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Abstract

The life testing experiments are carried out to obtain the lifetime data on patients for survival
analysis and to study the reliability of electrical, electronic and mechanical systems, informa-
tion theory, artificial intelligence, etc. It is challenging to obtain lifetime data on all individuals
or products due to breakages, time limits, and expense restrictions. Thus, the experiments are
terminated before they are completed. In those situations, we get the censored data. There are
various types of censoring schemes utilized in the literature for different life testing situations.

This thesis deals with the classical and Bayesian estimation methods for the censored data. We
consider three distinct censoring schemes, namely, random censoring, progressive censoring,
and progressive first-failure censoring schemes in this thesis. Random censoring is a popular
censoring scheme in which the censoring time is set at random rather than being predetermined,
and it commonly arises in survival analysis and clinical trials. The random censoring scheme
is an extension of the Type-I censoring scheme in which failure and censoring times both are
taken as random variables. We consider two distinct lifetime models, namely, inverse Pareto
and inverse Weibull lifetime models based on randomly censored data and developed statistical
inferences for the associated model parameters and reliability characteristics from both the
classical and Bayesian estimation perspectives in Chapter 2 and Chapter 3, respectively.

The progressive censoring scheme is another popular censoring scheme that allows the removal
of experimental units during the experiment. Because of its flexibility, the progressive censoring
scheme has several applications in a variety of disciplines and received considerable attention
in the literature. The stress-strength reliability (SSR) is considered as a measure of system per-
formance. The system becomes out of control if the system stress exceeds its strength. The
model of stress-strength has found applications in many statistical problems, including quality
control, engineering statistics, medical statistics and biostatistics, among others. The estima-
tion of SSR has received considerable attention in the statistical literature. In Chapter 4, we
employed the progressive censoring scheme and developed classical and Bayesian estimators
of stress-strength reliability for the inverse Pareto lifetime model.

The progressive first-failure censoring scheme is a cost and time-efficient censoring scheme
and it is developed as the combination of progressive and first-failure censoring schemes. Also,
this censoring scheme is viewed as a generalization of a progressive censoring scheme. We
study the classical and Bayesian estimation of the parameters and reliability characteristics of
the inverse Pareto lifetime model using the progressive first-failure censored data in Chapter 5.

The information theory provides a simple approach for measuring the uncertainty and recip-
rocal information of random variables as entropy measures. The applications of entropy are
described in a variety of fields, including computer science, molecular biology, hydrology,



x

meteorology, and others. For example, in the study of trends in gene sequences, molecular
biologists use the principle of Shannon’s entropy. Shannon’s entropy is the most widely used
entropy in statistical and information theory. We study the classical and Bayesian estimation
methods for the Shannon’s entropy from the Maxwell lifetime models based on progressively
first-failure censored data with different applications in Chapter 6.

The statistical software R is used for computation throughout the thesis. Finally, a complete list
of references and other literature surveys are given at the end of the thesis as a bibliography.
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Chapter 1

Introduction and Basic Terminology

1.1 Introduction

The quality of the products or items is an important task for almost all companies or manufac-
turers. For example, individual components, objects, products, things, etc. must be monitored
and improved by manufacturers. In particular, the lifespan of products is an important quality
attribute that manufacturers must examine. The quality of the items or products are directly
proportional to their lifespan, which can be monitored by an experimenter using a reliability
experiment in which n identical objects or items are put to the test at the same time. One sig-
nificant problem is that monitoring the failure times of all test units or objects is not always
feasible. There are many real-life situations, where the experimenter has to remove some test
units or items from the test unintentionally or intentionally due to breakage of test units or time
restrictions or findings etc. As a result, censored samples are more appropriate rather than com-
plete samples in life testing experiments. If only m(< n) of the n test units or items placed on
life test are detected before the experiment ends, the sample is said to be a censored sample.
For modeling such type of data, different censoring schemes are investigated by experimenters
in the literature, some of them are as follows:

(a) Type-I or time censoring

(b) Type-II or failure censoring

(c) Random censoring

(d) Hybrid censoring

(e) Progressive censoring

1
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(f) First failure censoring

(g) Progressive first failure censoring.

Out of these censoring schemes, we have employed only the following three censoring schemes
in this thesis:

1.1.1 Random Censoring

Random censoring is a natural phenomena of life testing experiments in which the test units or
items under study are lost or destroyed before its complete failure. This censoring scheme was
first introduced by Gilbert (1962). Type-I censoring is a particular type of random censoring
that occurs at a specified time point, say t = t0, see (Lawless, 2003, p. 55). Generally, in survival
analysis or clinical trials, this type of censoring commonly occurs in one of the following
forms: patients do not complete their treatment and leave before the trial is completed. Random
censoring has recently gained popularity in survival analysis and clinical studies. In Chapters 2
and 3 of this thesis, we will go through this censoring scheme in greater depth.

1.1.2 Progressive Censoring

Progressive censoring (PC) is a censoring approach by which test units or items during the
life test can be removed or withdrawn from the test at predetermined or random assessment
times. Initially in the literature, the progressive Type-II censoring was given by Herd (1956)
named as ‘multiple censoring’. Later on the PC scheme was inroduced by Cohen (1963) as
‘progressive Type-II censoring scheme’ in the literature. For more details about PC scheme
and their applications one may refer Balakrishnan and Aggarwala (2000) & Balakrishnan and
Cramer (2014). The estimation of stress-strength reliability (SSR) based on this censoring
scheme in greater depth will be discussed in Chapter 4.

1.1.3 Progressive First Failure Censoring

If the lifespan of goods or objects is very long, then the testing duration of an experiment be-
comes too long. For such a situation Johnson (1964) introduced the first failure censoring (FFC)
scheme and further updated by Balasooriya (1995) that offers a cost-effective and time-saving
testing plan for life tests. This censoring scheme allows experimenters to test k× n test units
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by testing n groups each containing k test units and then runs all the tests simultaneously un-
til the first failure is observed in each group. Although the FFC scheme is cost-effective and
time-saving, it does not enable intermittent removal of units or objects throughout the tests.
However, the PC scheme enables removals of units or objects throughout the test. Due to
the cost-effectiveness and time-saving properties of the FFC scheme and intermittent removal
property of PC scheme, Wu and Kuş (2009) combined them and introduced a more efficient life
testing plan called progressive first failure censoring scheme (PFFCS). In Chapter 5 and Chap-
ter 6, we will discuss this censoring scheme in further depth in connection with information
theory and survival analysis.

1.2 Estimation Methods

To make any inferences about desire parameters in the statistical theory, estimation methods
play important role. In parametric inferences, the mathematical form of the probability distri-
butions are known to us except for a few arbitrary constants associated with the model called
as parameters, and our primary concern is to estimate the associated parameters. The classical
and Bayesian estimation methods are two popular estimation methods in statistical theory.

1.2.1 Classical Estimation Methods

The classical estimation methods assume the availability of a sample from a specified popula-
tion, and statistical inference can be developed to have the best long-run performance. In this
method, the sample observations are random but the parameters are assumed to be unknown
constants. The information about unknown parameters are gathered from the randomness of
the sample observations and it is utilized to draw inferences about the unknown parameters.
Various classical point estimation methods are widely used in the literature. These methods in-
clude the following: method of moments (MM), method of maximum likelihood (ML), method
of percentile (MP), method of least square (MLS), method of weighted least square (WLS),
method of maximum product spacing’s (MPS), method of Anderson-Darling (AD), method
of right Anderson-Darling (RAD), method of Cramer-Von-Misses (CVM), etc. Among these
methods, the method ML is the most popular and commonly used estimation method in statisti-
cal theory. This procedure has numerous advantages and its properties can be utilized in various
cases. For more details one may refer (Casella and Berger, 2002, pp. 315-323), (Rohatgi and
Saleh, 2015, pp. 388-399). We have employed the ML estimation method in the case of the
classical estimation method. Also, we have used the asymptotic confidence interval estimation



Chapter 1 4

method for the associated model parameters based on the method of ML. Also, we have em-
ployed a well-known resampling technique as the bootstrap method for interval estimations and
discussed them in Chapter 5 and Chapter 6.

1.2.2 Bayesian Estimation Method

Bayesian analysis is used in a variety of fields, including science, engineering, medicine, sports,
etc. The Bayesian estimation method is based on the prior belief that all the associated model
parameters are random variables, allowing previous information to be taken into account. The
prior information is used to construct the posterior distribution of the parameter of interest,
which is based on the data on lifetimes. This posterior distribution is used to make numerous
conclusions about the lifetime parameters and the foundation of Bayes inference.

