
Chapter 5

Classical and Bayesian Estimation in
Inverse Pareto Lifetime Model using
Progressively First Failure Censored Data

5.1 Introduction

The main objective of this chapter is to develop statistical inferences for the associated param-
eter and reliability characteristics of the IP lifetime model using the progressively first failure
censored (PFFC) data from both a classical and Bayesian perspective.

Because of the severe competition in the market, product reliability is typically improving with
the advancement of manufacturing technologies. Generally, in life-testing experiments, observ-
ing the failure time for all test units often takes a long time, resulting in a substantial increase
in experimental time and cost. As a consequence of the time and cost constraints of the ex-
periments, censoring is a regular phenomenon in reliability and life-testing experiments. Many
researchers have investigated the Type-I censoring scheme, in which the life-testing experiment
terminates when the experimental period exceeds the prescribed time, and the Type-II censoring
scheme, in which the life-testing experiment terminates when the number of recorded failure
units meets the intended aim. One of their limitations is that none of them allows control units
to be removed during the experiment. It may be required to remove test units in some circum-
stances. For example, in certain exceptional instances, the unit failure is beyond the control of
the experimenters and might be triggered by unforeseen laboratory equipment damage. It’s also
possible to remove test units from the experiment on purpose to free up laboratory equipment
and supplies for other projects, as well as save time and money. Because of such limitations,
Cohen (1963) introduced progressive censoring in the literature, which allows the adaptability
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to remove the test units before they fails from the ongoing experiment. For more details one
may refer Balakrishnan and Aggarwala (2000) and Balakrishnan and Cramer (2014).

It may not always be able to fulfill the test’s time and cost constraints. As a result, distinct
censoring schemes have been introduced one after the other to boost the efficiency of testing
procedures. When testing materials are inexpensive, we may conduct the test by putting m

groups with k items within each group of n individual items. During this procedure, the first
failures in each group are recorded, and the assessment will not be completed until all groups
have experienced the first failure. Such a situation of the testing plan was proposed by Bala-
sooriya (1995) called a first-failure censoring scheme.

Furthermore, Wu and Kuş (2009) suggested a novel censoring plan by combining progressive
and first failure censoring schemes, known as the progressive first-failure censoring scheme
(PFFCS) and data collected by using this scheme is termed as progressively first failure cen-
sored (PFFC) data. This censoring scheme bears some special cases to other censoring schemes,
due to its compatible features with other censoring plans, this censoring scheme has gained a
lot of coverage in literature under multiple scenarios. For example, the estimation of SSR for
GIE lifetime model is studied by Krishna et al. (2017), Kayal et al. (2019) developed inferences
on Chen lifetime model, Bi et al. (2020) studied bathtub shaped lifetime model for reliability
estimation, the statistical inferences for inverse power Lomax lifetime model is discussed by
Shi and Shi (2021), estimation of SSR for generalized Maxwell lifetime model is discussed by
Saini et al. (2021a), the estimation of multicomponent SSR for Bur Type XII lifetime model is
discussed by Saini et al. (2021b) etc.

Practically, the PFFCS is defined as follows: Assume that in a real-life testing experiment, n

classes of individuals are being tested at the same time, each with k test units, and they are
entirely independent to one another. During the experiment, when the first failure unit, say
XG

1:m:n:k occurs, the group it belongs to, as well as any G1 live groups from remaining live
n− 1 groups are randomly discarded from the experiment. Similarly, at the second failure
unit, say XG

2:m:n:k, the group it belongs to, as well as any G2 live groups in the remaining live
n− 2−G1 groups, are excluded from the experiment at random. This process is continued
until the mth failed unit, say XG

m:m:n:k occurs, at that point all remaining Gm live groups are
removed from the experiment. Here m and

˜
G = (G1,G2, . . . ,Gm) are the prefixed number of

failures and censoring schemes, respectively, in such a way that n=m+
m
∑
j=1

G j. Then XG
1:m:n:k <

XG
2:m:n:k < · · ·< XG

m:m:n:k are recorded as PFFC ordered sample with prefixed censoring schemes

˜
G = (G1,G2, . . . ,Gm) . To further demonstrate this censoring scheme, Figure 5.1 depicts the
PFFC sample generation procedure. It’s worth noting that the PFFCS has the following special
cases:
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(a) It reduces to complete sample case, when k = 1,n = m and G j = 0; j = 1,2, . . .m.

(b) It become conventional type-II censoring plan, if k= 1 and G j =(0, n−m); j = 1,2, . . .m−
1.

(c) It becomes progressively-II censoring plan, when k = 1.

(d) It reduces to first-failure censoring plan, when G j = 0; j = 1,2, . . .n.

FIGURE 5.1: Schematic diagram of PFFCS.

