
Chapter 2

Bayesian Inference for Weibull Poisson

Distribution Under Censored Data Using

Expectation Maximization Algorithm *

2.1 Introduction

Statistical literature have numerous distributions for modeling life-time data. Due to the enor-

mous use of the Poisson family distribution, we consider a very flexible Weibull Poisson Distri-

bution (WPD). It is one of the recent compounding of two most greeted probability distributions

i.e., Weibull and zero truncated Poisson distribution. This distribution was pioneered by Lu and

Shi (2012). The CDF of WPD with (α,β ,λ ) is

F(x) =
eλe−βxα

− eλ

1− eλ
; α > 0,λ > 0,β > 0,x > 0. (2.1)

*Part of this chapter has been published in reputed peer-reviewed journals with indexing SCI, SCIE, SCOPUS,

see Pathak et al. (2020b).
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The PDF is given by

f (x) =
αβλe−λ

1− e−λ
e−βxα

xα−1eλe−βxα

; α > 0,λ > 0,β > 0,x > 0, (2.2)

where, shape parameter α and scale parameters β of WPD, while λ is the rate parameter of zero

truncated Poisson distribution. This distribution has an edge over other Poisson-based distribu-

tions like Poisson-gamma, Poisson-log normal etc in the sense that it covers all types of failure

rates encountered in life testing experiments, see Gonzales-Barron and Butler (2011). We may

note here a typical feature of life testing experiments is censoring because, situations do arise

when items/ units are lost or removed from the experiment while they are alive; i.e., quite often,

it is very much difficult to get failure times of all the items/units put on test experiments owing

to various restriction related to time, cost and other resources. Type-I censoring takes place

when experimental time is fixed and hence number of failures become random. While type-II

censoring occurs when the number of failures is fixed, but experimental time remain random.

Even under these conditions, some items/ units may drop out of the experiment randomly due

to some unknown causes, which are beyond the control of the experimenter. For example, con-

sider that a medical experiment starts with n patients but after the death of first patient, some

patients who are alive leave the experiment and go for treatment elsewhere. Similarly, after

death of second patient a few more are leave and the process continues till predetermined num-

ber of failure (say m < n) are recorded. It may be assumed here that at each stage participating

patient may independently decide to leave the experiment with probability p. Thus the number

of patients who leave the experiment at a specified stage will follow binomial distribution with

probability p. It may be argued at this stage that probability p may vary at each stage. But

sake of simplicity, we shall assume that p is same at each stages. Collecting information in this

way results to a censored sample and the sampling technique used is called as PT-II CBRs. The

mathematical formulation of PT-II CBRs is presented in next Section. For details, one can see

Balakrishnan and Sandhu (1995), Balakrishnan and Aggarwala (2000).

In last few decades, parameter estimation for Weibull lifetime models based on progressive

Type-II, PT-II CBRs and optimal progressive censoring schemes are studied by several authors
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((Balasooriya et al., 2000), Tse et al. (2000), (Tang et al., 2003), Ng et al. (2004) etc.). Esti-

mation of inverse Weibull parameters have been discussed by Sultan et al. (2014). Also, in last

few years and for other lifetime models by Soliman et al. (2015), Singh et al. (2014), Kumar

et al. (2015), Kumar et al. (2018), Kumar et al. (2019a), Kumar et al. (2019b) etc. But, it seems

as if no attempt has been made to develop estimators for the parameters of WPD under PT-II

CBRs; although estimation of parameters under classical set up has also been attempted by Lu

and Shi (2012).

Therefore, in this chapter we propose to develop an estimation procedure to obtain the ML Es-

timators (using EM algorithm) and Bayes estimators for parameters of WPD under symmetric

and asymmetric loss function when sample is obtained by the use of PT-II CBRs. An important

feature of this chapter is to develop the required mathematics for PT-II CBRs, EM algorithm

along with its application to the bladder cancer patients data (remission time in months).

2.2 Classical and Bayesian Estimation Under PT-II CBRs

In this section, we follow the PT-II CBRs discussed in Chapter-1, Subsection 1.11.2. For details

see. Viveros and Balakrishnan (1994) and Ng et al. (2004). Following Cohen (1963) for fixed

removals, say R1 = r1,R2 = r2,R3 = r3, · · · ,Rm = rm, the conditional likelihood function can

be written as,

L(α,β ,λ ;x|R = r) = c
m

∏
i=1

f (xi)[1−F(xi)]
ri; −∞ < x1 < ... < xm < ∞, (2.3)

n, m ε N, 1 ≤ i ≤ m and c =
m
∏
i=1

γi where γi =
m
∑
j=1

(r j + 1). Substituting f (xi) and F(xi) from

(2.1) and (2.2) into (2.3), we have

L(α,β ,λ ;x|R = r) = c
m

∏
i=1

αβλxα−1
i

1− e−λ
e−λ−βxα

i +λe−βxα
i

{
1− eλe−βxα

i

1− eλ

}ri

. (2.4)
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As mentioned earlier, in the experiment removal of the number of items/units is random and

independent of each other, therefore

p(R1 = r1; p) =
(

n−m
r1

)
pr1(1− p)n−m−r1 (2.5)

and for i = 2,3, ...,m−1

p(Ri; p) = p(Ri = ri|Ri−1 = ri−1, ...R1 = r1)

=

(n−m−
i−1
∑

l=0
rl

ri

)
pri(1− p)

n−m−
i−1
∑

l=0
rl
. (2.6)

Hence, likelihood function can be written as

L(α,β ,λ , p;x) = L(α,β ,λ ;x|R = r)p(R = r; p) (2.7)

where,

p(R = r; p) = p(R1 = r1)p(R2 = r2|R1 = r1)p(R3 = r3|R2 = r2,R1 = r1)...

p(Rm−1 = rm−1|Rm−2 = rm−2, ...R1 = r1).

(2.8)

Substituting from Equation (2.5) and (2.6) into (2.8), we have

p(R = r; p) =
(n−m)!p

m−1
∑

i=1
ri
(1− p)

(m−1)(n−m)−
m−1
∑

i=1
(m−i)ri

(n−m−
i−1
∑

l=1
rl)!

m−1
∏
i=1

ri!
, (2.9)

now using Equation (2.4), (2.7) and (2.9), the complete likelihood can be expressed in the

following form,

L(α,β ,λ , p;x) = ΦL1(α,β ,λ )L2(p)
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where,

Φ =
c(n−m)!

