TABLE OF CONTENTS

		Page. No.
1.	Introduction	1-4
2.	Review of Literature	5-32
2.1	Bioethanol as a renewable fuel	5
2.2	Lignocellulosic biomass as feedstock for second generation bioethanol	6
2.3	Second generation bioethanol process	9
2.4	Challenges associated with bioethanol generation process	19
2.5	Strategies to address current challenges during bioethanol production	24
	process	
3.	Material and Methods	33-60
3.1	Chemicals used	33
3.2	Medium composition	33
3.3	Standard cultures	35
3.4	Isolation and screening of thermotolerant yeast	35
3.5	Identification and characterization of selected yeast	37
3.6	Strain improvement of selected yeasts by adaptive laboratory evolution	41
	(ALE)	
3.7	Fermentation by the adapted yeast strains under synthetic medium	43
3.8	Sequential dilute acid-alkali pretreatment of lignocellulosic biomass	44
3.9	Optimization of sequential dilute acid-alkali pretreatment of sugarcane	44
	bagasse	
3.10	Characterization and compositional analysis of lignocellulosic biomass	46
3.11	Cellulase production by fungi	50
3.12	Enzymatic saccharification of biomass	51
3.13	Optimization of saccharification	51
3.14	Separate hydrolysis and fermentation (SHF)	53
3.15	Batch simultaneous saccharification and fermentation (SSF) under	54
	shake-flask	
3.16	Batch simultaneous saccharification and fermentation (SSF) at bench-top	54
	fermenter level	
3.17	Fed-batch simultaneous saccharification and fermentation under shake-	55
	flask	

	Annexures	167-175
7.	References	149-166
6.	Summary and Conclusion	143-148
5.	Discussion	127-142
4.17	Mass balance analysis	125
4.16	Detoxification and fermentation of acid hydrolysate	124
4.15	Fed-batch SSF in the presence of inhibitors	120
4.14	Simultaneous saccharification and fermentation at high gravity	115
	bagasse	
4.13	Simultaneous saccharification and fermentation of pretreated sugarcane	113
4.12	Separate hydrolysis and fermentation of pretreated sugarcane bagasse	112
	sugarcane bagasse	
4.11	Optimization of enzymatic saccharification of sequentially pretreated	109
4.10	Enzymatic saccharification of sequentially pretreated SCB	108
4.9	Characterization of sequentially pretreated sugarcane bagasse	100
4.8	Sequential dilute acid-alkali pretreatment of sugarcane bagasse	89
4.7	Characteristics of the adapted strain K. marxianus JKH5 C60	86
4.6	Fermentation efficiency of the adapted strains	84
	evolution (ALE)	
4.5	Strain improvement of selected yeasts through adaptive laboratory	74
4.4	Growth kinetics of selected	73
4.3	Fermentation of yeasts under varied initial glucose concentrations at 42 °C	69
4.2	Identification of screened yeast isolates SM, SM4, SM5 and SM7	64
	yeasts	
4.1	Isolation, screening and selection of thermotolerant inhibitor tolerant	61
4.	Results	61-126
3.20	Analytical methods	58
3.19	Pentose fermentation	57
	fermenter level	
3.18	Fed-batch simultaneous saccharification and fermentation at bench-top	56