Suppose that n units are place on a life test and it is assumed that their recorded lifetimes
X1,X2, . . . ,Xn form a random sample of size n with a population having probability density
function (pdf) f (x|θ), where, θ is a real valued unknown parameter and lies in the parameter
space Θ . We also assume that θ is a random variable with pdf g(θ), which is known as the
prior distribution of θ . Thus, the joint pdf of {X1,X2, . . . ,Xn,θ} is given by

J(
˜
x,θ) =

n

∏
i=1

f (xi|θ) g(θ) = L(
˜
x,θ)g(θ), (1.1)

where, L(
˜
x|θ) is the likelihood function. Then, the marginal pdf of {X1,X2, . . . ,Xn} is given by

P(
˜
x) =

∫
Θ

J(
˜
x,θ)dθ . (1.2)

Therefore, using the Bayes theorem, the posterior distribution of θ is given by

π(θ |
˜
x) =

J(
˜
x,θ)

P(
˜
x)

=
L(

˜
x|θ)g(θ)∫

Θ

L(
˜
x|θ)g(θ)dθ

. (1.3)
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1.2.2.1 Bayesian Approximation Techniques

The posterior mean of any function of the parameters, say φ(θ) using posterior distribution in
(1.3) is given by

E [φ(θ)|
˜
x] =

∫
θ ∈ Θ

φ(θ)el(θ ;
˜
x)g(θ)dθ∫

θ ∈ Θ

φ(θ)el(θ ;
˜
x)g(θ)dθ

, (1.4)

where, l(θ ,
˜
x) = lnL(

˜
x|θ). From the above posterior mean in equation (1.4), we can say that

the posterior mean is in the form of the ratio of two integrals for which the closed-form or
solutions may or may not be available. Thus, in general, Bayes estimators are often obtained
as a ratio of two integrals for which the closed-form solutions may or may not be available. If
closed-form solutions are not available, we require some appropriate approximation techniques
to get the approximate Bayes estimators. There are several approximation techniques available
in the literature. For example, Lindely and Tierney-Kadane (TK) approximations are used to
compute only point estimates, for more details see, Lindley (1980), Sinha (1986) and Tierney
and Kadane (1986). Apart from these approximation techniques, a general class of approxima-
tion techniques are known as Markov Chain Monte Carlo (MCMC) methods which are used to
make inferences based on the posterior samples. These approximation techniques provide both
point and interval estimates. Gelfand and Smith (2000), Chen et al. (2000), Robert and Casella
(2004), and Gelman et al. (2013) provide comprehensive explanations of MCMC techniques
and their applications. In this thesis, we employ TK approximation and MCMC techniques for
Bayesian computations.

1.2.2.2 Prior Distributions

A parameter’s prior distribution is the probability distribution that expresses the parameter’s
uncertainty before the current data are observed. There are various forms of priors in the liter-
ature, some of them are as follows:

Non-informative Prior: If a prior has very little or no impact on the parameter’s posterior
distribution, it is said to be non-informative prior.

Informative Prior: If a prior has an effect on the parameter’s posterior distribution, it is said
to be informative.

Improper Prior: A prior is said to be improper prior if it has infinite density function, i.e.∫
Θ

g(θ)dθ = ∞. For example, g(θ) = 1
c ; θ > 0 is an improper prior.
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Proper Prior: A prior is said to be proper prior if it has finite probability function, i.e.∫
Θ

g(θ)dθ < ∞. For example g(θ) = 1.

Conjugate Prior: If the prior and posterior distributions belong to the same family of dis-
tributions, the prior is said to be a conjugate prior for that family. As a result, the posterior
distribution displays the prior distribution in shape.

1.2.2.3 Loss Function

Suppose that the estimator d estimates the unknown parameter θ of pdf f (x|θ). If the true
value of the unknown parameter θ is approximated by d, the loss sustained is indicated by
L(d, θ), where L(d,θ) = 0 for d = θ . There are various forms of loss functions in the literature,
including squared error loss function (SELF), precautionary loss function (PLF), entropy loss
function (ELF), generalised entropy loss function (GELF), and LINEX loss function, among
others. Table 1.1 presents the loss functions with their corresponding Bayes estimators.

TABLE 1.1: Loss functions and corresponding Bayes estimators.

Notation Loss Function Bayes Estimator

SELF
(
θ̂ −θ

)2
E(θ |

˜
x)

PLF (θ̂−θ)2

θ̂

√
E(θ 2|

˜
x)

ELF
[

θ̂

θ
− ln

(
θ̂

θ

)
−1
] [

E(θ−1|
˜
x)
]−1

GELF a
[(

θ̂

θ

)q
−q ln

(
θ̂

θ

)
−1
]

E [θ−q|
˜
x]−

1
q

LINEX a
[
eb(θ̂−θ)−b(θ̂ −θ)−1

]
−1

b ln
[
E(e−bθ |

˜
x)
]

1.3 Goodness of Fit Test and Model Comparison Criteria

Obtaining information about the population from which a sample is selected is a significant
challenge in statistical theory. A statistical model’s goodness of fit defines how well it fits a
collection of data. The disparity between actual values and predicted values from a model under
consideration is often summarised by the goodness of fit measures. In statistical hypothesis
testing, such measures can be utilized. Also, the model comparison tests are used to check the
performance of the considered model among others. The goodness of fit and model comparison
may be done in a variety of ways. The following are some of them:
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1.3.1 Kolmogorov-Smirnov Test

The Kolmogorov-Smirnov (KS) test is one of the well known non-parametric goodness-of-fit
test. KS test measures the distance between the observed and expected distribution functions.
To perform the two-sided goodness of fit test for testing

H0 : F(x) = F0(x) vs H1 : F(x) ̸= F0(x). (1.5)

The KS test statistic is given by

Dn = sup
x

| Fn(x)−F0(x) |,

where, Fn(x) and F0(x) are the observed and expected distribution functions, respectively. We
reject the H0 if the computed Dn is larger than the critical value, else it may be accepted (see
(Conover, 1972, pp. 309–314)).

1.3.2 Anderson-Darling Test

In literature, the Anderson–Darling (AD) goodness-of-fit test was introduced by Anderson and
Darling (1954) based on the difference between the observed and expected distribution func-
tions, but here the difference is measured in terms of the square instead of the absolute value
used in the KS test. To employ the two-sided AD goodness-of-fit test for testing (1.5). The AD
test statistic is given by

A2 =−n− 1
n

n

∑
i=1

(2i−1)
[
lnF0(xi:n)− ln F̄(xn− j+1:n)

]2
,

where, Fn(x) and F0(x) are the observed and expected distribution functions, respectively. We
reject the H0 if the computed AD statistic A2 is larger than the critical value, else it may be
accepted. For more details one may refer (Gibbons and Chakraborti, 2011, pp. 137–138).

1.3.3 Maximum Likelihood Criterion

The maximum likelihood criterion (MLC) is one of the model selection criteria. It measures
the correctness of an estimated statistical model. Based on the specified complete or censored
data, different competing models can be ranked according to their maximum likelihood value or
equivalently minimal log-likelihood value, with the one having the lowest maximum likelihood
value being the best.
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1.3.4 Akaike’s Information Criterion

The Akaike’s information criterion (AIC) was introduced by Akaike (1974). AIC measures
the potentiality of estimated statistical models. For a given data set, different statistical models
can be ranked according to their AIC, with the one having the lowest AIC being the best. The
following formula is used to determine the AIC:

AIC = 2k−2log(L), (1.6)

where, L is the maximum value of the likelihood function for the estimated model, and k is the
number of parameters in the model.

1.3.5 Bayesian Information Criterion

In literature, the Bayesian information criterion (BIC) was proposed by Schwarz (1978) for
model selection criteria among a class of statistical models with different number of parameters,
say k. Many competing models for a given data set of size n can be ranked according to their
BIC, with the model with the lowest BIC being the best, similar to how AIC works. BIC has a
greater penalty for extra factors than AIC. The following formula is used to get the BIC:

BIC = k log(n)−2log(L) (1.7)

1.3.6 Kaplan-Meier Estimator

The product-limit estimator, commonly known as the Kaplan–Meier (KM) estimator, estimates
the survival of lifetime data. In literature, the KM estimator was proposed by Kaplan and Meier
(1958). A KM survival function estimator curve is a series of horizontal steps with decreasing
amplitude that approximate the real survival function for that population. The KM estimator
curve has the benefit of being able to handle censored data. The KM estimator curve is identical
to the empirical survival function when there is no censoring. For more details one may refer
(Lawless, 2003, p. 80).

Several competing models can be rated based on how near the curves of their predicted survival
functions are to the KM estimator’s curve. The KM estimator is defined as follows:

Ŝ(t) = ∏
yi≤t

(
1− 1

ni

)di

,
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where, ni= Number of surviving units at time yi, and

di =

1 failed/uncensored test units

0 censored test units.

1.4 Thesis at a Glance

This thesis consists of six chapters. Chapter 1 is completely introductory in nature with brief
discussions of life testing experiments, censoring schemes, classical and Bayesian estimation
theories. Also, it presents some useful goodness of fit tests and model selection criteria.

In Chapter 2, we develop classical and Bayesian estimates of the associated model parameters
of the randomly censored inverse Pareto (IP) lifetime model. To assess the performance of
different estimators, the numerical computations are performed through a Monte Carlo (MC)
simulation study. We investigate two randomly censored real data sets based on two different
types of cancer illnesses to illustrate the feasibility of the considered model and techniques.

In Chapter 3, we focus on the inverse Weibull (IW) lifetime model with random censoring.
The ML and Bayesian estimation approaches for the parameter and reliability characteristics
of the IW lifetime model are developed using randomly censored data. The expected time on
the test (ETT) is also computed for randomly censored data. Multiple values of real parameters
are utilized in the simulation study to investigate the behaviour of these estimators. Finally, a
randomly censored real data example is given for demonstration purposes.

Chapter 4 deals with the SSR for the IP lifetime model based on progressively censored data. A
system’s or machine’s SSR is defined as a measure of performance in the context of mechanical
durability. The system or machine will fail if the applied stress is greater than the strength of the
system or machine at any time point. The ML estimator for SSR and the asymptotic confidence
interval (ACI) are developed. The Bayes estimator and HPD credible interval for SSR are
obtained using non-informative and informative priors under the GELF. An MC simulation
study is used to compare the proposed estimation methods. Finally, two pairs of real data sets
are assessed for demonstration reasons.