(n−m−
i−1
∑

l=1
rl)!

m−1
∏
i=1

ri!
,

L1(α,β ,λ ;x|R = r) = c
m

∏
i=1

αβλxα−1
i

1− e−λ
e−λ−βxα

i +λe−βxα
i

{
1− eλe−βxα

i

1− eλ

}ri

, (2.10)

L2(p) = p

m−1
∑

i=1
ri
(1− p)

(m−1)(n−m)−
m−1
∑

i=1
(m−i)ri

.

Now, ML Estimates of α,β and λ are computed by maximizing L1 and MLE of p by maximiz-

ing L2. Taking log of both sides to Equation (2.10), we get

l1 (α,β ,λ ) = ln(L1(α,β ,λ )) = m lnα +m lnβ +m lnλ +(α −1)
m

∑
i=1

lnxi −mλ −β

m

∑
i=1

xα
i

−m ln(1− e−λ )+λ

m

∑
i=1

e−βxα
i +

m

∑
i=1

ri

(
ln(eλe−βxα

i −1)− ln(eλ −1)
)
.

(2.11)

Differentiating the Equation (2.11) with respect to parameter α,β and λ and equating to zero,

we obtain following three normal equations. A simultaneous solution of these provide ML

Estimates of the parameters.

∂ l1(α,β ,λ )

∂α
=

m
α
+

m

∑
i=1

lnxi −β

m

∑
i=1

xα
i lnxi −λβ

m

∑
i=1

e−βxα
i (xα

i lnxi)

+
m

∑
i=1

ri

[
λe−βxα

i eλe−βxα
i

1− eλe−βxα
i

βxα
i lnxi

]
= 0, (2.12)

∂ l1(α,β ,λ )

∂β
=

m
β
−

m

∑
i=1

xα
i −λxα

i

m

∑
i=1

e−βxα
i +

m

∑
i=1

ri

[
λe−βxα

i eλe−βxα
i

1− eλe−βxα
i

xα
i

]
= 0, (2.13)

∂ l1(α,β ,λ )

∂λ
=

m
λ
−m−

m

∑
i=1

e−βxα
i − me−λ

1− e−λ
−

m

∑
i=1

ri

[
eλe−βxα

i −βxα
i

1− eλe−βxα
i
− meλ

1− eλ

]
= 0. (2.14)

Unfortunately, Equation (2.12), (2.13) and (2.14) can not be analytically solved simultane-

ously. Hence we propose the use of numerical iterative procedure, namely i.e. NR method

for solving these. The numerical procedure used here for obtaining the iteration function and
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the choice of initial guesses is based on maximum absolute row sum norms, which has been

discussed by Jain et al. (2003). The EM algorithm has been proposed in this chapter to get the

ML estimates of parameter α,β and λ , also discussed in Chapter 1, Subsection 1.10.1. Let Zik

be the unobserved observation for the kth items/ units moved out of the experiment at the time

of observing ith removal at time Xi; i = 1,2, ...,m and k = 1,2, ....,ri. Thus, the observed Xi’s

and Zik’s form the complete data. Hence the complete likelihood is

L(α,β ,λ ) =
m

∏
i=1

[
αβλxα−1

i

1− e−λ
e−λ−βxα

i +λe−βxα
i

ri

∏
k=1

αβλ zα−1
ik

1− e−λ
e−λ−β zα

ik+λe−β zα
ik

]
.

The log-L function is

lnL(α,β ,λ ) = n ln(α)+n ln(β )+n ln(λ )−nλ −n ln
(

1− e−λ

)
+(α −1)

m

∑
i=1

lnxi −β

m

∑
i=1

xα
i +λ

m

∑
i=1

e−βxα
i

+(α −1)
m

∑
i=1

ri

∑
k=1

lnzik −β

m

∑
i=1

ri

∑
k=1

zα
ik +λ

m

∑
i=1

ri

∑
k=1

e−β zα
ik .

(2.15)

Hence, ML estimate of the parameters are, obtained the simultaneous solution of the following

three nonlinear equations

∂ lnL(α,β ,λ )

∂α
=

n
α
−αβ

m

∑
i=1

xα−1
i −αβλ

m

∑
i=1

xα−1
i e−βxα

i +
m

∑
i=1

lnxi

−αβ

m

∑
i=1

ri

∑
k=1

zα−1
ik −αβλ

m

∑
i=1

ri

∑
k=1

zα−1
ik e−β zα

ik +
m

∑
i=1

ri

∑
k=1

lnzik = 0,
(2.16)

∂ lnL(α,β ,λ )

∂β
=

n
β
−

m

∑
i=1

xα
i −λ

m

∑
i=1

xα
i e−βxα

i −
m

∑
i=1

ri

∑
k=1

zα
ik

−λ

m

∑
i=1

ri

∑
k=1

zα
ike−β zα

ik = 0,
(2.17)

and
∂ lnL(α,β ,λ )

∂λ
=

n
λ
−n+

ne−λ(
1− e−λ

) + m

∑
i=1

e−βxα
i +

m

∑
i=1

ri

∑
k=1

e−β zα
ik = 0. (2.18)
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Now, to perform the EM algorithm, joint distribution of x and z can be written as

f (x,z;α,β ,λ ) = P(z;λ ) f (x|z;α,β ),

where,

P(z;λ ) =
e−λ λ z

z!
[
1− e−λ

] ; λ > 0, z = 1,2,3, · · · .

Since, the conditional PDF is

P(z|x;α,β ,λ ) =
f (x,z;α,β ,λ )

f (x;λ )
= αβ zxα−1e−β zxα

λ
z
Γ
−1(z+1)

(
eλ −1

)−1
; z = 1,2,3, · · · ,

(2.19)

where, α > 0,β > 0 and λ > 0. The E-step of EM algorithm needs the computation of the con-

ditional expectation (Z|X ,α t ,β t ,λ t), where, (α t ,β t ,λ t) is the current estimates of (α,β ,λ ).