Suppose the lifetimes of n× k test units are put on a life testing experiment following a contin-
uous population with cdf FX(x) and pdf fX(x), then the joint pdf of XG

1:m:n:k,X
G
2:m:n:k, . . . ,X

G
m:m:n:k

is expressed as, see, (Wu and Kuş, 2009)

L
(

xG
1: m: n: k, xG

2: m: n: k, . . . ,x
G
m: m: n: k

)
= Akm

m

∏
j=1

fX(xG
j: m: n: k){1−FX(xG

j: m: n: k)}
k(G j+1)−1,

0 < xG
j: m: n: k < ∞; ∀ j = 1,2, . . .m

(5.1)

where, A = n(n−G1 −1) (n−G1 −G2 −2) . . . (n−G1 −G2 − . . . −Gm−1 −m+1).

This chapter is organized as follows: The IP lifetime model based on PFFC data is discussed
in Section 5.2. In Section 5.3 is devoted to derive MLEs of parameter and reliability charac-
teristics. Also, derived asymptotic and bootstrap CIs for the associated model parameter. The
Bayes estimators of parameter and reliability characteristics under SELF using three approxi-
mation techniques, namely TK approximation, importance sampling (IS) and M-H algorithm
are discussed in Section 5.4. Also, we derived HPD credible interval for the associated model
parameter. Section 5.5 presents the numerical computations using Monte Carlo simulations.
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For demonstration purpose, a real data analysis is presented in Section 5.6. Finally, a conclud-
ing remarks are presented in Section 5.7.

5.2 The Model

The IP lifetime model has already been discussed in the following Chapters 2 and 4 under
random censoring and progressive censoring schemes, respectively. Here, we also describe pdf,
cdf and reliability characteristics of IP lifetime model for quick response under consideration
of this chapter. The pdf and cdf of IP lifetime model with parameter θ , respectively, are given
by

fX(x;θ) =
θxθ−1

(1+ x)θ+1 ; θ > 0, x > 0, (5.2)

and

FX(x) =
(

x
1+ x

)θ

; θ ≥ 0, x > 0. (5.3)

Also, the corresponding reliability ( or survival) and hazard (pr failure rate) functions of IP
lifetime model, respectively, are given by

R(x;θ) = 1−
(

x
1+ x

)θ

; θ > 0, x > 0, (5.4)

and

h(x;θ) =
θxθ−1

(1+ x)θ+1
[
1−
( x

1+x

)θ
] ; θ > 0,x > 0. (5.5)

As the moment of IP lifetime model does not in closed form, therefore, we consider median
time to system failure (MdTSF) and given as

MdT SF =
1

21/θ −1
; θ > 0. (5.6)

5.3 Classical Estimation

In case of classical estimation method, the associated parameter and reliability characteristics
are estimated by using ML estimation, asymptotic confidence and bootstrap confidence inter-
vals methods.
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5.3.1 Maximum Likelihood Estimation

This section is devoted to derive ML estimates of the associated model parameter θ and reliabil-
ity characteristics R(t), h(t) and MdT SF , respectively. Also, obtain asymptotic and bootstrap
CIs of θ . Let x ˜

G
i:m:n:k; i = 1,2, . . . ,m, be the PFFC sample from IP lifetime model with pre-

fixed number of failures m and censoring plan
˜
G = (G1,G2, . . . ,Gm). For notation simplicity,

hereafter we use
˜
x = (x1,x2, . . . ,xm) as PFFC sample. Then, using (6.6), (6.2) and (5.4), the

likelihood function becomes

L(
˜
x,θ) = Akm

θ
m

m

∏
i=1

xθ−1
i

(1+ xi)θ+1

[
1−
(

x1

1+ xi

)θ
]k(Gi+1)−1

(5.7)

where, A = n(n−G1 − 1)(n−G1 −G2 − 2) . . .(n−G1 −G2 −·· ·−Gm−1 −m+ 1). The log-
likelihood function is obtained as

l(
˜
x,θ) =C+m lnθ +θ

m

∑
i=1

ln
(

xi

1+ xi

)
+

m

∑
i=1

[k(Gi +1)−1] ln

[
1−
(

xi

1+ xi

)θ
]
, (5.8)

where, C = lnA+m lnk−
m
∑

i=1
ln [xi(1+ xi)]. The solution of the following normal equation of

log-likelihood yields the ML estimate of θ ,

∂ l(
˜
x,θ)

∂θ
=

m
θ
+

m

∑
i=1

ln
(

xi

1+ xi

)
−

m

∑
i=1

[k(Gi +1)−1]

(
xi

1+xi

)θ

ln
(

xi
1+xi

)
[

1−
(

xi
1+xi

)θ
] = 0. (5.9)

Here, the ML estimate of θ is the solution of (5.9), and because the closed form solution for
(5.9) is not accessible, a suitable numerical iterative technique can be employed to compute
the ML estimate of θ numerically. Once we get the ML estimate of θ say θ̂ , then using
the invariance property of ML estimation, we can obtain the ML estimates of R(t), h(t), and
MdT SF , respectively.

