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Figure 2.1: Different lignocellulosic feedstock used worldwide for bioethanol production. (a-

Sugarcane bagasse, b-Wheat Straw, c-Rice Straw, d-Cotton stalk, e-Prosopis juliflora, f-Lantana 

camara, g-Willow, h-Gracillaria  verrucosa) 
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Figure 4.1: Screening of various thermotolerant yeasts for inhibitor(s) tolerance on agar medium. *I-

inhibitor cocktail plates (acetic acid, furfural, vanillin); C-Control plate (without inhibitors) 

 

Figure 4.2: Colony characteristics and cell morphology (40× magnification) of yeast isolates JKH1 (a 

& b), JKH4 (c & d), JKH5 (e & f) and JKH7 (g & h). 

 

Figure 4.3: Biochemical characterization of selected yeast isolates JKH1 (a), JKH4 (b), JKH5 (c), and 

JKH7 (d) (1- Urease, 2- Melibiose, 3- Lactose, 4- Maltose, 5- Sucrose, 6- Galactose, 7- Cellobiose, 8- 

Inositol, 9- Xylose, 10- Dulcitol, 11- Raffinose, 12- Trehalose). 

 

Figure 4.4: Agarose gel electrophoresis representing ITS-5.8S rDNA amplicons of selected yeast 

isolates. Lane 1: PCR amplicon of JKH1, Lane 2: PCR amplicon of JKH4, Lane 3: PCR amplicon of 

JKH5, Lane 4: PCR amplicon of JKH7 and Lane M: 1000 b.p. DNA ladder 

 

Figure 4.5: The phylogenetic trees showing genetic relatedness of Pichia kudriavzevii JKH1 (a), 

Kluyveromyces marxianus JKH4 (b), Kluyveromyces marxianus JKH5 (c) and Kluyveromyces 

marxianus JKH7 (d) with other yeasts based on their ITS-5.8S rDNA region 

Figure 4.6: Effect of different glucose concentrations on ethanol production by Pichia kudriavzevii 

JKH1 (a), Kluyveromyces marxianus JKH4 (b), Kluyveromyces marxianus JKH5 (c) and 

Kluyveromyces marxianus JKH7 (d) and standard thermotolerant yeast strains Kluyveromyces 

marxianus NCIM 3565 (e) and Kluyveromyces marxianus MTCC 4136 (f). 
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by Pichia kudriavzevii JKH1 (a), Kluyveromyces marxianus JKH4 (b), Kluyveromyces marxianus 

JKH5 (c) and Kluyveromyces marxianus JKH7 (d) and standard thermotolerant yeast strains 

Kluyveromyces marxianus NCIM 3565 (e) and Kluyveromyces marxianus MTCC 4136 (f). 

 

Figure 4.8: Growth curve of Pichia kudriavzevii JKH 1 (a) and Kluyveromyces marxianus JKH 5 (b) 

 



Figure 4.9: Effect of acetic acid (a), furfural (b), vanillin (c) individually and in combination (d) on the 

growth of Pichia kudriavzevii JKH1 at 42°C for 24 h.  

Longer lag phase than the control was considered as inhibition 

Figure 4.10 : Effect of different concentrations of various inhibitors on the growth of P. kudriavzevii 

JKH1 on YP agar plates. AA:F:V (1+1+1[Cocktail I]; 2+2+2 [Cocktail II]; 3+3+3[Cocktail III]; 

4+4+4 [Cocktail IV]; 1+0.1+0.1 [Cocktail V], 2+0.2+0.2 [Cocktail VI]; 3+0.3+0.3 [Cocktail VII]; 

4+0.4+0.4 [Cocktail VIII]; 5+0.5+0.5 [Cocktail IX]) 

 

Figure 4.11: Effect of acetic acid (a), furfural (b), vanillin (c) individually and in combination (d) on 

the growth of Kluyveromyces marxianus JKH5 at 42°C. Longer lag phase than the control was 

considered as inhibition. 

 

Figure 4.12: Effect of different concentrations of various inhibitors on the growth of K. marxianus 

JKH5 in YPD agar plates. AA:F:V (1+1+1[Cocktail I]; 2+2+2 [Cocktail II]; 3+3+3[Cocktail III]; 

4+4+4 [Cocktail IV]; 1+0.1+0.1 [Cocktail V], 2+0.2+0.2 [Cocktail VI]; 3+0.3+0.3 [Cocktail VII]; 

4+0.4+0.4 [Cocktail VIII]; 5+0.5+0.5 [Cocktail IX]) 

 

Figure 4.13: Comparison of growth profile of parent and adapted yeast strain Pichia kudriavzevii 

strain on medium supplemented with inhibitors, AA: acetic acid (6 g/L) (a), F: furfural (3.2 g/L) (b), 

V: vanillin (2.8 g/L) (c), and cocktail: (acetic acid+furfural+vanillin) (3+1+1 g/L) (d) 
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Figure 4.19 Response surface plots of Box-Behnken design for optimization of sequential 
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loading (b); sulphuric acid and solid loading (c); sulphuric acid and time (d); temperature and time (e); 

time and solid loading (f) for the response cellulose content 
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sugarcane bagasse through D-optimal design 
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Figure 4.36: Fed-batch simultaneous saccharification and fermentation of sequential pretreated 
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feeding strategy. Trial D, E and F were conducted at different solid loadings 18, 20 and 30 %, 

respectively 

 

Figure 4.37: Fed-batch simultaneous saccharification and fermentation of sequentially pretreated 
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