Hence from Equation (2.19), we get

E(z|x;α
t ,β t ,λ t) =

(
1+λ

te−β txαt)
.

The EM algorithm is completed with M-step, with complete data, where missing Z’s are re-

placed by their conditional expectations (Z|X ,α t ,β t ,λ t). Thus, an EM iteration, takes (α t ,β t ,λ t)

into
(
α t+1,β t+1,λ t+1) obtained from the following

∂ lnL(α,β ,λ )

∂α
=

n
α
−αβ

m

∑
i=1

xα−1
i −αβλ

m

∑
i=1

xα−1
i e−βxα

i +
m

∑
i=1

lnxi

−αβ

m

∑
i=1

ri

∑
k=1

(
1+λ

te−β txαt
i

)α−1
−αβλ

m

∑
i=1

ri

∑
k=1

(
1+λ

te−β txαt
i

)α−1
e
−β

(
1+λ te−β t xαt

i

)α

+
m

∑
i=1

ri

∑
k=1

ln
(

1+λ
te−β txαt

i

)
= 0,

∂ lnL(α,β ,λ )

∂β
=

n
β
−

m

∑
i=1

xα
i −λ

m

∑
i=1

xα
i e−βxα

i −
m

∑
i=1

ri

∑
k=1

(
1+λ

te−β txαt
i

)α

−λ

m

∑
i=1

ri

∑
k=1

(
1+λ

te−β txαt
i

)α

e
−β

(
1+λ te−β t xαt

i

)α

= 0,
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and

∂ lnL(α,β ,λ )

∂λ
=

n
λ
−n+

ne−λ(
1− e−λ

) + m

∑
i=1

e−βxα
i +

m

∑
i=1

ri

∑
k=1

e
−β

(
1+λ te−β t xαt

i

)α

= 0.

The iterative procedure obtained for EM algorithm is given below

α
t+1 =

n
αβ

m

∑
i=1

xα−1
i +αβλ

m

∑
i=1

xα−1
i e−βxα

i −
m

∑
i=1

lnxi +αβ

m

∑
i=1

ri

∑
k=1

(
1+λ

te−β t xαt
i

)α−1

+αβλ

m

∑
i=1

ri

∑
k=1

(
1+λ

te−β t xαt
i

)α−1
e
−β

(
1+λ t e−β t xαt

i

)α

−
m

∑
i=1

ri

∑
k=1

ln
(

1+λ
te−β t xαt

i

)


β
t+1 =

n

m

∑
i=1

xα
i +λ

m

∑
i=1

xα
i e−βxα

i +
m

∑
i=1

ri

∑
k=1

(
1+λ

te−β t xαt
i

)α

+λ

m

∑
i=1

ri

∑
k=1

(
1+λ

te−β t xαt
i

)α

e
−β

(
1+λ t e−β t xαt

i

)α


and

λ
t+1 =

nn− ne−λ

(1−e−λ)
−∑

m
i=1 e−βxα

i −∑
m
i=1 ∑

ri
k=1 e

−β

(
1+λ te−β t xαt

i

)α

.

Then
(
α t+1,β t+1,λ t+1) is used as the current estimates of (α,β ,λ ) in the next iteration. The

ML estimates of (α,β ,λ ) can be obtained by repeating the E-step and M-step until convergence

is achieved.

2.2.1 Large Sample Test Procedure

Now, we shall discuss LR method for comparing the suitability of competitive models. Note

that if we take ri = 0 and n = m in Equation (2.16), (2.17), (2.18), these reduce to complete

sample normal Equations. The observed Fisher’s Information matrix is
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Jn (α,β ,λ ) =


−∂ 2 lnL(α,β ,λ )

∂α2 −∂ 2 lnL(α,β ,λ )
∂α∂β

−∂ 2 lnL(α,β ,λ )
∂α∂λ

−∂ 2 lnL(α,β ,λ )
∂β∂α

−∂ 2 lnL(α,β ,λ )
∂β 2 −∂ 2 lnL(α,β ,λ )

∂β∂λ

−∂ 2 lnL(α,β ,λ )
∂λ∂α

−∂ 2 lnL(α,β ,λ )
∂λ∂β

−∂ 2 lnL(α,β ,λ )
∂λ 2


(α̂,β̂ ,λ̂ )

where,

∂ 2 lnL(α,β ,λ )

∂α2 =
n

α2 +
n

∑
i=1

βxα
i (log(xi))

2(1+λe−βxα
i −βλxα

i e−βxα
i ),

∂ 2 lnL(α,β ,λ )

∂α∂β
=

∂ 2 lnL(α,β ,λ )

∂β∂α
=

n

∑
i=1

βxα
i log(xi)(1+λe−βxα

i −βλxα
i e−βxα

i ),

∂ 2 lnL(α,β ,λ )

∂α∂λ
=

∂ 2 lnL(α,β ,λ )

∂λ∂α
=

n

∑
i=1

βxα
i log(xi)e−βxα

i ,

∂ 2 lnL(α,β ,λ )

∂β 2 =
n

β 2 −λ

n

∑
i=1

(xα
i )

2e−βxα
i ,

∂ 2 lnL(α,β ,λ )

∂β∂λ
=

∂ 2 lnL(α,β ,λ )

∂λ∂β
=

n

∑
i=1

xα
i e−βxα

i ,

∂ 2 lnL(α,β ,λ )

∂λ 2 =
n

λ 2 −n
eλ

(1− eλ )2 .

Let Tn(α,β ,λ ) be the expectation of Fisher Information matrix, i.e.,

Tn(α,β ,λ ) = E(Jn(α,β ,λ )) = n


T11 T12 T13

T21 T22 T23

T31 T32 T33



where,

T11 =
1

α2 +βE
[
xα

z (log(xz))
2(1+λe−βxα

z −βλxα
z e−βxα

z )
]
,

T12 = T21 = E
[
xα

z log(xz)(1+λe−βxα
z −βλxα

z e−βxα
z )
]
,

T13 = T31 = βE
[
xα

z log(xz)e−βxα
z

]
,
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T22 =
1

β 2 −λE
[
(xα

z )
2e−βxα

z

]
,

T23 = T32 = E
[
xα

z e−βxα
z

]
,

T33 =
1

λ 2 −
eλ

(1− eλ )2 .