R̂(t) = 1−
(

t
1+ t

)θ̂

, (5.10)

ĥ(t) =
θ̂ t θ̂−1

(1+ t)θ̂+1
[
1−
( t

1+t

)θ̂
] . (5.11)

M̂dT SF =
1

21/θ̂ −1
. (5.12)
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Now, under mild regularity constraints, the MLE of θ is asymptotically normally distributed
i.e. θ̂ ∼ N(θ , I−1(θ̂)), where I(θ̂) is the observed Fisher information,

I(θ̂) = E
[
−∂ 2l(x,θ)

∂θ 2

]
θ=θ̂

, (5.13)

with,

∂ 2l(
˜
x,θ)

∂θ 2 =− m
θ 2 −

m

∑
i=1

[k(Gi +1)−1]
{

ln
(

xi

1+ xi

)}2
(

xi
1+xi

)θ

[
1−
(

xi
1+xi

)θ
]2

Suppose V̂ar(θ̂) = I−1(θ̂) is the observed variance of θ̂ , the asymptotic CI of θ can be obtained
as

θ̂ ± zξ/2

√
V̂ar(θ̂),

here, zξ/2 is the upper (ξ/2)th percentile of N(0,1). Also, the coverage probability (CP) for θ

is given by

CPθ =

∣∣∣∣ θ̂ −θ√
V̂ar(θ̂)

∣∣∣∣≤ zξ/2

 .

5.3.2 Bootstrap Confidence Intervals

In literature, Efron (1979) was the first who developed the bootstrap approach. This technique
employs as a simple resampling technique that permits inferential statistics to be constructed,
when samples are not sufficiently large or need heavy assumptions about the underlying distri-
bution. Later on this concept has been applied in several applications. For more details one may
refer Efron (1982), Hall (1988), Davison and Hinkley (1997). In the literature, several boot-
strap techniques have been developed. In this chapter, we employ two bootstrap techniques as
percentile bootstrap (boot-p) and Student’s t bootstrap (boot-t) based on t-statistic to construct
bootstrap CIs of the associated parameter θ of IP lifetime model. In order to compute two
parametric bootstrap CIs of θ , the following steps are used as follows:

5.3.2.1 Percentile Bootstrap (boot-p) Confidence Interval

Step 1: Produce a PFFC sample x = (x1,x2, . . . ,xm) from the IP lifetime model with a prefixed
censoring scheme

˜
G = (G1,G2, . . . ,Gm) and an effective sample size of m, and then compute

the ML estimate θ̂ of θ

Step 2: Produce an independent bootstrap PFFC sample, say
˜
x∗ = (x∗1,x

∗
2, . . . ,x

∗
m) using θ̂ .
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Then, obtain the bootstrap ML estimate, say θ̂ ∗ of θ based on the generated bootstrap sample

˜
x∗.

Step 3: Replicate the Step 2, B times to generate a sequence of bootstrap ML estimates θ̂ ∗
i ; i=

1,2, . . . ,B.

Step 4: Let θ̂ ∗
(1) ≤ θ̂ ∗

(2) ≤ ·· · ≤ θ̂ ∗
(B) denote the ordered values of θ̂i for i = 1,2, . . . ,B. The

approximate 100(1−α)% boot-p CI of θ is given by
(

θ̂ ∗
[(α/2)×B], θ̂

∗
[(1−α/2)×B]

)
, where [a] is

the integral part of a.

5.3.2.2 Student’s t Bootstrap (boot-t) Confidence Interval

Step 1 and Step 2 are same as in boot-p procedure.

Step 3: Obtain the boot-t statistic τ∗ = θ̂∗−θ̂√
I−1(θ̂∗)

for θ̂ ∗.

Step 4: Replicate steps 2-3, B times to generate a sequence of boot-t statistics τ∗i ; i= 1,2, . . . ,B.

Step 5: Suppose τ∗(1) ≤ τ∗(2) ≤ ·· · ≤ τ∗(B) be the ordered values of τ∗i for i = 1,2, . . . ,B.
Thus, the approximate 100(1−α)% boot-t CI of θ is given by(

θ̂ − τ
∗
[(1−α/2)×B]

√
I−1(θ̂ ∗), θ̂ − τ

∗
[(α/2)×B]

√
I−1(θ̂ ∗)

)
.

5.4 Bayesian Estimation

This part focuses on developing Bayesian estimate methods for unknown parameters and reli-
ability characteristics of the IP lifetime model using PFFC data under SELF. Let us consider
the prior belief of an unknown parameter θ is measured to follow a gamma distribution with
hyper-parameters a and b, and the corresponding pdf of prior belief is termed as

p(θ) =
ba

Γ(a)
θ

a−1e−bθ ; θ > 0, a,b > 0.

Therefore, by incorporating prior belief in maximum likelihood function in (5.7), the posterior
distribution become

π(θ |x) ∝ θ
m+a−1 exp

{
−θ

(
b−

m

∑
i=1

ln
(

xi

1+ xi

))}
exp

{
[k(Gi +1)−1] ln

[
1−
(

xi

1+ xi

)θ
]}

.