In Chapter 5, we developed classical and Bayesian inference of associated unknown parameter
and reliability characteristics of IP lifetime model based on progressively first failure censored
(PFFC) data. For estimation of associated parameter and reliability characteristics, we used
ML in the classical estimation process. In addition, asymptotic and bootstrap confidence in-
tervals for the parameter are calculated. The TK approximation, importance sampling, and
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the Metropolis-Hasting (MH) methods are used to calculate the Bayes estimates of the asso-
ciated unknown parameter and reliability characteristics. Also, we compute the parameter’s
HPD credible interval. Extensive numerical computations are conducted to determine the per-
formance of various estimators developed in this chapter. Finally, a real data set is examined to
demonstrate the concept and methods suggested.

In Chapter 6, we discussed a problem from information theory based on PFFC data and devel-
oped statistical inferences of Shannon’s entropy for the Maxwell (MW) lifetime model. Shan-
non’s entropy is an essential quantity that determines the amount of accessible information or
the uncertainty of a random process’s result. The ML estimates of associated unknown pa-
rameter and entropy are computed using the expectation-maximization (EM) algorithm. Also,
based on ML estimates we constructed ACIs of parameter and entropy. In addition, we also
constructed bootstrap confidence intervals. The Bayes estimators and HPD credible intervals
of parameter and entropy are derived under the LINEX loss function. The performance of vari-
ous estimation methods is compared by an MC simulation study. Finally, real-life data has been
analyzed for illustrative purposes.

The statistical software R is used for computations throughout the thesis. Finally, a complete
list of references and other literature surveys is given at the end of the thesis as the bibliography.
Also, a list of research papers is presented at the end of this thesis.



Chapter 2

Statistical Inference in Inverse Pareto
Lifetime Model using Randomly Censored
Data*

2.1 Introduction

The main objective of this chapter is to build classical and Bayesian inferences about the model
parameters of the IP lifetime model using randomly censored data.

In the survival analysis, the entire lifetime of a person or an animal is not always observable.
Some lifetimes may be censored, in that case, only a part of the lifetime is recorded. Therefore,
censoring is a necessary part of life testing experiments. The units in these experiments are
lost or removed, resulting in incomplete information. In the literature, there are different types
of censoring schemes. Type-I and Type-II censoring schemes are the most extensively used
censoring techniques in reliability and life testing experiments. The censoring time or the
number of censored items are prefixed in these censoring techniques. Many scholars, such as
Mann et al. (1974) and Sinha (1986), have examined these censoring techniques with various
lifetime models extensively.

Random censoring is a common occurrence in real-world life testing experiments. For ex-
ample, patients with leukemia enter into the study simultaneously after their treatments. We
aim to track them throughout their lives, but censoring can take many forms, including loss to

*Part of this chapter has been published in the form of a research paper with the following details: Kumar, K.,
and Kumar, I. (2020). Parameter Estimation for Inverse Pareto Distribution with Randomly Censored Life Time
Data. International Journal of Agricultural Statistical Sciences. 16 (1): 419-430.

11
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follow-up (e.g., the patient may elect to relocate), drop out (e.g., inadequate side effects or an
unfinished course of treatment), death from other conditions, or study layoff. That is, these ran-
dom features are uncontrollable by the treatments, resulting in an independent random variable
called a censoring time variable. This censoring scheme was introduced by Gilbert (1962) in
literature. After that some early study on random censoring can be found in Breslow and Crow-
ley (1974), Koziol and Green (1976), etc. Recently, several authors investigated the usefulness
of random censoring in literature for different lifetime models like, Ghitany and Al-Awadhi
(2002) discussed ML estimates of parameters for Burr Type XII distribution, the generalized
inverted Rayleigh distribution is studied by Kumar and Garg (2014), Krishna et al. (2015) stud-
ied Maxwell distribution, the generalized inverted exponential distribution is studied by Garg
et al. (2016), Krishna and Goel (2017) discussed geometric distribution, the log-logistic dis-
tribution is discussed by Kumar (2018), the Birnbaum-Saunders distribution is discussed by
El-Sharkawy and Ismail (2020), EL-Sagheer et al. (2020) studied three parameters Burr Type
XII distribution etc.

Mathematically, random censoring can be described as follows: suppose the failure times
X1,X2, . . . ,Xn are independent and identically distributed (iid) random variables with pdf fX ,x>

0 and survival function SX ,x > 0. Associated with these failure times, T1,T2, . . . ,Tn are iid cen-
soring times with pdf fT , t > 0 and survival function ST , t > 0. Now, suppose X ′

i s and T ′
i s mutu-

ally independent ∀ i = 1,2, . . . ,n. We observe failure or censored time Yi = min(X ′
i s,T ′

i s) ; i =

1,2, . . . ,n, and the corresponding censor indicators

Di =

1; if failure occurs

0; if censoring occurs.

Some spacial cases of this censoring scheme are as follows: (i) It become complete sample case
when Ti = ∞ ∀ i = 1,2, . . . ,n. (i) It reduces to Type I censoring when Ti = t0 ∀i = 1,2, . . . ,n,
where, t0 is the pre-fixed study period. Thus, the joint pdf of Y and D is given by

fY,D(y,d) = { fX(y)ST (y)}d{ fT (y)SX(y)}1−d ; y > 0,d = 0,1. (2.1)

The marginal distribution of Y and D can be obtained as

fY (y) = fX(y)ST (y)+ fT (y)SX(y), y > 0, and

P[D = d] = pd(1− p)1−d ;d = 0,1,
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respectively, where, p is the probability of observing a failure and it is given by

p = P[X ≤ T ] =
∞∫

0

ST (y) fX(y)dy.

There are numerous real-life situations in survival analysis where data requires a probability
distribution with both decreasing and upside-down bathtub-shaped failure rate functions. For
example, a disease’s mortality may reach a high after a while and then gradually drop, as
shown in Kundu and Howlader (2010). During the first few days after a heart transplant, while
the body adjusts to the new organ, patients face an increasing failure rate of mortality. As the
patient recovers, the failure rate reduces, as seen in Collett (2015). The failure function shaped
like an upside-down bathtub would be acceptable in such cases.

The one parameter IP lifetime model has both the decreasing and upside-down bathtub-shaped
failure rate functions depending on the true value of the parameter. Also, it has nice closed-form
expressions of the cumulative distribution function (cdf) and failure rate function, both of which
are useful in reliability theory or survival analysis. However, the IP lifetime model has a very
nice closed form failure rate function, it has not gained much attention in the literature. Guo
and Gui (2018) studied IP lifetime model based on stress-strength reliability in the case of both
classical and Bayesian approaches. The application of IP lifetime model in extreme events is
studied by Dankunprasert et al. (2021), Kumar et al. (2021) developed some estimation methods
for associated parameter and reliability characteristics of IP lifetime model.

The main aim of this chapter is to develop the classical and Bayesian estimation procedures for
the parameters of the IP lifetime model using randomly censored data. The rest of the chapter is
laid out as follows: the IP lifetime model is discussed in Section 2.2. Also, a mathematical for-
mulation is given for random censoring with failure and censoring time distributions. Section
2.3 deals with the ML estimation and ACIs of the parameters. Section 2.4 describes the formu-
lation of Bayes estimation procedure using MCMC methods under LINEX loss function using
gamma informative priors. The HPD credible intervals for the parameters are derived using
MCMC techniques. Section 2.5 deals with an MC simulation study to explore the properties
of various estimates developed in this chapter. Two real datasets are analyzed for illustration
purposes in Section 2.6. Finally, concluding remarks are given in Section 2.7.
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2.2 The Model

If a random variable X follows the IP lifetime model with parameter α denoted by IP(α), the
pdf of IP lifetime model is given by

fX(x;α) =
αxα−1

(1+ x)α+1 ; α > 0, x > 0. (2.2)

Figure 2.1 shows the pdf of IP lifetime model for distinct values of α , say 0.25, 0.75, 1.5 and

FIGURE 2.1: Plot of pdf of IPD.

2.5. Also, the corresponding cdf, survival and failure rate functions are, respectively, given by

FX(x;α) =

(
x

1+ x

)α

; α > 0, x > 0, (2.3)

S(x;α) = P(X > x) = 1−
(

x
1+ x

)α

; x > 0, α > 0, and (2.4)

h(x;α) =
αxα−1

(1+ x)α+1
[
1−
( x

1+x

)α] ; α > 0,x > 0. (2.5)
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FIGURE 2.2: Plot of failure rate function of IPD.

Figure 2.2 shows the failure rate function of IP lifetime model for distinct values of α , say 0.25,
0.75, 1.5 and 2.5. From the figure 2.2, it is clear that IP lifetime model holds both decreasing
and upside-down bathtub shaped failure rate functions.