For large n, under the usual regularity condition, we obtain that (α̂, β̂ , λ̂ ) have multivariate nor-

mal distribution with attain mean (α,β ,λ ) and covariance matrix T−1
n (α,β ,λ ). The asymp-

totic property of normality is useful for performing a goodness of fit test. Here, we can test

the significance of the model parameters by comparing this full model with specified nested

models based on the LR test. By considering null hypothesis H01 : α = 1 against H11 : α ̸= 1

and H02 : λ = 0 against H12 : λ ̸= 0, one can compare the suitability of Exponential Poisson and

Weibull versus Weibull Poisson distribution respectively. The test statistic under H0i, i = 1,2,

are

R1 =−2ln

(
L(α0, β̂ , λ̂ )

L(α̂, β̂ , λ̂ )

)
and R2 =−2ln

(
L(α̂, β̂ ,λ0)

L(α̂, β̂ , λ̂ )

)
,

respectively, which are asymptotically distributed as χ2 with degrees of freedom equal to the

respective dimension of the parameter space under the null hypothesis.

2.2.2 Bayesian Estimation Under PT-II CBRs

To obtain the Bayes estimator of α,β and λ , we assume that these are independently distributed

prior pdfs for α and λ are chosen by using Jeffery’s method i.e., log of the parameters are

uniformly distributed; resulting to the following distributions:

g1(α) ∝
1
α

; α > 0. (2.20)

g2(λ ) ∝
1
λ

; λ > 0. (2.21)
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Keeping in mind the wide coverage of variety of prior beliefs, we have chosen gamma distribu-

tion given below as prior distribution; see for details, Nassar and Eissa (2005), Box and Tiao

(2011).

g3(β ) ∝ e−aβ
β

b−1; a > 0,b > 0, (2.22)

where, gamma distribution have scale parameter a and shape parameter b. Thus the posterior

distribution of α,β and λ can easily be obtained as

π(α,β ,λ |x,r) ∝
αm−1λ m−1β m+b−1e

−mλ−β
m
∑

i=1
xα

i −aβ+λ
m
∑

i=1
e−βxα

i

(1− eλ )m

m

∏
i=1

xα−1
i

[
1− eλe−βxα

i

1− e−λ

]ri

,

and the respective marginal posterior pdfs of α,β and λ can be computed from the following

π1(α|x,r) =
∫

∞

0

∫
∞

0
π(α,β ,λ |x,r)dβ dλ ,

π2(β |x,r) =
∫

∞

0

∫
∞

0
π(α,β ,λ |x,r)dα dλ ,

and

π3(λ |x,r) =
∫

∞

0

∫
∞

0
π(α,β ,λ |x,r)dα dβ .

Now, let us consider that the very much popular symmetric loss function i.e., SELF has equal

weight to the o.e. and u.e. of the same magnitude. Also, consider the asymmetric loss function

i.e. GELF has unequal weight to the o.e. is more serious than u.e. and vice versa. The SELF

and GELF are discussed in Chapter 1, Subsection 1.8. The expressions for the Bayes estimators

of the parameters α,β and λ , denoted by α̂G, β̂G and λ̂G respectively, are given below

α̂G =

[∫
∞

0
α
−δ

π1(α|x,r)dα

]− 1
δ

, (2.23)

β̂G =

[∫
∞

0
β
−δ

π2(β |x,r)dβ

]− 1
δ

, (2.24)
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and

λ̂G =

[∫
∞

0
λ
−δ

π3(λ |x,r)dλ

]− 1
δ

. (2.25)

It may be noted that the integrals in Equation (2.23), (2.24) and (2.25) can not be reduced to

closed forms. Hence, numerical computational techniques are suggested for their calculations

following Tierney (1994). Who has suggested the use of well-known technique namely MCMC

technique in which the samples are generated from posterior distribution by Gibbs sampler via

M-H algorithms. The samples thus obtained are then used to evaluate the Bayes estimates

under SELF and GELF. It may be noted that Gibbs sampler uses to generate samples from full

conditionals to generate samples posterior distribution and for details Gelman et al. (2013). Full

conditional posterior distributions of the parameters α,β , and λ can be written in the following

form:

π
∗
1 (α|β ,λ ,x,r) ∝ α

m−1e
−β

m
∑

i=1
xα

i +λ
m
∑

i=1
e−βxα

i m

∏
i=1

xα−1
i {1− eλe−βxα

i }ri, (2.26)

π
∗
2 (β |α,λ ,x,r) ∝ β

m+b−1e
−β

m
∑

i=1
xα

i −aβ+λ
m
∑

i=1
e−βxα

i m

∏
i=1

{1− eλe−βxα
i }ri, (2.27)

and

π
∗
3 (λ |α,β ,x,r) ∝

λ m−1e
−mλ+λ

m
∑

i=1
e−βxα

i

(1− e−λ )m

m

∏
i=1

{
1− eλe−βxα

i

1− eλ

}ri

. (2.28)

The Bayes estimators of parameter α , β and λ are evaluated from the required sample of

Equation (2.26), (2.27) and (2.28), generated by using MCMC procedure. The algorithm used

for obtaining Bayes estimates and HPD credible intervals is given below:

I. Set α0, β0 and λ0 be the initial guess of α , β and λ .

II. Set i = 1 .

III. Generate αi from π∗
1 (α|βi−1,λi−1,x,r), βi from π∗

2 (β |λi−1,αi−1,x,r) and λi from

π∗
3 (λ |αi−1,βi−1,x,r) respectively.

IV. Repeat steps 2-3, N times.
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V. Obtain the Bayes estimates of α , β and λ under GELF as[
E(α−δ |x,r)

]− 1
δ

=
[

1
N−N0

∑
N−N0
i=1 α

−δ

i

]− 1
δ ,
[
E(β−δ |x,r)

]− 1
δ

=
[

1
N−N0

∑
N−N0
i=1 β

−δ

i

]− 1
δ and[

E(λ−δ |x,r)
]− 1

δ

=
[

1
N−N0

∑
N−N0
i=1 λ

−δ

i

]− 1
δ , where N0 is the burn in period. Substituting

δ =−1 in step V, we get Bayes estimates of α , β and λ under SELF.