(5.14)
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The posterior mean under SELF is the Bayes estimator of every parametric function. Here, it
can be seen that the posterior distribution does not belong to any well known family of distribu-
tions, so it is quite difficult to obtain the posterior mean. In addition, the ideal posterior means
are ratios of two integrals that cannot be simplified in some expressions of the closed form. In
order to solve these integrals, we proposed using the following approximation methods: The
TK approximation, IS, and M-H algorithm techniques.

5.4.1 TK Approximation

Here, the TK approximation procedure is used to compute the point Bayes estimates of the
parameter and reliability characteristics. For the parametric function φ(θ), the posterior mean
is given as follows:

J(x) =

∞∫
0

φ(θ)exp{L(
˜
x,θ)+ρ(φ)}dθ

∞∫
0

exp{L(
˜
x,θ)+ρ(φ)}dθ

, (5.15)

where, L(
˜
x,θ) is log-likelihood function and ρ(θ) = ln p(θ). Using TK approximation, we

can write J(x) as an explicit form, we have δ (θ) =
L(

˜
x,θ)+ρ(θ)

mk and δ ∗(θ) = δ (θ)+ lnφ(θ)
mk , and

assume that φ̂δ (θ) and φ̂δ ∗(θ) maximizes the functions δ (θ) and δ ∗(θ), respectively. Then
according to the TK approximation method J(x) can be described as

J(x) =

(
det(∆∗

φ
)

det(∆φ )

) 1
2

exp
[
mk
{

δ
∗
φ (θ̂δ ∗)−δ (θ̂)

}]
. (5.16)

Here, we need to compute det(∆∗
φ
) and det(∆φ ) which is the determinants of negative inverse

Hessian of δ ∗(θ) and δφ (θ). By incorporating prior distribution to the log-likelihood function,
the Bayes estimator of θ using the TK approximation is computed, and δ (θ) is given as

δ (θ) =
1

mk

[
(m+a−1) lnθ −θ

{
b−

m

∑
i=1

ln
(

xi

1+ x1

)}
+

m

∑
i=1

[k(Gi +1)−1] ln

{
1−
(

xi

1+ xi

)θ
}]

Therefore, θ̂δ is computed by solving the following non-linear equation

∂δ (θ)

∂θ
=

m+a−1
θ

−b+
m

∑ ln
(

xi

1+ xi

)
−

m

∑
i=1

[k(Gi +1)−1]

(
xi

1+xi

)θ

ln
(

xi
1+xi

)
[

1−
(

xi
1+xi

)θ
] = 0.
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Also,

∂ 2δ (θ)

∂θ 2 =
1

mk

−m+a−1
θ 2 −

m2

∑
j=1

[k(Gi +1)−1]

{
ln
(

xi
1+xi

)}2( xi
1+xi

)θ

[
1−
(

xi
1+xi

)θ
]2

 ,

Hence,

det(∆φ ) =
∣∣∣∂ 2δ (θ)

∂θ 2

∣∣∣−1

θ=θ̂
. (5.17)

Since, δ ∗(θ) is the function of φ(θ), the Bayes estimator of φ(θ) is computed by considering

δ
∗(θ) = δ (θ)+

lnφ(θ)

mk
. (5.18)

Now, for φ(θ) = θ , then θ̂ ∗ is computed by solving the following equation

∂δ ∗(θ)

∂θ
=

∂δ (θ)

∂θ
+

1
mk

1
θ
= 0. (5.19)

Also, using the derivative

∂ 2δ ∗(θ)

∂θ 2 =
∂ 2δ (θ)

∂θ 2 − 1
mk

1
θ 2 , (5.20)

we get det(∆∗
θ
) as

det(∆∗
θ ) =

∣∣∣∂ 2δ ∗(θ)
∂θ 2

∣∣∣−1

θ=θ̂∗
.

Thus, the Bayes estimator of θ is finally obtained by

θ̂T K =

(
det(∆∗

θ
)

det(∆θ )

) 1
2

exp
[
mk
{

δ
∗
θ (θ̂δ ∗)−δ (θ̂δ )

}]
.

Similarly, the Bayes estimators of reliability characteristics R(t),h(t), and MdT SF , respec-
tively are given as follows

R̂T K(t) =

(
det(∆∗

R(t))

det(∆R(t))

) 1
2

exp
[
mk
{

δ
∗
R(t)(R̂δ ∗(t))−δ (R̂δ (t))

}]
,

ĥT K(t) =

(
det(∆∗

h(t))

det(∆h(t))

) 1
2

exp
[
mk
{

δ
∗
h(t)(ĥδ ∗(t))−δ (ĥδ (t))

}]
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and

M̂dT SFT K(t) =
(

det(∆∗
MdT SF)

det(∆MdT SF)

) 1
2

exp
[
mk
{

δ
∗
MdT SF(M̂dT SFδ ∗)−δ (M̂dT SFδ )

}]
.