Next, suppose the failure time X folow IP lifetime model with parameter α , say IP(α), and
censoring time T follows IP lifetime model with parameter β , say IP(β ). Then using equation
(2.1), the joint pdf of randomly censored IP lifetime model is given by

fY,D(y,d,α,β ) =
αdβ 1−dyd(α−β )+β−1

(1+ y)d(α−β )+β+1

[
1−
(

y
1+ y

)β]d[
1−
(

y
1+ y

)α]1−d

;

y > 0,α > 0,β > 0,d = 0,1, (2.6)

and the probability of observing a failure is given by

p =

∞∫
0

ST (y) fX(y)dy =
β

α +β
.
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2.3 Maximum Likelihood Estimation

In this section, we derive the ML estimates, α̂ and β̂ of α and β , respectively. For the observed
sample (y, d) = (y1, d1),(y2, d2), . . .(yn, dn) of size n. Also, compute ACIs of the parameters
based on observed Fisher information matrix. The likelihood function can be written as

L(y, d, α, β ) =
n

∏
i=1

αdiβ 1−diydi(α−β )+β−1
i

(1+ yi)di(α−β )+β+1

[
1−
(

yi

1+ yi

)β]di
[

1−
(

yi

1+ yi

)α]1−di

. (2.7)

Thus, the log-likelihood function becomes

l(α,β |data) = m ln α +(n−m) ln β +(α −β )
n

∑
i=1

di ln yi +(β −1)
n

∑
i=1

ln yi

− (α −β )
n

∑
i=1

di ln (1+ yi)− (β +1)
n

∑
i=1

ln (1+ yi)

+
n

∑
i=1

di ln
[

1−
(

yi

1+ yi

)β]
+

n

∑
i=1

(1−di) ln
[

1−
(

yi

1+ yi

)α]
,

(2.8)

where, m =
n
∑

i=1
di. The corresponding normal equations of the log-likelihood function obtain as

follows:

∂ l(α,β |data)
∂α

=
m
α
+

n

∑
i=1

di ln yi −
n

∑
i=1

di ln (1+ yi)−
n

∑
i=1

(1−di)

( yi
1+yi

)α ln
( yi

1+yi

)[
1−
( yi

1+yi

)α] = 0 (2.9)

∂ l(α,β |data)
∂β

=
n−m

β
+

n

∑
i=1

ln yi −
n

∑
i=1

di ln yi +
n

∑
i=1

di ln (1+ yi)−
n

∑
i=1

ln (1+ yi)−

n

∑
i=1

di

( yi
1+yi

)β ln
( yi

1+yi

)
[
1−
( yi

1+yi

)β ] = 0
(2.10)

The ML estimates α̂ and β̂ of the parameters α and β , respectively, are the solutions of the
non-linear equations (2.9) and (2.10). Here, equations (2.9) and (2.10) do not have closed form
solutions, any iterative method can be used to solve these equations for α and β , respectively.
Here, for the computation purpose, nlm or optim or maxLik functions of statistical software R

can be used.

2.3.1 Asymptotic Confidence Intervals

As the ML estimates of the unknown model parameters are not in closed form, driving the exact
distributions of the ML estimates is difficult. As a result, we build the ACIs of the parameters
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based on the observed Fisher information matrix using the asymptotic distribution of ML esti-
mates. Let θ̂ = (α̂, β̂ ), be the MLE of θ = (α, β ), the observed Fisher information matrix is
given by

I(θ̂) =

−∂ 2l(α,β |data)
∂α2 −∂ 2l(α,β |data)

∂α∂β

−∂ 2l(α,β |data)
∂β∂α

−∂ 2l(α,β |data)
∂β 2


θ=θ̂

where,

∂ 2l(α,β |data)
∂α2 =− m

α2 −
n

∑
i=1

(1−di)

(
yi

1+yi

)α (
ln
(

yi
1+yi

))2

[
1−
(

yi
1+yi

)α]2 ,

∂ 2l(α,β |data)
∂β 2 =−n−m

β 2 −
n

∑
i=1

di

( yi
1+yi

)β( ln
( yi

1+yi

))2[
1−
( yi

1+yi

)β ]2 ,

∂ 2l(α,β |data)
∂α∂β

=
∂ 2l(α,β |data)

∂β∂α
= 0.

The asymptotic distribution of ML estimates θ̂ follows a bivariate normal distribution i.e. θ̂ ∼
N(θ , I−1(θ̂)), see, Lawless (2003). Consequently, two sided equal tailed 100(1−ξ )% ACIs of
parameters α and β are given by

(
α̂ ± zξ/2

√
V̂ar(α̂)

)
and

(
β̂ ± zξ/2

√
V̂ar(β̂ )

)
,

respectively. Here, V̂ar(α̂) and V̂ar(β̂ ) are diagonal elements of the observed Fisher informa-
tion matrix I−1(θ̂) and zξ/2 is the upper (ξ/2)th percentile of the standard normal distribution
N(0,1). Also, the coverage probability (CPs) for the parameters are given by

CPα =

[∣∣∣∣ α̂ −α√
V̂ar(α̂)

∣∣∣∣≤ zξ/2

]
and CPβ =

[∣∣∣∣ β̂ −β√
V̂ar(β̂ )

∣∣∣∣≤ zξ/2

]
.

2.4 Bayesian Estimation

Here, we discussed the Bayes estimators of unknown parameters associated with the model
in (2.6) under the LINEX loss function. In decision theory, a suitable loss function must be
given in order to get the optimal decision. For this purpose, the squared error loss function
(SELF) is commonly employed loss function in the literature. This loss function is appropriate,
when overestimation and underestimation of equal magnitude have the same effects. When
the true loss is not symmetric in terms of overestimation and underestimation, asymmetric
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loss functions are employed to characterise the implications of various losses. Varian (1975)
introduced an asymmetric loss function for the first time known as LINEX loss function and it
is given as follows:

L(φ , φ̂) = ek(φ̂−φ)− k(φ̂ −φ)−1, (2.11)

where, φ̂ is an estimate of parameter φ , k ̸= 0 is the known loss parameter. The sign and
magnitude of the loss parameter k reflects the direction and degree of asymmetry, respectively.
When k is positive, the over estimation is more serious than under estimation and the situation
is reverse when k is negative. The LINEX loss function reduces to SELF when magnitude of k

tends to zero, see, Zellner (1986). Under the LINEX loss function, the Bayes estimate of φ is
given as follows

φ̂ Bayes =−1
k

lnE[e−kφ |data],

where, E[e−kφ |data] is the posterior expectation which exist and finite. Further, we assume the
prior belief of the unknown parameters α and β follows gamma distributions with the following
pdfs:

g1(α) =
ba1

1
Γ(a1)

α
a1−1e−b1α ;α, a1, b1 > 0,

g2(β ) =
ba2

2
Γ(a2)

β
a2−1e−b2β ;β , a2, b2 > 0, respectively.

Thus, the joint prior distribution of α and β can be written as

g(α,β ) ∝ α
a1−1e−b1α

β
a2−1e−b2β , a1, b1,a2, b2 > 0. (2.12)

The assumption of the piece-wise independent gamma priors is quite reasonable. It is noted
that the non-informative priors are the special cases of independent gamma priors when hyper-
parameters a1 = b1 = a2 = b2 = 0. Based on the observed randomly censored data, likelihood
function in (2.7) and joint prior distribution of (α , β ) in (2.12), the joint posterior distribution
of α and β is given by

π(α,β |data) =
L(data|α,β )g(α,β )

∞∫
0

∞∫
0

L(data|α,β )g(α,β )dαdβ
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π(α,β |data) ∝ α
m+a1−1e

−α

[
b1−

n
∑

i=1
di ln

(
yi

1+yi

)]
n

∏
i=1

[
1−
(

yi

1+ yi

)α]1−di

×β
n−m+a2−1e

−β

[
b2−

n
∑

i=1
(1−di) ln

(
yi

1+yi

)]
n

∏
i=1

[
1−
(

yi

1+ yi

)β
]di

(2.13)

From the joint posterior distribution of α and β given in equation (2.13), we observe that the
posterior distributions of α and β are independent. Thus the marginal posterior distribution of
α given data (y, d) is obtained as

π1(α | data) ∝ α
m+a1−1e

−α

[
b1−

n
∑

i=1
di ln

(
yi

1+yi

)]
n

∏
i=1

[
1−
(

yi

1+ yi

)α](1−di)

; α > 0 (2.14)

Similarly, the marginal posterior distribution of β given data (y, d) is obtained as

π2(β | data) ∝ β
n−m+a2−1e

−β

[
b2−

n
∑

i=1
(1−di) ln

(
yi

1+yi

)]
n

∏
i=1

[
1−
(

yi

1+ yi

)β
]di

;β > 0 (2.15)

Thus, the expectations of any function of α say φ1(α) and β say φ2(β ), respectively, are given
by

E[φ1(α) | data] =
∞∫

0

φ1(α)π1(α | data)dα (2.16)

and E[φ2(β ) | data] =
∞∫

0

φ2(β )π1(β | data)dβ . (2.17)

From the above equation (2.16) and (2.17), we observe that the closed form solutions are not
available. The above integrals can be solved numerically. Here, we use Markov Chain Monte
Carlo (MCMC) techniques like, the Metropolis-Hastings (M-H) algorithm to derive the Bayes
estimates of the parameters α and β , respectively.