VI. For computing the highest posterior density (HPD) credible interval of α , β and λ . We or-

der the MCMC sample values α , β and λ (say α1,α2,α3, · · · ,αN as α(1),α(2),α(3), · · · ,α(N),

β1,β2,β3, · · · ,βN as β(1),β(2),β(3), · · · ,β(N) and λ1,λ2,λ3, · · · ,λN as λ(1),λ(2),λ(3), · · · ,λ(N)).

Then construct all the 100(1-Ψ )% credible intervals of α , β and λ , say {(α(1),αN[(1−Ψ)]+1),

· · · ,(α[NΨ ],αN)},{(β(1),βN[(1−Ψ)]+1), · · · ,(β[NΨ ],βN)} & {(λ(1),λ[N(1−Ψ)]+1), · · · ,

(λ[NΨ ],λN)} respectively. Where [η] mentioned the largest integer less than or equal to η .

Therefore, the HPD credible interval of α , β and λ is that interval which has the shortest

length.

2.3 Bayes Prediction

In this Section, we have derived an expression for one sample Bayes prediction, if the experi-

menter is interested to know the lifetimes of the (n−m) removed surviving units on the basis

of observed sample. Let Ys = Xm+s,m < s ≤ n, represents the failure lifetime of the remaining

units, then conditional distribution of Y th
(s) order statistics given PT-II CBRs sample x is given

by, see Singh et al. (2013b)

f
(
y(s)|x(m),α,β ,λ

)
=

(n−m)!
[
1−F

(
y(s)
)]n−m−s

(s−1)!(n−m− s)!
[
1−F

(
x(m)

)]n−m

[
F
(
y(s)
)
−F

(
x(m)

)]s−1 f
(
y(s)
)
.

(2.29)

Substituting Equation (2.1) and Equation (2.2) in (2.29), we have

f
(
y(s)|x(m),α,β ,λ

)
= αβyα−1

(s) ζ (y(s))log
(
ζ (y(s))

) (n−m)!
(s−1)!(n−m− s)![

1−ζ (y(s))
1−ζ (x(m))

]n−m [
1−ζ (y(s))

]−s [
ζ (x(m))−ζ (y(s))

]s−1
,
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where, ζ (z) = eλe−β zα

. One sample Bayes predictive density of yth
(s) ordered future sample can

be obtained as follows

f
(
y(s)|x

)
=
∫

∞

0

∫
∞

0

∫
∞

0
f
(
y(s)|x,α,β ,λ

)
π (α,β ,λ |x)dαdβdλ

The above equation for f
(
y(s)|x

)
cannot be expressed in closed form and hence it cannot be

evaluated analytically. Therefore, MCMC techniques is proposed to be used for obtaining the

approximate solution of the above predictive density.

{(αi,βi,λi) ; i = 1,2, · · · ,N −N0} obtained from π (α,β ,λ |x) using Gibbs sampling can be uti-

lized to obtain the consistent estimate of f
(
y(s)|x

)
. It can be obtained by

f
(
y(s)|x

)
=

1
N −N0

N−N0

∑
i=1

f
(
y(s)|αi,βi,λi

)
. (2.30)

Thus, we can obtain the two-sided 100(1−ψ)% prediction interval (l,u) for future sample by

solving the following two equations:

P
(
Y(s) > u|x

)
= ψ

2 and P
(
Y(s) > l|x

)
= 1− ψ

2 .

We are facing difficulties to obtain the explicit solution. Therefore, we need to apply as per

required numerical technique for the purpose of solution of non-linear equations. Also we

opted that an alternative method is MCMC discussed by Chen and Shao (1998), in the following

way: Let
(
y(i:s)

)
; i = 1,2, · · · ,N−N0 be the corresponding ordered MCMC sample of (yi:s) ; i =

1,2, · · · ,N −N0 from Equation (2.30). Then, the 100(1−ψ)% HPD intervals for y(s) is y( j∗:s),

y j∗+[(1−ψ)M]:s, where j∗ is chosen so that

y j∗+[(1−ψ)N−N0]:s − y( j∗:s) =
min

1≤ j≤N−N0−[(1−ψ)N−N0]

[
y j∗+[(1−ψ)N−N0]:s − y( j∗:s)

]
.

For considered real data set, we calculated the mean and 95% credible intervals (predictive

bounds) for future samples using one sample prediction technique. The results are summarized

in Table (2.4).
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2.4 Expected Experiment Time

Cost is an very effective element in an experiment that is directly related to the time of ex-

periment. Therefore, for a proper planning of the experimentation one is always interested in

knowing the expected experiment time; which can be defined PT-II CBRs

E[Xm] = ER[E[Xm|R = r]] (2.31)

=
g(r1)

∑
r1=0

g(r2)

∑
r2=0

...
g(rm−1)

∑
rm−1=0

p(R, p)E[Xm:m:n|R = r].

Where g(ri) = n−m− r1 − ...− ri−1 and p(R = r; p) is given in Equation (2.9). Conditioning

on R the expected experiment time is

E[Xm|R] =
∫

∞

0
x fXm(x)dx,

where, fX(m)
=Cm−1 f (x)

m
∑
j=1

a j,m(1−F(x))γ j ,1 ≤ m ≤ n and cm−1 =
m
∏
i=1

γi,1 ≤ m ≤ n

and a j,m =
m
∏
i=1

1
γi−γ j

; i ̸= j,1 ≤ j ≤ m ≤ n. For more details about the procedure of evaluation

of conditional expectation of Xm for given R, see Balakrishnan and Aggarwala (2000), Singh
et al. (2013b), Tse et al. (2000). Using the suggested procedure, expected experiment times
under PT-II CBRs are computed for different combinations of m and n listed in Table (2.1).
The values of p, considered here are 0.1,0.3,0.5,0.7 and 0.9 while model parameters α,β and
λ are arbitrarily taken as 1,2 and 2 respectively. The results obtained are summarized below
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TABLE 2.1: Expected Experiment time E[Xm] under PT-II CBRs.

n m p = 0.1 p = 0.3 p = 0.5 p = 0.7 p = 0.9

10 0.15660 0.57392 0.86262 0.93033 0.96077
15 0.37201 0.99414 1.09666 1.13149 1.13086