5.4.2 Importance Sampling Technique

The importance sampling (IS) approach is used to find the Bayes estimator of the parameter
and reliability characteristics under SELF. The posterior distribution described in (5.14) can be
rewritten as

π(θ |
˜
x) ∝ fGA (θ ;m+a,S)U(θ) (5.21)

where, S =

[
b−

m
∑

i=1
ln
(

xi
1+xi

)]
and U(θ) = exp

{
m
∑

i=1
[k(Gi + 1)− 1] ln

[
1−
(

xi
1+xi

)θ
]}

and

fGA(.; p,q) is a gamma density with shape p and scale q parameters, respectively. Under SELF,
the Bayes estimator of φ(θ), a function of θ , is now given by

φ̂IS(θ) = E[φ(θ)|
˜
x] =

∞∫
0

φ(θ)π(θ |
˜
x)dθ

∞∫
0

π(θ |
˜
x)dθ

. (5.22)

Therefore, we do not need to compute the normalizing constant to approximate φ̂ IS(θ) given
in (5.22) using the IS techniques. The steps below are used for programming purposes:

Step 1: Produce θ (1) from fGA(θ ;m+a,b+S).

Step 2: To obtain importance sample, repeat the above Step 1, M times, (θ (1)),(θ (2)), . . . ,(θ (M)).

Now we can obtain the approximate Bayes estimates of the function of parameter φ(θ) as fol-
lows:

φ̂IS(θ) =

M
∑
j=1

φ(θ ( j))U(θ ( j))

M
∑
j=1

U(θ ( j))

. (5.23)



Chapter 5 89

Hence, the Bayes estimates of parameter and reliability characteristics under SELF using IS
method are, respectively given by

θ̂IS =

M
∑
j=1

θ ( j)U(θ ( j))

M
∑
j=1

U(θ ( j))

, R̂IS(t) =

M
∑
j=1

(
1−
( 1

1+t

)θ ( j)
)

U(θ ( j))

M
∑
j=1

U(θ ( j))

; t > 0,

ĥIS(t) =

M
∑
j=1

θ ( j)tθ( j)−1

(1+t)θ( j)+1
(

1−( t
1+t )

θ( j)
)U(θ ( j))

M
∑
j=1

U(θ ( j))

; t > 0, M̂dT SF =

M
∑
j=1

1

2
1

θ( j) −1
U(θ ( j))

M
∑
j=1

U(θ ( j))

.

5.4.3 Metropolis-Hastings Algorithm

Here, we consider one of the popular MCMC technique as M-H algorithm to compute the
Bayes estimates of parameter and reliability characteristics. We take candidate point from a
normal distribution to draw samples from the posterior distribution of θ |

˜
x from (5.14). For

programming or computation purposes, the following steps are carried out:

Step 1: Consider initial guess value of θ say θ (0).

Step 2: From the proposal density η(θ ( j)|θ ( j−1)), generate a candidate point θ
( j)
c .

Step 3: Generate u using a uniform distribution U(0,1).

Step 4: Obtain A
(

θ
( j)
c |θ ( j−1)

)
= min

{
π

(
θ
( j)
c |

˜
x
)

η

(
θ ( j−1)|θ ( j)

c

)
π(θ ( j−1)|

˜
x)η

(
θ
( j)
c |θ ( j−1)

) ,1
}

.

Step 5: If u ≤ A set θ ( j) = θ
( j)
c with acceptance rate A otherwise θ ( j) = θ ( j−1).

Step 6: In order to compute the parameter sequence of θ , repeat steps 1-5, for j = 1,2, . . . ,M,
say

{
θ (1),θ (2),θ (3), . . . ,θ (M)

}
.

Using the (M −M0) observations, where M0 is the burn-in period, we get an estimate. Hence,
the approximate Bayes estimate using M-H algorithm procedure under SELF is given by

φ̂MH(θ) =
1

M−M0

M

∑
j=M0+1

φ(θ ( j)).
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Thus, using the M-H algorithm, the Bayes estimates of the parameter θ and the reliability
characteristics R(t),h(t), and MdT SF are computed under SELF as follows:

θ̂MH =
1

M−M0

M

∑
j=M0+1

θ
( j), R̂MH(t) =

1
M−M0

M

∑
j=M0+1

[
1−
(

t
1+ t

)θ ( j)]
,

ĥMH(t)=
1

M−M0

M

∑
j=M0+1

θ ( j)tθ ( j)−1

(1+ t)θ ( j)+1
[
1−
( t

1+t

)θ ( j)] , M̂dT SF =
1

M−M0

M

∑
j=M0+1

1

(21/θ ( j) −1)
.

5.4.4 HPD Credible Interval

In this subsection, the HPD credible interval of θ can be obtained using generated MCMC sam-
ple. Suppose θ(1) < θ(2) < · · ·< θ(M) denotes the ordered values of θ (1), θ (2), . . . ,θ (M). Thus,
100(1−ξ )%, where, 0 < ξ < 1, HPD credible interval of θ is given by

(
θ( j), θ( j+[(1−ξ )M])

)
,

where j is chosen such that

θ( j+[(1−ξ )M])−θ( j) = min
1≤i≤ξ M

(
θ(i+[(1−ξ )M])−θ( j)

)
, j = 1,2, . . . ,M,

where, [x] is the integer part of x.