2.4.1 MCMC Technique

Here, we use MCMC techniques to generate sequences of samples from the marginal poste-
rior distributions of the parameters. The M-H algorithm is used to obtain sample based Bayes
estimates of the unknown parameters. For more details about MCMC and M-H algorithm
techniques, one may refer, Gelman et al. (2013), Robert and Casella (2004), Metropolis et al.
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(1953), Hastings (1970). The marginal posterior distributions of the parameters α and β in
equations (2.14) and (2.15), respectively, are not well known distributions. Therefore random
numbers from these distributions can be generated by using M-H algorithm. The following
steps are used to generate random numbers from the marginal posterior distribution in (2.14):

Step 1: Begin with an initial guess. α(0).
Step 2: From the proposed density δ (α( j) | α( j−1)), create a candidate point α

( j)
c .

Step 3: Generate u using the Uniform (0,1) distribution.

Step 4: Obtain z(α( j)
c | α( j−1)) = min

{
π1(α

( j)
c |data)δ (α( j)|α( j−1))

π1(α( j−1)|data)δ (α( j)
c |α( j−1))

,1
}

Step 5: If u ≤ z set α( j) = α
( j)
c with acceptance probability z otherwise α( j) = α( j−1).

Step 6: To acquire the parameter sequence of α as
(
α(1),α(2), . . . ,α(M)

)
, repeat steps 2-5 for

j = 1,2, . . . ,M,.

Here, we consider proposal density as a normal distribution. The ML estimates and variance
of ML estimates from posterior distribution of α are considered as mean and variance of the
proposal normal distribution, see, (Ntzoufras, 2009, pp. 44-45). To get an independent sample
from the stationary distribution of the Markov chain, which is generally the posterior distribu-
tion, we discard first M0, α( j)’s ; j = 1,2, . . . ,M0, where, M0 (< M) is the burn-in-period. Now,
the approximate posterior mean of φ1(α) using M-H algorithm is obtained as

φ̂1MH(α) =
1

M−M0

M

∑
j=M0+1

φ1(α
( j)).

Similarly, the approximate posterior mean of φ2(β ) using M-H algorithm is obtained as

φ̂2MH(β ) =
1

M−M0

M

∑
j=M0+1

φ2(β
( j)).

Therefore, the Bayes estimates of the parameters α and β under LINEX loss function using
M-H algorithm are, respectively, given by

α̂MH =−1
k

ln(φ̂1MH(α)) and β̂MH =−1
k

ln(φ̂2MH(β )).

2.4.2 HPD Credible Intervals

Here, we compute the HPD credible intervals of the parameters α and β using the gener-
ated MCMC samples. Let α(1) < α(2) < · · · < α(M−M0) denote the ordered values of α(M0+1),

α(M0+2), . . . ,α(M). Then, using the algorithm proposed by Chen and Shao (1999), the 100(1−
ξ )%, where 0 < ξ < 1, HPD credible interval for α is given by (α( j),α( j+[(1−ξ )(M−M0)])),
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where j is chosen such that

α( j+[(1−ξ )(M−M0)])−α( j) = min
1≤i≤(M−M0)

(
α(i+[(1−ξ )(M−M0)])−α(i)

)
; j = 1,2, . . . ,M−M0,

where, [x] is the largest integer less than or equal to x. Similarly, we can construct the 100(1−
ξ )% HPD credible interval for β .

2.5 Numerical Computations

Here, we perform a MC simulation study to examine the different estimators created in the pre-
ceding sections. The simulation study considers six distinct sample sizes n= 30,40,50,60,70,80
for different combinations of true parameters (α , β ) = (0.75, 1.5) and (1.5, 0.75), respectively.
The unknown parameter α and β are estimated using ML and Bayes estimation methods in
each cases. The hyper-parameters (a1,b1,a2,b2) = (3, 2, 3, 4) and (3, 4, 3, 2) are taken into ac-
count for gamma informative priors (Prior 1) in Bayesian calculations such that the prior means
precisely the same as the true values of the parameters. In case of non-informative priors (Prior
0), the hyper-parameters are taken as a1 = b1 = a2 = b2 = 0.0001. Two distinct values of loss
parameter k = -1 and 1 are taken for LINEX loss function. For MCMC technique, M = 10,000
sequence of parameter samples are drawn from posterior distribution and M0 = 1,000 taken
as burn-in-period. The 95% ACIs based on OFI matrix and HPD credible intervals based on
MCMC technique are computed. The entire procedure is replicated by 1000 times. The average
estimates (AE) and their associated mean squared error (MSE) are estimated for various esti-
mators. Also determined the average length (AL) and coverage probabilities (CP) of 95% ACI
and HPD credible intervals. Tables 2.1, 2.2, and 2.3 describe the findings of the MC simulation
study.

These observations can lead to the following conclusions: In almost every case, as sample
size grows, AEs become closer to the real value of the parameters, while MSEs go lower.
Similarly, when the sample size grows, the ALs of interval estimates shrink, demonstrating
the estimators’ asymptotic behaviour. CPs achieve the required levels of confidence in almost
every case. Bayes estimators perform more effectively in the case of Prior 1 than Prior 0 or
ML estimators in terms of biases. On average, HPD credible intervals are shorter AL than
ACIs. When some prior information about parameters is provided or non-informative priors
are used, we suggest Bayes estimators. ML estimators can also be utilised for rapid results in
other situations.



Chapter 2 22
TA

B
L

E
2.

1:
M

L
an

d
B

ay
es

es
tim

at
es

of
α

,f
or

di
ff

er
en

tv
al

ue
s

of
α

.

α
n

m

α̂
M

L
E

α̂
B

ay
es

k
=
−

1
k
=

1

Pr
io

r0
Pr

io
r1

Pr
io

r0
Pr

io
r1

A
E

M
SE

A
E

M
SE

A
E

M
SE

A
E

M
SE

A
E

M
SE

0.
75

30
21

0.
77

58
0.

02
33

0.
78

76
0.

02
56

0.
78

59
0.

01
95

0.
77

12
0.

02
17

0.
76

62
0.

01
70

40
24

0.
77

80
0.

01
70

0.
78

63
0.

01
83

0.
76

92
0.

01
43

0.
76

86
0.

01
71

0.
75

90
0.

01
39

50
35

0.
76

79
0.

01
34

0.
77

45
0.

01
42

0.
76

79
0.

01
13

0.
75

98
0.

01
22

0.
75

54
0.

01
05

60
42

0.
76

81
0.

01
12

0.
77

36
0.

01
18

0.
76

86
0.

00
96

0.
76

08
0.

01
05

0.
75

86
0.

00
96

70
43

0.
76

66
0.

00
95

0.
77

12
0.

00
99

0.
76

56
0.

00
93

0.
75

56
0.

00
88

0.
75

25
0.

00
73

80
57

0.
75

93
0.

00
79

0.
76

32
0.

00
81

0.
76

11
0.

00
75

0.
75

90
0.

00
76

0.
75

78
0.

00
69

1.
5

30
12

1.
59

11
0.

15
53

1.
67

83
0.

24
22

1.
61

87
0.

13
37

1.
54

83
0.

13
20

1.
52

40
0.

08
42

40
16

1.
56

88
0.

09
71

1.
62

68
0.

12
88

1.
59

51
0.

09
47

1.
53

43
0.

08
69

1.
52

20
0.

06
87

50
13

1.
55

10
0.

07
62

1.
59

49
0.

09
42

1.
59

77
0.

07
43

1.
51

46
0.

06
35

1.
52

17
0.

05
39

60
18

1.
54

79
0.

06
55

1.
58

38
0.

07
83

1.
56

22
0.

05
86

1.
52

33
0.

05
55

1.
51

70
0.

04
68

70
24

1.
54

32
0.

05
48

1.
57

30
0.

06
37

1.
57

85
0.

05
85

1.
51

68
0.

04
42

1.
50

92
0.

03
94

80
23

1.
52

17
0.

04
09

1.
54

67
0.

04
60

1.
55

40
0.

04
44

1.
52

26
0.

04
08

1.
51

70
0.

04
21



Chapter 2 23

TA
B

L
E

2.
2:

M
L

an
d

B
ay

es
es

tim
at

es
of

β
,f

or
di

ff
er

en
tv

al
ue

s
of

β
.

β
n

m

β̂
M

L
E

β̂
B

ay
es

k
=
−

1
k
=

1

Pr
io

r0
Pr

io
r1

Pr
io

r0
Pr

io
r1

A
E

M
SE

A
E

M
SE

A
E

M
SE

A
E

M
SE

A
E

M
SE

1.
5

30
21

1.
59

76
0.

15
60

1.
68

76
0.

27
03

1.
63

61
0.

14
97

1.
53

49
0.

12
00

1.
54

07
0.

08
83

40
24

1.
56

86
0.

09
93

1.
62

66
0.

13
08

1.
59

89
0.

09
30

1.
53

89
0.

08
87

1.
51

72
0.

06
65

50
35

1.
54

29
0.

07
09

1.
58

62
0.

08
70

1.
58

48
0.

07
21

1.
52

72
0.

07
26

1.
50

86
0.

05
10

60
42

1.
53

69
0.

06
20

1.
57

21
0.

07
35

1.
57

47
0.

06
11

1.
52

46
0.

05
44

1.
50

76
0.

04
85

70
43

1.
53

91
0.

04
90

1.
56

88
0.

05
73

1.
55

56
0.

04
96

1.
51

87
0.

05
12

1.
52

15
0.

04
22

80
57

1.
52

94
0.

04
22

1.
55

47
0.

04
79

1.
55

32
0.

04
43

1.
51

96
0.

03
99

1.
52

38
0.

03
88

0.
75

30
12

0.
77

62
0.

02
10

0.
78

81
0.