30 20 0.76695 1.23138 1.27059 1.30419 1.25337
25 0.93638 1.35836 1.37069 1.34487 1.35232
30 1.47650 1.45380 1.49828 1.45718 1.47108
10 0.28018 0.73055 0.91508 0.95055 0.95818

20 15 0.71918 1.10303 1.13051 1.15929 1.14585
20 1.27924 1.28742 1.27601 1.28292 1.28714
3 0.08832 0.12157 0.19727 0.31295 0.43709
4 0.13669 0.22246 0.36903 0.50305 0.58098

10 6 0.29297 0.51585 0.67842 0.75186 0.76813
10 0.99404 0.98307 0.97925 0.98829 0.99048

Now we can obtain ratio of the expected experiment time (REET) between PT-II CBRs and the

complete sampling as

REET =
E[Xm] under PT − II CBRs

E[Xn] under complete sampling
. (2.32)

It may be noted that REET indicates the reduction in experiment time. Figure (2.1) shows

REET for various values of n for m = 10 and different removal probability p = 0.1,0.3,0.5,0.7

and 0.9. It can be seen from the Figure that for each values of p, the REET decreases as n

increases. It may be, noted that for larger value of (> 0.5) and larger n(> 25); the values of

REET do not change for change in the value of p. For p ≤ 0.5 and moderate sample size (25)

larger valuers of REET is noted for smaller valuers of p.
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FIGURE 2.1: REET under PT-II CBRs to under complete sample.

2.5 Monte Carlo Simulation Study and Comparison of Esti-

mators

We have seen above that proposed estimators are not obtained in the closed form; therefore,

an analytical study of behavior of the estimators is not possible and we propose to study it

numerically. For this purpose, we suggest the use of MCMC technique as suggested by Tierney

(1994) also, for the calculation of risk (average loss over sample space) of estimators of the

parameters α , β and λ . Hence, samples are generated from specified WPD and PT-II CBRs

samples are obtained from these. ML estimator along with Bayes estimators under SELF and

GELF are calculated. The ML estimators are denoted as; α̂M, β̂M, λ̂M where as α̂S, β̂S, λ̂S

and α̂G, β̂G, λ̂G denote SELF and GELF estimates of the parameters α,β and λ , respectively.

Similarly, (αc
L,α

c
U),(β

c
L,β

c
U),(λ

c
L,λ

c
U) and (αh

L,α
h
U),(β

h
L ,β

h
U),(λ

h
L ,λ

h
U) indicate 100(1−Ψ)%

CI and HPD credible intervals. Risk are estimated on the basis of 8000 samples. Since risk

of the estimators under PT-II CBRs will be function of n,m, p,α,β ,λ , δ , a and b. The choice
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of hyper parameter are made by assuming that the prior information about the parameter is

available in the form of its expected value µ and its variance σ2 reflecting the confidence in

expected value. Thus a and b are calculated from equations, which can be taken in such a way

that if we consider any two independent pieces of information as prior mean and variance of β

are µ = b
a and σ2 = b

a2 , where µ is taken as true values of the parameter β and smaller, moderate

and large values of variances namely 0.5,1 and 5 which gave (a = 4, b = 8), (a = 2, b = 4)

and (a = 0.4, b = 0.8) respectively. We vary the effective samples size m = 10[5]30. The value

of α,β and λ are arbitrarily taken as 1, 2 and 2 respectively. The value of loss parameter δ is

taken as 1.5 for o.e. to be more serious than u.e. and see Singh et al. (2011). After an extensive

study of results thus obtained, conclusions are drawn regarding the behavior of the estimators.

It may be mention here that the space restriction, results of various variation in the parameters

are not shown. Only selected Figures are included.

2.6 Discussion of Results

We shall discuss the impact of variation of effective sample size m under PT-II CBRs, and

compare the risks of all estimators of α,β and λ , obtained under GELF with the corresponding

Bayes estimators under SELF and ML estimator. We observed, the risks of all the estimators

of α,β and λ decrease as effective sample observations m increases. The risks of (α̂G, β̂G) and

(α̂S, β̂S) are found to be close respectively to each other for all the considered situations. A

similar trend is observed for λ̂G and λ̂S also. It is further observed that, in general, the risks of

the estimators under SELF and GELF decreases, as for δ =+1.5 and δ =−1.5 with each prior

belief of the parameter β (see Figure (2.2−2.4)). For large number of effective sample sizes,

the difference between the risks of the estimators are less. The decrease in the risks is more for

α̂M as compared to the other estimators. For almost all values of prior belief of the parameter

β and δ , the risk of α̂G under GELF is found to be least among the considered estimators. It is

also interesting to remark here that α̂G has the least risk under SELF. For positive values of δ ,
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the behavior of risks of estimators under GELF is more or less similar to the one obtained for

negative δ (see Figure (2.2−2.4)).

Similarly, we have studied the risks of Bayes estimators β and λ respectively under SELF and

GELF based on PT-II CBRs. The trend remains more or less the same as stated above under

both loss functions see results in graphs, which has shown in supplementary material. Further

we observed that the risk of β̂G and λ̂G under GELF and SELF are found to be least among the

considered estimators respectively.

The Figure (2.5) shows the CI/HPD credible intervals for α . It may also noted, average CL of

CI/HPD credible intervals consistently narrow down as m increases. The HPD credible intervals

are better than CIs in respect of average CL. While studying the effect of large effective sample

sizes m, the difference of average CL between the CIs and HPD credible intervals are negligibly

small. For β and λ also, the trend of CI/HPD credible intervals, is similar to that of α . Due

to space restriction, results for variations in m of CI/HPD credible intervals of β and λ are not

shown here. The CI/HPD credible intervals of β and λ are given in supplementary material.

Thus, we can not deny from the fact that estimates under Bayesian are more precise and accurate

than ML estimates.

We also discussed the expected time to test and shown in Table (2.1), it is meaningful to com-

ment that as the value p and m increase the expected time to test also increases. It is also

observed that for fixed m, if increases the value of the sample size i.e., n, the expected time to

test decreases.