5.5 Numerical Computations

To analyze the impact of the different estimators produced in this chapter, extensive numerical
computations are done in this section. The estimators are compared with their corresponding
average estimates (AE) and mean squared errors (MSE). For computations, first of all we gen-
erated PFFC samples for different combinations of (k,n,m) with prefixed censoring plans

˜
G

and distinct values of a model parameter θ . To generate PFFC samples, we use the algorithm
suggested by Balakrishnan and Sandhu (1995) with some modifications in such a way that, the
PFFC sample x1,x2, ...,xm can be viewed as a progressively censored sample from a population
with cdf (1− (1−F(x))k), see, Wu and Kuş (2009). To see the behaviour of estimation meth-
ods, the following parameters are taken as follows: number of items within each group k = 3,5,
number of groups n = 20,30 and prefixed number of failures m = (80,100)% of n with prefixed
censoring plans

˜
G, respectively. Also, two sets of parameter values are taken as θ = 0.5 and

θ = 1.5, respectively. For each n, four different failure plans are adopted, and out of these,
three are common for each n. The three different common failure plans are as follows:
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Plan 1: [(k,n,m),(G1 = n−m,Gi = 0, ∀ i = 2,3, . . .m)], in this case (n−m) groups are dis-
carded from the test at the first failure only,

Plan 2: [(k,n,m),(Gi = 0, ∀i = 1,2, . . . ,m− 1,Gm = n−m)], in this case (n−m) groups are
removed at mth failure, and

Plan 3: [(k,n = m),Gi = 0, ∀i = 1,2, . . . ,m] this is the case of first failure censored sample.

TABLE 5.1: Several combinations of progressive censoring plans

(n,m) CS Plans (n,m) CS Plans

(20,16) 1 (4,0*15) (30,24) 5 (6,0*23)
1 (1,0*4,1,0*4,1,0*4,1) 6 (2,0*11,2,0*10,2)
3 (0*15,4) 7 (0*23,6)

(20,20) 4 (0*20) (20,30) 8 (0*30)

The simplified notations are used for different combinations of censoring plans as shown in the
Table 6.1. In addition, t = 0.80 (in time units) is taken as mission time to compute the reliability
characteristics. The ML estimate of parameter and reliability characteristics are computed in
the case of a non-Bayesian estimation process. The interval estimates of the associated model
parameter θ are also computed using asymptotic and bootstrap (boot-p & boot-t) CIs, as well
as their respective coverage probabilities.

Furthermore, employing an informative gamma prior, Bayes estimates of parameter and relia-
bility characteristics are derived under SELF (Prior 1). Its related hyper-parameters (a,b) for
Prior 1 are set so that the prior mean is θ = a/b, i.e. θ = a/b. Therefore, chosen (a,b) = (3,2)
and (a,b) = (1.2,2.4) for θ = 1.5 and 0.5, respectively. For non-informative prior (Prior 0),
hyper-parameters are taken as (a,b)→ (0,0). To obtain Bayes estimates, the TK approxima-
tion, IS, and M-H algorithms are utilized. M = 10,000 samples are generated for the IS and
M-H algorithms, of which M0 = 2000 is considered as the burn-in period. Also, obtained 95%
HPD credible interval for the parameter θ , as well as the coverage probability.

The simulations are carried out with N = 1000 replications. Then, the AEs with correspond-
ing MSEs of different estimates are computed. Suppose φ̂ j is the estimate of φ for the jth

sample, then AE = 1
N

N
∑
j=1

φ̂ j, MSE = 1
N

N
∑
j=1

(φ̂ j −φ)2. Also, the average lengths (AL) with cor-

responding coverage probabilities (CP) of 95% ACI, bootstrap (boot-p & boot-t) CI, and HPD
credible intervals of parameter θ are computed. All the simulated results are summarizes in the
following Tables 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9, 5.10, 5.11.
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From these findings, the following interpretations are drawn: the MSEs of ML and Bayes
estimates of parameter and reliability characteristics decrease as n increases in almost all cases.
Also, it is seen that Bayes estimates have smaller MSEs than ML estimates in almost all cases.
Also, the Bayes estimates using Prior 1 performed quite better than Prior 0, as it includes prior
information. It is also observed that the MSEs are decreasing with an increasing number of
individuals within each group. The ALs of asymptotic, bootstrap (boot-p, boot-t) and HPD
narrow down with an increase in n in almost all cases. In the case of HPD, ALs are more
narrow as compared to the asymptotic and bootstrap confidence intervals. In almost all cases,
the CPs of ML and Bayes estimates of θ achieve the desired confidence coefficient.