02
31

0.
78

53
0.

01
98

0.
76

66
0.

02
06

0.
76

64
0.

01
82

40
16

0.
76

61
0.

01
57

0.
77

44
0.

01
67

0.
78

45
0.

01
70

0.
76

53
0.

01
55

0.
76

57
0.

01
46

50
13

0.
76

87
0.

01
40

0.
77

55
0.

01
48

0.
76

50
0.

01
17

0.
76

27
0.

01
32

0.
75

58
0.

00
97

60
18

0.
76

51
0.

01
05

0.
77

06
0.

01
10

0.
77

22
0.

01
03

0.
75

75
0.

01
03

0.
75

84
0.

01
01

70
24

0.
76

07
0.

00
87

0.
76

51
0.

00
91

0.
76

27
0.

00
79

0.
75

94
0.

00
89

0.
75

56
0.

00
79

80
23

0.
75

64
0.

00
77

0.
76

04
0.

00
79

0.
76

87
0.

00
76

0.
75

77
0.

00
80

0.
76

02
0.

00
70



Chapter 2 24
TA

B
L

E
2.

3:
T

he
A

L
an

d
C

Ps
of

95
%

A
C

Is
an

d
H

PD
cr

ed
ib

le
in

te
rv

al
s

fo
rt

he
di

ff
er

en
tv

al
ue

s
pa

ra
m

et
er

s
(α

,β
).

(α
,β

)
n

m

α̂
M

L
E

α̂
B

ay
es

β̂
M

L
E

β̂
B

ay
es

Pr
io

r0
Pr

io
r1

Pr
io

r0
Pr

io
r1

A
L

C
P

A
L

C
P

A
L

C
P

A
L

C
P

A
L

C
P

A
L

C
P

(0
.7

5,
1.

5)
30

21
0.

56
38

0.
95

4
0.

55
21

0.
94

3
0.

52
56

0.
95

5
1.

36
05

0.
95

5
1.

53
08

0.
97

6
1.

39
58

0.
97

8
40

24
0.

48
95

0.
95

7
0.

47
90

0.
95

0
0.

45
27

0.
95

6
1.

14
35

0.
95

8
1.

28
74

0.
97

9
1.

21
02

0.
98

3
50

35
0.

43
19

0.
95

3
0.

42
33

0.
94

8
0.

40
78

0.
95

6
1.

00
08

0.
94

8
1.

12
79

0.
97

0
1.

08
64

0.
98

3
60

42
0.

39
44

0.
95

1
0.

38
62

0.
94

2
0.

37
45

0.
95

8
0.

90
93

0.
95

5
1.

02
25

0.
97

2
0.

99
04

0.
96

8
70

43
0.

36
43

0.
94

9
0.

35
73

0.
94

3
0.

34
68

0.
93

7
0.

84
19

0.
95

6
0.

94
82

0.
97

2
0.

91
35

0.
97

6
80

57
0.

33
74

0.
95

3
0.

33
08

0.
94

2
0.

32
37

0.
95

6
0.

78
17

0.
95

2
0.

88
01

0.
97

0
0.

85
88

0.
97

1

(1
.5

,0
.7

5)
30

12
1.

35
15

0.
95

4
1.

32
68

0.
94

8
1.

20
24

0.
96

2
0.

56
43

0.
96

7
0.

63
16

0.
98

7
0.

60
00

0.
98

2
40

16
1.

14
62

0.
96

1
1.

12
69

0.
95

1
1.

05
14

0.
94

7
0.

48
18

0.
95

5
0.

53
97

0.
97

1
0.

52
67

0.
97

3
50

13
1.

00
84

0.
94

1
0.

99
14

0.
93

3
0.

95
86

0.
96

8
0.

43
24

0.
94

0
0.

48
37

0.
96

4
0.

46
29

0.
97

3
60

18
0.

91
76

0.
95

6
0.

90
14

0.
94

3
0.

86
03

0.
96

4
0.

39
28

0.
94

7
0.

43
97

0.
96

9
0.

43
00

0.
97

5
70

24
0.

84
52

0.
95

6
0.

83
23

0.
95

1
0.

81
55

0.
94

5
0.

36
14

0.
94

9
0.

40
40

0.
97

4
0.

39
42

0.
97

3
80

23
0.

77
73

0.
95

0.
76

56
0.

94
4

0.
74

89
0.

96
2

0.
33

61
0.

95
6

0.
37

62
0.

97
4

0.
37

34
0.

97
3



Chapter 2 25

2.6 Real Data Analysis

With the help of two real datasets, we illustrate the estimation procedures discussed in the
previous sections. Here, we consider two real datasets, namely leukemia patients’ data (Data I)
and Hodgkin’s disease patients’ data (Data II). These datasets are reported in (Lawless, 2003,
pp. 139). Data I depicts the remission periods (in weeks) of a group of 30 leukemia patients who
all got the same therapy. Data II considered the survival times (in months) of 15 patients with
Hodgkin’s disease who were treated with nitrogen mustards and received heavy prior therapy.
Data I and Data II, respectively, are given below:

Data I: 1, 1, 2, 4, 4, 6, 6, 6, 7, 8, 9, 9, 10, 12, 13, 14, 18, 19, 24, 26, 29, 31+, 42, 45+, 50+, 57,
60, 71+, 85+, 91.
Data II: 1.05, 2.92, 3.61, 4.20, 4.49, 6.72, 7.31, 9.08, 9.11, 14.49+, 16.85, 18.82+, 26.59+,
30.26+, 41.34+.
The observations with + sign are censored times.

Before going further, we fit Data I and Data II to randomly censored IP lifetime and compare
its fitting with some well-known lifetime models, namely, inverse exponential (IE) and gener-
alized inverted exponential (GIE) lifetime models in case of random censoring. The pdfs of the
competitive lifetime models are as follows:

IE: f (x,θ) =
θ

x2 e−θ/x x > 0,θ > 0,

GIE: f (x,α,θ) =
αθ

x2 e−θ/x
(

1− e−θ/x
)α−1

x > 0,α,θ > 0.

We compute ML estimates of the unknown parameters along with some useful measure of
goodness-of-fit tests and model comparison criteria for both datasets, namely, the negative
log-likelihood -lnL, the AIC defined by AIC = 2× k − 2× lnL, proposed by Akaike (1974)
and Bayesian information criterion (BIC) defined by BIC = k× ln(n)−2× lnL, proposed by
Schwarz (1978), where k is the number of associated parameters in the model, n is the number
of data points in the given datasets, L is the maximised value of the likelihood function for the
estimated model and the Kolmogorov-Smirnov (KS) statistics with its p-values. The best life-
time model corresponds to the lowest –lnL, AIC, BIC, and KS statistic and the highest p-value.
The KS statistic with its p-values are obtained using ks.test function in statistical software R,
see R Core Team (2021). The results of the ML estimates and measures of goodness-of-fit
tests are reported in Table 2.4 and 2.5, respectively. From these results, we observed that the
performance of the randomly censored IP lifetime model is the best choice for the considered
datasets.
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Moreover, ML and Bayes estimates with their corresponding 95% ACIs and HPD credible
intervals of the unknown parameters associated with randomly censored IP lifetime model cor-
responding to the above real datasets (Data I and Data II) are computed and reported in Table
2.6. The Bayes estimates are computed using non-informative priors under SELF with the help
of the MCMC technique. For the M-H algorithm, we generate Markov chain M = 10,000 from
the posterior distribution. We also examine the convergence of their stationary distributions
using graphical diagnostic tools such as trace and histogram plots with Gaussian kernel density
plots, as shown in Figures 2.3 and 2.4. The trace plots indicate a random scatter and show
the fine mixing of the chains. The histogram plots of the generated MCMC samples show that
the marginal posterior distributions of the parameters are almost symmetrical i.e. we can take
the mean as the best estimate for the parameters. These plots are hallmarks of rapid MCMC
convergence. From these results, we see that ML and Bayes estimates of parameters based on
MCMC techniques are quite closed.

TABLE 2.4: Summary fit of the leukemia patients data (Data I).

Models MLE − lnL AIC BIC
KS-Test

KS-Statistic p-value
X ∼ IE(α) α̂ = 6.4343

139.8547 283.7094 286.5118 0.1755 0.3137
T ∼ IE(β ) β̂ = 76.3664

X ∼ IP(α) α̂ = 7.863
137.7025 279.4049 282.2073 0.1371 0.6256

T ∼ IP(β ) β̂ = 77.3696

X ∼ GIE(α,β ) α̂ = 0.6619
138.2794 282.5587 286.7623 0.1599 0.4271T ∼ GIE(α,λ ) β̂ = 4.7952

λ̂ = 63.1718

FIGURE 2.3: MCMC plot of leukemia patients data (Data I)
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TABLE 2.5: Summary fit of the Hodgkin’s disease patient data (Data II).

Models MLE − lnL AIC BIC
KS-Test

KS-Statistic p-value

X ∼ IE(α) α̂ = 5.5533
60.0676 124.1352 125.5513 0.1303 0.9323T ∼ IE(β ) β̂ = 27.2313

X ∼ IP(α) α̂ = 6.6481
59.7491 123.4982 124.9143 0.0966 0.9965

T ∼ IP(β ) β̂ = 28.1105

X ∼ GIE(α,β ) α̂ = 0.9172
60.0400 126.0800 128.2041 0.1157 0.9740T ∼ GIE(α,λ ) β̂ = 5.2465

λ̂ = 26.1409
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FIGURE 2.4: MCMC plot of Hodgkin’s disease data (Data II)

TABLE 2.6: The ML, Bayes estimates and 95% asymptotic and HPD credible intervals of the
unknown parameters corresponding to Data I and Data II, respectively.