2.7 An application to Bladder Cancer Data

For the application purpose, we have taken a real data set given by Lee and Wang (2003). It

contains a set of remission times (in months) related to 137 cancer patients, and some patients

are not present in the follow-up. The remission time in months are a subset of the data from a

bladder cancer study. We have considered here a random set of 128 observations from it which
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are given follow: 4.50, 32.15, 3.88, 13.80, 19.13, 4.87, 5.85, 14.24, 5.71, 7.09, 7.87, 7.59,

20.28, 5.32, 5.49, 3.02, 46.12, 2.02, 4.51, 5.17, 2.83, 9.22, 1.05, 0.20, 8.37, 3.82, 9.47, 36.66,

14.77, 26.31, 79.05, 10.06, 8.53, 2.02, 4.98, 11.98, 2.62, 4.26, 5.06, 1.76, 0.90, 11.25, 16.62,

4.40, 21.73, 10.34, 12.07, 34.26, 10.66, 6.97, 2.07, 0.51, 12.03, 0.08, 17.12, 3.36, 2.64, 1.40,

12.63, 43.01, 14.76, 2.75, 7.66, 0.81, 1.19, 7.32, 4.18, 3.36, 8.66, 1.26, 13.29, 1.46, 14.83, 6.76,

23.63, 5.62, 3.25, 18.10, 7.62, 7.63, 17.14, 25.74, 3.52, 2.87, 15.96, 17.36, 9.74, 3.31, 7.28,

1.35, 0.40, 2.26, 4.33, 9.02, 5.41, 2.69, 22.69, 6.94, 2.54, 11.79, 2.46, 7.26, 2.69, 5.34, 3.48,

8.26, 6.93, 4.23, 3.70, 0.50, 10.75, 6.54, 3.64, 5.32, 13.11, 8.65, 3.57, 5.09, 7.39, 5.41, 11.64,

2.09, 2.23, 6.25, 7.93, 4.34, 25.82, 12.02.

First of all, we checked the suitability of WPD to the above said data and compared, some
specified lifetime models; Exponential Poisson (EP) and Weibull distribution. For testing the
goodness of fit we used the method based on ML function, the K-S distance, the AIC, pro-
posed by Akaike (1978), BIC proposed by Schwarz et al. (1978). The best distribution is that
which has the lowest -log-L, AIC, BIC and K-S statistic and corresponding highest p values.
Further, we have used a goodness of fit of distributions. We draw a Q-Q plots for the said
three lifetime distribution and are shown in the Figure (2.14). A Q-Q plot shows the points{

F−1 ( i−0.5
n ;Θ̂M,x(i)

)}
, i = 1,2,3, · · · ,n, where Θ̂M is the ML estimates of the parameters of

lifetime model. The values of ML estimates of the parameters of the considered lifetime mod-
els, -log-L, AIC, BIC, K-S statistic and their associated p values are reported in Table (2.2).

TABLE 2.2: The -log-L, K-S, p-value and the AIC and BIC values for the W), EP and Weibull
fitted distributions.

Estimates -log-L K-S p-value AIC BIC

WP(α,β ,λ ) (1.26853,0.01629,4.26518) -410.189 0.046875 0.99896 826.3782 834.9343

EP(β ,λ ) (0.106371,0.0000047) -414.343 0.078125 0.82955 834.6856 843.2417

Weibull(α,β ) (1.04784,0.09389) -414.087 0.0703125 0.90972 834.1738 842.7298

This Table shows that WPM provide better fit than EP and Weibull distribution. Further, we

tested the hypothesis: H01 : α = 1 (Data follow Exponential Poisson) vs H11 : α ̸= 1 (Data

follow Weibull Poisson) and H02 : λ = 0 (Data follow Weibull) vs H12 : λ ̸= 0 (Data follow

Weibull Poisson), using the large sample test described in Subsection (2.2.1). The value of the
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test statistic R1 and R2 are obtained as 8.30737 and 7.79551 respectively. Which reject H01 and

H02.

Now for the purpose of illustrating the method discussed in this chapter, PT-II CBR samples

are generated from this data set under different schemes. The number of removals are shown

in Table (2.3) under different schemes. The ML estimates of parameter α,β and λ are used to

compute by EM algorithm. The initial value of parameters are chosen through contour plots of

parameters, and their corresponding log-L are plotted; using R software (Figure (2.16)).

As we have no prior information about the parameter β , and we use non informative prior for

which the hyper parameter of β is taken to be (a = 0 : 000001;b = 0 : 000001). When imple-

menting MCMC algorithm, the values of ML estimates are used as initial guess and CUMSUM

plots are plotted, and to verified the convergence of Markov chain. Then, we evaluate Bayes

estimates and HPD intervals using the formulae given in previous Section (2.3) under different

censoring schemes based on Table (2.3), the Bayes estimate of parameter α , β and λ under

SELF and GELF for δ = ±1.5 are presented in Table (2.5). It may be observed from Table

(2.5) that various parameter estimates, obtained using PT-II CBRs, are quite close to those

obtained under complete samples.

TABLE 2.3: PT-II CBR samples under different censoring scheme (Sn:m) for fixed n = 128, p =
0.5.

S128:64 S128:77 S128:102

i Xi Ri Xi Ri Xi Ri Xi Ri Xi Ri

1 0.08 23 0.08 18 20.28 0 0.08 7 10.34 0
2 2.69 17 2.26 9 21.73 0 1.19 4 10.66 0
3 4.23 7 3.02 8 22.69 0 1.76 3 10.75 0
4 4.98 2 3.7 6 23.63 0 2.09 4 11.25 0
5 5.17 3 4.34 2 25.74 0 2.62 0 11.64 0
6 5.41 1 4.51 3 25.82 0 2.64 2 11.79 0
7 5.49 5 5.09 2 26.31 0 2.75 2 11.98 0
8 6.76 4 5.32 1 32.15 0 3.02 0 12.02 0
9 7.26 0 5.41 1 34.26 0 3.25 2 12.03 0
10 7.28 1 5.49 0 36.66 0 3.36 0 12.07 0

Continued on next page
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Table 2.3 – Continued from previous page