5.6 Real Data Analysis

In this section, we analyzed a real data set as an example to illustrate the situation of life testing
experiments for IP lifetime model with PFFC data. Here, we take head and neck cancer data
from Efron (1988). These data are survival times (in days) treated with combined radiotherapy
and chemotherapy of 45 patients suffering from head and neck cancer disease and given as
follows:

12.20, 23.56, 23.74, 25.87, 31.98, 37, 41.35, 47.38, 55.46,58.36, 63.47, 68.46,78.26,74.47,81,43,
84, 92, 94, 110, 112, 119, 127, 130, 133, 140, 146, 155, 159, 173, 179, 194, 195, 209,249, 281,
319, 339, 432, 469, 519, 633, 725, 817, 1776.

Recently, Sharma et al. (2015) and Sharma (2018) studied and fitted head neck cancer data to
the inverse Lindley (IL) and generalized inverse Lindley (GIL) lifetime models, respectively.
To begin, we assess the failure rate function of the data set using the scaled total time on test
(TTT) transform. The scaled TTT is calculated as follows:

ψ(r/n) =

[
r

∑
j=1

t(i)+(n− r)tr

]/(
r

∑
j=1

t(i)

)
,

where, t(i), i = 1,2, . . . ,n represent the ith order statistic and r = 1,2, . . . ,n. If the plot
(r/n,ψ(r/n)) is convex (concave), the failure rate function has a decreasing (increasing) shape.
If it start concave and then become convex (begins convex and then becomes concave), the fail-
ure rate function is upside down bathtub shaped (bathtub shaped), respectively, for more details
about scale TTT, see, Mudholkar et al. (1996). The scaled TTT plot of head-neck cancer data
set is given in Figure 6.1. This Figure suggests that the head-neck cancer data set follow upside
down bathtub shaped failure rate function. This empirical behaviour of failure rate function
is quite similar to the considered IPD model. Further, check whether the considered real data
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FIGURE 5.2: TTT plot for plots for head-neck cancer disease data.

set is good-fit to the IP lifetime model or not using some goodness-of-fit tests. Kolmogrov-
Smirnov (KS) and Anderson-Darling (AD) goodness-of-fit tests were employed in this study,
and test statistics and p-values were obtained. The ML estimates of associated parameters are
also used to generate two information theoretic criteria based on the log-likelihood function,
namely AIC and BIC. To assess the goodness-of-fit, test statistics and p-values are used. Then,
based on the considered real data set, compare the fitting of the IP lifetime model with the IL
and GIL lifetime models. The best lifetime model has the lowest AIC, BIC, − lnL, KS, and AD
test statistics and the greatest p-value for the KS and AD tests. The fittings of IP lifetime model
and competitive models are reported in table 5.12. From Table 5.12, it is noticed that IP, IL and

TABLE 5.12: Summery of fitted models for head-neck cancer disease data.

AD Test KS Test

Models MLE AIC BIC -lnL statistic p-value statistic p-value

IP θ̂ = 76.4848 570.9288 572.7354 284.4644 0.4095 0.8386 0.0783 0.9255
IL θ̂ = 76.3539 571.0640 572.8707 284.5320 0.4190 0.8290 0.0818 0.9002

GIL α̂ = 1.0248 573.0149 576.6282 284.5074 0.4153 0.8326 0.0890 0.8376
β̂ = 83.9189

GIL all models are good-fitted to the consider data set. Among all the fitted models IP lifetime
model outperform as it has lower AIC, BIC, − lnL, KS and AD statistics with high p-value. So
choice of IP lifetime model is quite reasonable for this data set.

Furthermore, the first failure censored sample was collected by randomly arranging the con-
sidered complete data-set into n = 15 groups with k = 3 sample points inside each group. The
observation with ‘+’ sings are first failure observations in the respective groups as shown in
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TABLE 5.13: First failure censored head neck cancer disease data.

Group 1 2 3 4 5 6 7 8
Items

(i) 74.47 155.00 63.47+ 23.56+ 173.00 47.38 12.20+ 195.00
(ii) 43.00+ 130.00+ 194.00 119.00 58.36+ 41.35 68.46 725.00
(iii) 140.00 159.00 519.00 432.00 84.00 37.00+ 110.00 23.74+

Group 9 10 11 12 13 14 15
Items

(i) 55.46+ 339.00 133.00 209.00 94.00+ 633.00 469.00
(ii) 1776.00 817.00 281.00 112.00+ 319.00 146.00 92.00
(iii) 78.26 179.00+ 25.87+ 127.00 249.00 31.98+ 81.00+

Table 5.13. Consequently, the ordered first failure censored sample is given by

12.20,23.56,23.74,25.87,31.98,37,43,55.46,58.36,63.47,81,94,112,130,179.

Now, applying four different progressive censoring plans on the above first failure censored
sample with prefixed number failure m = 10. The four different censoring plans and their
corresponding PFFC samples are as follows:

Scheme 1: k = 3,n = 15,m = 10,
˜
G = (5,0∗9),

˜
x = 12.20, 43, 55.46, 58.36, 63.47, 81, 94, 112, 130, 179.

Scheme 2: k = 3,n = 15,m = 10,
˜
G = (1,0∗2,1,0∗2,2,0∗2,1),

˜
x = 12.20, 23.74, 25.87, 31.98, 43, 55.46, 58.36, 94, 112, 130.