Datasets Parameters MLE 95% CI Bayes estimates 95% HPD CI

Data I
α 7.863 (5.0484, 10.6775) 7.6672 (5.7135, 9.598)
β 77.3696 (31.6325, 123.1067) 72.6036 (40.328, 106.8078)

Data II
α 6.6481 (3.2792, 10.017) 6.3191 (4.0975, 8.6322)
β 28.1105 (8.3706, 47.8505) 25.6675 (12.6852, 40.3103)
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2.7 Concluding Remarks

The classical and Bayesian estimation techniques for the parameters of the IP lifetime model
using randomly censored data were discussed in this chapter. The ML estimators and their cor-
responding ACIs based on the observed Fisher information matrix of the unknown parameters
were derived. MCMC methods were used to approximate Bayes estimates of the parameters
under the LINEX loss function. A comprehensive Monte Carlo simulation study was conducted
to evaluate the performance of different estimators, and the results show that ML estimates may
be employed easily with acceptable results. For more efficient estimators, the Bayesian esti-
mation method with available prior information or convenient non-informative priors in the
absence of prior information is appropriate and recommended.
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Statistical Inference in Inverse Weibull
Lifetime Model using Randomly Censored
Data *

3.1 Introduction

The main objective of this chapter is to develop classical and Bayesian inferences about the
associated model parameters and reliability characteristics of the inverse Weibull (IW) lifetime
model using randomly censored data. The concept of random censoring has previously been
thoroughly explored in Chapter 2.

The Weibull lifetime model is the most popular and widely used lifetime model in reliability
and life testing experiments due to its flexible probability density and failure rate functions.
The Weibull lifetime model can have an increasing, decreasing, or constant failure rate depend-
ing upon the values of its shape parameter. However, given lifetime data with a non-monotone
failure rate pattern, the Weibull lifetime model does not provide a good parametric fit. This
motivates authors to investigate other, more realistic lifetime models. The failure rate function
of the IW lifetime model is either unimodal or decreasing depending on the shape parameter.
There are a variety of real-life instances where data shows a non-monotone, unimodal failure
rate, such as cancer patients’ remission times, wind speed data, rainfall data, and so on. As a
result, if an empirical investigation indicates that the underlying distribution’s failure rate func-
tion has a unimodal form, the IW lifetime model may be utilised to examine such data sets.

*Part of this chapter has been published in the form of a research paper with the following details: Kumar,
K., and Kumar, I. (2019). Estimation of inverse Weibull distribution based on randomly censored data. Statistica,
79(1): 47-74.
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Recently, the IW lifetime model was studied by several researchers in different disciplines,
for example: Kundu and Howlader (2010) studied Bayesian inferences and prediction of the
IW lifetime model for type II censored data, Sultan et al. (2014) discussed Bayesian and ML
estimation methods of the IW lifetime model parameters under progressive type II censoring,
Akgül et al. (2016) used IW lifetime model for the wind speed data, Akgül and Şenoğlu (2018)
compared different estimation methods for rainfall data fitted on IW lifetime model, Krishna
et al. (2019) studied stress-strength reliability of IW lifetime model under progressive first fail-
ure censoring, Basheer et al. (2021) studied IW lifetime model for E-Bayesian and Hierarchical
estimation procedures, the multi-component stress-strength for IW lifetime model is discussed
by Jana and Bera (2022), the IW lifetime model under Type-I hybrid censoring is discussed by
Kazemi and Azizpoor (2021) and reference cited therein.

The rest of the chapter is structured as follows: In Section 3.2, the IW lifetime model based
on a randomly censored sample is discussed. We derive ML estimates of the parameters and
reliability characteristics in Section 3.3. Based on the expected Fisher information (EFI) matrix,
ACIs with corresponding CPs of the unknown parameters are also computed. The expected
test time (ETT) of the experiment is discussed in Section 3.4, which is based on randomly
censored data from IW lifetime model. In Section 3.5, Bayes estimators of the parameters
and reliability characteristics under SELF with gamma informative and non-informative priors
using TK approximation and MCMC techniques are obtained. The HPD credible intervals for
the parameters based on MCMC techniques are also developed. Section 3.6 deals with an MC
simulation study to compare the performance of the estimators developed in this chapter. In
Section 3.7 findings are illustrated by a randomly censored real data set. Finally, a concluding
remark is appeared in Section 3.8.

3.2 The Model

The pdf and corresponding cdf of IW lifetime model, respectively, are given by

f (x;α,β ) = αβx−(α+1)e−βx−α

; α > 0,β > 0, x > 0, (3.1)

F(x;α,β ) = e−βx−α

; α > 0,β > 0, x > 0. (3.2)

The survival (or reliability) and failure rate (or hazard) functions, respectively, are given by

S(x;α,β ) = 1− e−βx−α

; α > 0,β > 0, x > 0. (3.3)
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and

h(x;α,β ) =
αβx−(α+1)

eβx−α −1
; α > 0,β > 0, x > 0, (3.4)

where, α and β are the shape and scale parameters, respectively. Figure 3.1 shows a visualiza-
tion of the failure rate function of IW lifetime model for various values of the shape parameter
α and scaling parameter β . Assume that the lifetime X and censoring time T , respectively, fol-

FIGURE 3.1: The plot of the failure rate function IW lifetime model with β=1.

low IW(α,β ) and IW(α,λ ). Then by using equation (2.6), the joint pdf of randomly censored
variables (Y,D) is given by

fY,D(y,d,α,β ,λ ) = αβ
d
λ

1−dy−(α+1)e−yα(βd+λ (1−d))(
1− e−λy−α )d(1− e−βy−α )1−d (3.5)

and the probability of failure is obtained as

p = P[An item fails] = P[d = 1] = P[X ≤ T ] =
∫

∞

0
fT (t)FX(t)dt =

λ

β +λ
. (3.6)
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3.3 Maximum Likelihood Estimation

Let (y,d) = ((y1,d1),(y2,d2), . . . ,(yn,dn)) be a randomly censored sample from model in (3.5).
The likelihood function is given by

L(α,β ,λ |y,d) = α
n
β

m
λ
(n−m)

n

∏
i=1

y−(α+1)
i e

−
(

β
n
∑

i=1
diy−α

i +λ
n
∑

i=1
(1−di)y−α

i

)
n

∏
i=1

(
1− e−λy−α

i
)di

n

∏
i=1

(
1− e−βy−α

i
)(1−di),

(3.7)

where, m =
n
∑

i=1
di denotes the number of failures.

Thus, the log-likelihood function becomes

l(α,β ,λ ) = n lnα +mlnβ +(n−m) lnλ − (α +1)S−β

n

∑
i=1

diy−α

i −λ

n

∑
i=1

(1−di)y−α

i

+
n

∑
i=1

di ln
(
1− e−λy−α

i
)
+

n

∑
i=1

(1−di) ln
(
1− e−βy−α

i
)
,

(3.8)

where, S =
n
∑

i=1
lnyi denotes the log total time on test.

The corresponding normal equations are obtained as

∂ l(α,β ,λ )

dα
=

m
β
−S+β

n

∑
i=1

diy−α

i lnyi +λ

n

∑
i=1

(1−di)y−α

i lnyi

−
n

∑
i=1

diλe−λy−α

i y−α

i lnyi(
1− e−λy−α

i
) −

n

∑
i=1

(1−di)βe−βy−α

i lnyi(
1− e−βy−α

i
) = 0

(3.9)

∂ l(α,β ,λ )

dβ
=

m
β
−

n

∑
i=1

diy−α

i +
n

∑
i=1

(1−di)e−βy−α

i y−α

i(
1− e−βy−α

i
) = 0 (3.10)

l(α,β ,λ )

dβ
=

n−m
λ

−
n

∑
i=1

(1−di)y−α

i +
n

∑
i=1

die−λy−α

i y−α

i

(1− e−λy−α

i )
= 0 (3.11)

The ML estimates of α , β and λ say α̂ , β̂ and λ̂ , respectively, are the solutions of the normal
equations (3.9), (3.10) and (3.11). For the solution of the system of these normal equations,
some suitable iterative procedure like the Newton-Raphson method can be used. It is important
to note that in this study, we used a Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton
method for computation. Once we get the desired ML estimates, using the invariance property
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of ML estimators, see, Zehna (1966), the ML estimates of the survival and failure rate functions,
respectively, are obtained as

Ŝ(t) = 1− e−β̂ t−α̂

; t > 0 and ĥ(t) =
α̂β̂ t−(α̂+1)

eβ̂x−α̂ −1
; t > 0.