S128:64 S128:77 S128:102

i Xi Ri Xi Ri Xi Ri Xi Ri Xi Ri

11 7.39 1 5.62 0 43.01 0 3.48 1 12.63 0
12 7.62 0 5.71 0 46.12 0 3.57 0 13.11 0
13 7.63 0 5.85 0 79.05 0 3.64 0 13.29 0
14 7.66 0 6.25 1 3.7 1 13.8 0
15 7.87 0 6.76 0 3.88 0 14.24 0
16 7.93 0 6.93 0 4.18 0 14.76 0
17 8.26 0 6.94 0 4.23 0 14.77 0
18 8.37 0 6.97 0 4.26 0 14.83 0
19 8.53 0 7.09 0 4.33 0 15.96 0
20 8.65 0 7.26 0 4.34 0 16.62 0
21 8.66 0 7.28 0 4.4 0 17.12 0
22 9.02 0 7.32 0 4.5 0 17.14 0
23 9.22 0 7.39 0 4.51 0 17.36 0
24 9.47 0 7.59 0 4.87 0 18.1 0
25 9.74 0 7.62 0 4.98 0 19.13 0
26 10.06 0 7.63 0 5.06 0 20.28 0
27 10.34 0 7.66 0 5.09 0 21.73 0
28 10.66 0 7.87 0 5.17 0 22.69 0
29 10.75 0 7.93 0 5.32 0 23.63 0
30 11.25 0 8.26 0 5.32 0 25.74 0
31 11.64 0 8.37 0 5.34 0 25.82 0
32 11.79 0 8.53 0 5.41 0 26.31 0
33 11.98 0 8.65 0 5.41 0 32.15 0
34 12.02 0 8.66 0 5.49 0 34.26 0
35 12.03 0 9.02 0 5.62 0 36.66 0
36 12.07 0 9.22 0 5.71 0 43.01 0
37 12.63 0 9.47 0 5.85 0 46.12 0
38 13.11 0 9.74 0 6.25 0 79.05 0
39 13.29 0 10.06 0 6.54 0
40 13.8 0 10.34 0 6.76 0
41 14.24 0 10.66 0 6.93 0
42 14.76 0 10.75 0 6.94 0
43 14.77 0 11.25 0 6.97 0
44 14.83 0 11.64 0 7.09 0

Continued on next page
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Table 2.3 – Continued from previous page

S128:64 S128:77 S128:102

i Xi Ri Xi Ri Xi Ri Xi Ri Xi Ri

45 15.96 0 11.79 0 7.26 0
46 16.62 0 11.98 0 7.28 0
47 17.12 0 12.02 0 7.32 0
48 17.14 0 12.03 0 7.39 0
49 17.36 0 12.07 0 7.59 0
50 18.1 0 12.63 0 7.62 0
51 19.13 0 13.11 0 7.63 0
52 20.28 0 13.29 0 7.66 0
53 21.73 0 13.8 0 7.87 0
54 22.69 0 14.24 0 7.93 0
55 23.63 0 14.76 0 8.26 0
56 25.74 0 14.77 0 8.37 0
57 25.82 0 14.83 0 8.53 0
58 26.31 0 15.96 0 8.65 0
59 32.15 0 16.62 0 8.66 0
60 34.26 0 17.12 0 9.02 0
61 36.66 0 17.14 0 9.22 0
62 43.01 0 17.36 0 9.47 0
63 46.12 0 18.1 0 9.74 0
64 79.05 0 19.13 0 10.06 0

TABLE 2.4: Mean and 95 % predictive bounds for future ordered observations from the bladder
cancer data set.

One sample prediction

s Mean
Bounds

l u

1 79.04829 77.18001 80.46525
2 79.42236 78.31463 80.52509
3 79.59276 78.47721 80.69601
4 79.89351 78.78346 81.01349
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2.8 Conclusion

On the basis of the discussion of results given in the previous Section, we may conclude that

the proposed estimators α̂G, β̂G and λ̂G perform better than all other considered competitive

estimators, for (δ > 0) i.e., when o.e. is more serious than u.e. and for (δ < 0), when u.e. is

more serious than o.e., under both the loss functions. Thus, the use of the proposed estimator

α̂G, β̂G and λ̂G are recommended under SELF and GELF. Moreover, a brief study has done on

the expected experiment time by taking the various combinations of effective parameters n, p

and m and it observed that on increases the value of p and m, the expected time to test increases.

While, for fixed m, on increases the value of n, the expected time to test decreases. The LR

test has performed the goodness of fit. The one sample Bayes prediction has also presented.

Furthermore, a real data set is fitted to show the practical applicability of WPD.
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FIGURE 2.2: Risks for the estimators of parameter α for fixed n = 30, p = 0.5,α = 1,β =
2,λ = 2 with small prior variance, β = 0.5; for panels (a) and (b) δ = 1.5; for panels (c) and

(d) δ = - 1.5.
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FIGURE 2.3: Risks for the estimators of parameter α for fixed n = 30, p = 0.5,α = 1,β =
2,λ = 2 with moderate prior variance, β = 1; for panels (a) and (b) δ = 1.5; for panels (c) and

(d) δ = - 1.5.
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FIGURE 2.6: Risks for the estimators of parameter β for fixed n = 30, p = 0.5,α = 1,β =
2,λ = 2 with small prior variance, β = 0.5; for panels (a) and (b) δ = 1.5; for panels (c) and

(d) δ = - 1.5.
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FIGURE 2.10: Risks for the estimators of parameter λ for fixed n = 30, p = 0.5,α = 1,β =
2,λ = 2 with moderate prior variance, β = 1; for panels (a) and (b) δ = 1.5; for panels (c) and

(d) δ = - 1.5.
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FIGURE 2.12: The CI and HPD intervals for β when prior variance is 0.5,1 and 5 with left
panel: δ = 1.5; right panel: δ =−1.5, respectively.
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FIGURE 2.13: The CI and HPD interval for λ when prior variance is 0.5,1 and 5 with left
panel: δ = 1.5; right panel: δ =−1.5, respectively.
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FIGURE 2.14: Top row: WP, Middle row: EP, Last row: WD shows the P-P and Q-Q plot for
bladder cancer data set.
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FIGURE 2.15: Top row: WP, Middle row: EP, Last row: WD shows the PDF and CDF Plot of
bladder cancer data set.
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FIGURE 2.16: The Contour and -log-L plot of α,β and λ for bladder cancer data set.
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