Scheme 3: k = 3,n = 15,m = 10,
˜
G = (0∗9,5),

˜
x = 12.20, 23.56, 23.74, 25.87, 31.98, 37, 43, 55.46, 58.36, 63.47.

Scheme 4: k = 3,n = m = 15,
˜
G = (0∗15),

˜
x = 12.20, 23.56, 23.74, 25.87, 31.98, 37, 43, 55.46, 58.36, 63.47, 81, 94, 112, 130,
179.

The ML and Bayes estimators of parameter and reliability characteristics under consideration
of different censoring plans are obtained and reported in Table 5.14. The reliability characteris-
tics R(t) and h(t) are computed at mission time t as median of the considered data. The Bayes
estimates of parameter and reliability characteristics are obtained using non-informative prior
as information about considered data are unavailable. For M-H algorithm and importance sam-
pling, M = 10,000 Markov chains are generated and M0 = 2500 are taken as burn-in-period.
The 95% ACI, boot-p, boot-t CIs and HPD credible intervals are computed and tabulated in
Table 5.15. For bootstrap confidence intervals each PFFC samples are replicated by B = 1000
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times. Also, Figure 6.3 shows the diagnostic plots of Markov chains for all censoring schemes
under consideration of real data set, which verifies the convergence of stationary distributions
for generation of Markov chain from posterior. The trace plot shows a random scatter about the
mean and shows fine mixture of the parameter chains. The boxplots and histograms of gener-
ated samples shows the posterior distribution are almost symmetric i.e. posterior mean can be
the best estimate in almost all censoring schemes under consideration of real data set.

TABLE 5.14: ML and Bayes estimates of parameter and reliability characteristics under con-
sideration of head-neck cancer disease data for k = 3,n = 15,m = 10.

Schemes Scheme 1 Scheme 2 Scheme 3 Scheme 4
Parameters

θ̂ 90.9509 83.8542 74.7172 74.9301
θ̂TK 91.3190 84.2256 75.0075 75.1549
θ̂IS 87.4737 81.3659 72.6638 72.9190
θ̂MH 91.5311 83.3144 73.0104 94.0702

R̂(t) 0.7174 0.8404 0.8479 0.7909
R̂TK(t) 0.7186 0.8339 0.8417 0.7851
R̂IS(t) 0.7112 0.8325 0.8367 0.8421
R̂MH(t) 0.7034 0.8315 0.8398 0.7819

ĥ(t) 0.0069 0.0076 0.0085 0.0086
ĥTK(t) 0.0070 0.0077 0.0086 0.0087
ĥIS(t) 0.0069 0.0078 0.0088 0.0070
ĥMH(t) 0.0071 0.0079 0.0088 0.0089

M̂dT SF 130.7150 120.4767 107.2949 107.6020
M̂dT SFTK 131.2270 121.0074 107.7120 107.9234
M̂dT SF IS 131.5521 119.6980 104.8326 135.2153
M̂dT SFMH 125.6985 116.8870 104.3325 104.7007

TABLE 5.15: The 95% asymptotic, boot-p, boot-t confidence and HPD credible intervals of
parameter θ under consideration of head-neck cancer disease data.

Schemes Scheme 1 Scheme 2 Scheme 3 Scheme 4
Parameters

θ̂ACI (56.14, 125.75) (55.56, 112.14) (50.49, 98.93) (50.94, 98.91)
θ̂boot-p (66.13, 162.29) (54.61, 129.40) (45.54, 91.92) (52.83, 111.10)
θ̂boot-t (44.66, 127.29) (53.94, 129.27) (60.82, 119.90) (50.61, 106.11)
θ̂HPD (45.02, 78.92) (78.92, 83.85) (70.21, 75.15) (70.46, 75.35)
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(A) Scheme 1.

(B) Scheme 2.

(C) Scheme 3.

(D) Scheme 4.

FIGURE 5.3: MCMC diagnostic plots for different censoring schemes under consideration of
head-neck cancer disease data.
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5.7 Concluding Remarks

In this chapter, some inference procedures about the parameter and reliability characteristics for
IP lifetime under PFFC data were developed. The ML and Bayes estimates of unknown param-
eter and reliability characteristics were computed. For Bayesian estimation, TK approximation,
importance sampling, and the M-H algorithm using non-informative and gamma informative
priors under SELF were considered. Based on the asymptotic normality of ML estimates and
bootstrap methods, the 95% asymptotic, boot-p, and boot-t CIs of the parameter were con-
structed. Also, the HPD credible interval of a parameter based on MCMC samples was com-
puted. An extensive numerical computation was performed to determine the potentiality of
different estimators developed in this chapter. A real data set was studied to determine the
feasibility of the considered IP lifetime model. From the simulated results, it is observed that
Bayesian estimation using MCMC followed by the M-H algorithm outperforms. Therefore, we
recommend the use of this consider methodology for all practical purpose in classical as well
as Bayesian point of views.
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