patient with different ages $((10^{-2})*age)$ for the primary disease. 160 |
| Summary of the different censoring schemes $(S_{n:m})$ for PT-II CBR 161                    |
| ML estimate and 95% CI of parameter S obtained with profile likelihood $\theta_p$           |
| and conditional likelihood $\theta_c$                                                       |
| Summary statistics for posterior $\pi(S x)$ with PLJ and PLR                                |
| DIC for PJ: Poisson model with Jeffrey's prior; PR: Poisson model with Bernardo's           |
| reference prior; EJ: exponential-mixed Poisson model with Jeffrey's prior; ER:exponential   |
| mixed Poisson model with Bernardo's reference prior; PLJ and PLR 178                        |
| ML estimates and Bayes estimates of number of species S and square root of                  |
| average risk $R(S)$ for Poisson Lindley Model with fixed $\theta = 0.5.$ 182                |
| ML estimates and Bayes estimates of number of species S and square root of                  |
|                                                                                             |
|                                                                                             |