3.3.1 Expected Fisher Information Matrix

Here, we compute the Fisher information matrix for the construction of ACIs of the unknown
parameters. Zheng and Gastwirth (2001) suggested the EFI matrix for randomly censored data
using the failure rate functions. The Fisher information about parameters, say θ=(α , β , λ )
contained in a randomly censored sample (y,d) of size n from the model in (3.5) is given by

IY,D(θ) = n×

I11(θ) I12(θ) I13(θ)

I22(θ) I23(θ)

I33(θ)


where,

I11(θ) =
∫

∞

0

(
∂

∂α
lnhX(x)

)2

fX(x)F̄T (x)dx+
∫

∞

0

(
∂

∂α
lnhT (x)

)2

fT (x)F̄X(x)dx

= αβ

∫
∞

0

(
1
α
− lnx− βx−α lnx

1− e−βx−α

)2

x−(α+1)e−βx−α

(1− e−λx−α

)dx

+αλ

∫
∞

0

(
1
α
− lnx− λx−α lnx

1− e−λx−α

)2

x−(α+1)e−λx−α

(1− e−βx−α

)dx,

I12(θ) =
∫

∞

0

(
∂

∂α
lnhX(x)

)(
∂

∂β
lnhX(x)

)
fX F̄T (x)dx

+
∫

∞

0

(
∂

∂α
lnhT (x)

)(
∂

∂β
lnhT (x)

)
fT (x)F̄X(x)dx

= αβ

∫
∞

0

(
1
α
− lnx+

βx−α lnx
1− e−βx−α

)(
1
β
+

x−α

1− e−βx−α

)
× x−(α+1)e−βx−α(

1− e−λx−α)
dx,
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I13(θ) =
∫

∞

0

(
∂

∂α
lnhX(x)

)(
∂

∂λ
lnhX(x)

)
fX(x)F̄T (x)dx

+
∫

∞

0

(
∂

∂α
lnhT (x)

)(
∂

∂λ
lnhT (x)

)
fT F̄X(x)dx

= αλ

∫
∞

0

(
1
α
− lnx+

λx−α lnx
1− e−λx−α

)(
1
λ
− x−α

1− e−λx−α

)
× x−(α+1)e−λx−α

(
1− e−βx−α

)
dx,

I22(θ) =
∫

∞

0

(
∂

∂β
lnhX(x)

)2

fX(x)F̄T (x)dx+
∫

∞

0

(
∂

∂β
lnhT (x)

)2

fT (x)F̄X(x)dx

= αβ

∫
∞

0

(
1
β
− x−α

1− e−βx−α

)2

x−(α+1)e−βx−α

(1− e−λx−α

)dx,

I23(θ) =
∫

∞

0

(
∂

∂β
lnhX(x)

)(
∂

∂λ
lnhX(x)

)
fX(x)F̄T (x)dx

+
∫

∞

0

(
∂

∂β
lnhT (x)

)(
∂

∂λ
lnhT (x)

)
fT (x)F̄X(x)dx = 0,

I33(θ) =
∫

∞

0

(
∂

∂λ
lnhX(x)

)2

fX(x)F̄T (x)dx+
∫

∞

0

(
∂

∂λ
lnhT (x)

)2

fT (x)F̄X(x)dx

= αλ

∫
∞

0

(
1
λ
− x−α

1− e−λx−α

)2

x−(α+1)e−λx−α

(1− e−βx−α

)dx.

Here, hX and hT are the failure rate functions of IW(α,β ) and IW(α,λ ), respectively. The
elements of the EFI matrix IY,D(θ) need to be compute numerically.

Under some mild regularity conditions, θ̂ = (α̂, β̂ , λ̂ ) follows approximately trivariate normal
distribution with mean (α, β , λ ) and covariance matrix

[
IY,D(θ)

]−1. In practice, covariance
matrix

[
IY,D(θ)

]−1 is estimated by observed covariance matrix
[
IY,D(θ̂)

]−1 to obtain the re-
quired asymptotic CIs, see, Lawless (2003). Therefore, two sided equal tail 100(1-ξ )% ACIs
for the parameters α , β and λ are, respectively, given by

(α̂ ± zξ/2

√
V̂ar(α̂)), (β̂ ± zξ/2

√
V̂ar(β̂ )) and (λ̂ ± zξ/2

√
V̂ar(λ̂ )).

Here, V̂ar(α̂), V̂ar(β̂ ) and V̂ar(λ̂ ) are diagonal elements of the observed covariance matrix[
IY,D(θ̂)

]−1 and zξ/2 is the upper (ξ/2)th percentile of the standard normal distribution. Also.
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the CPs for the parameters α , β and λ are, respectively, given by

CPα =

[∣∣∣∣ α̂ −α√
V̂ar(α̂)

∣∣∣∣≤ zξ/2

]
, CPβ =

[∣∣∣∣ β̂ −β√
V̂ar(β̂ )

∣∣∣∣≤ zξ/2

]
,

and

CPλ =

[∣∣∣∣ λ̂ −α√
V̂ar(λ̂ )

∣∣∣∣≤ zξ/2

]
.

3.4 Expected Time on Test

The ETT of a randomly censored life testing experiment is discussed in this section. In real life
testing situations, ETT is beneficial for estimating the quantity of objects to be tested, as well
as the duration and cost of the life testing experiment. ETT requires the following result:

Theorem 3.1. In randomly censored sampling plan, the expectation of the largest order statistic

Z = max(Y1,Y2, . . . ,Yn) is given by

E[Z] =
∞∫
0

[
1− (1− F̄X(z)F̄T (z))n]dz.

Proof. Since, Yi, i = 1,2, . . . ,n are iid, the cdf of Z is given by

FZ(z) = P[Z ≤ z] = P[max(Y1,Y2, . . . ,Yn)≤ z] = {P[Yi ≤ z]}n ;z > 0.

Note that

FY (z) = P[Yi ≤ z] = P
[
min(Xi,Ti)≤ z

]
= 1−P[min(Xi,Ti)> z]

= 1−P[Xi > z]P[Ti > z] = 1− F̄X(z)F̄T (z).

Therefore,
E[Z] =

∫
∞

0
(1−FZ(z))dz =

∫
∞

0

[
1− (1− F̄X(z)F̄T (z))n]dz.

Now, if the failure time X follows IW(α,β ) and censoring time T follows IW(α,λ ), the ETT
for randomly censored experiment is given by

ET T =
∫

∞

0

[
1−{1− (1− e−β z−α

)(1− e−λ z−α

)}n]dz (3.12)

ETT obtained in equation (3.12) can be obtained numerically for the given values of the pa-
rameters and the sample size n. Also, the observed time on the test (OBTT) is given by
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TABLE 3.1: Expected time on test (ETT) and the observed time on test (OBTT).

λ n α = 2, β = 0.5 α = 2, β = 1 α = 2, β = 2
ETT OBTT ETT OBTT ETT OBTT

AB MSE AB MSE AB MSE

0.5

20 1.7601 0.0582 0.6400 2.0871 0.0833 0.5272 2.4592 0.0509 0.5224
30 1.9620 0.0482 0.6377 2.3279 0.0573 0.6017 2.7482 0.0805 0.6903
40 2.1175 0.0702 0.678 2.5132 0.0859 0.6609 2.9702 0.0889 0.4232
50 2.2456 0.0912 0.8631 2.6659 0.0867 0.6270 3.1530 0.0751 0.6062
60 2.3556 0.0718 0.9476 2.7969 0.0857 0.7214 3.3096 0.0775 0.7966

1

20 2.0871 0.0659 0.644 2.4891 0.0887 0.6800 2.9515 0.0673 0.6545
30 2.3279 0.0891 0.619 2.7747 0.0753 0.6754 3.2921 0.0696 0.7035
40 2.5132 0.0829 0.6797 2.9946 0.0764 0.6559 3.5542 0.0700 0.7217
50 2.6659 0.0830 0.7519 3.1758 0.0961 0.7262 3.7702 0.0894 0.7541
60 2.7969 0.0878 0.8634 3.3313 0.0801 0.7952 3.9554 0.0994 0.7428

2

20 2.4592 0.0191 0.6023 2.9515 0.0869 0.6880 3.5202 0.0864 0.5600
30 2.7482 0.0935 0.7368 3.2921 0.0779 0.6381 3.9240 0.0965 0.5507
40 2.9702 0.0819 0.7145 3.5542 0.0817 0.7594 4.2350 0.0904 0.7119
50 3.1530 0.0836 0.7161 3.7702 0.0983 0.7037 4.4913 0.0824 0.7524
60 3.3096 0.0680 0.7428 3.9554 0.0941 0.7269 4.7111 0.0836 0.7905

OBT T = max(y1,y2, . . . ,yn). We compute, the average absolute bias (AB) and mean squared
error (MSE) for OBTT based on 1,000 randomly censored simulated samples from the model
in (3.5). The values of ETT and AB, MSE for OBTT under randomly censored IW lifetime
model for different values of the parameters and sample size n are reported in table 3.1. Table
3.1 shows that the OBTT estimates the ETT quite closely and efficiently.

3.5 Bayesian Estimation

For Bayesian estimation, we use the piece-wise independent gamma priors described below for
the parameters α , β , and λ :

g1(α) =
ba1

1
Γ(a1)

α
a1−1e−b1α ;α,a1,b1 > 0,

g2(β ) =
ba2

2
Γ(a2)

β
a2−1e−b2β ;β ,a2,b2 > 0,

g3(λ ) =
ba3

3
Γ(a3)

λ
a3−1e−b3λ ;λ ,a3,b3 > 0, respectively.

Thus, the joint prior distribution of α , β and λ can be written as

g(α,β ,λ ) ∝ α
a1−1

β
a2−1

λ
a3−1e−(b1α+b2β+b3λ ) (3.13)
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The piece-wise independent gamma priors assumption is a reasonable one. These priors have
been utilised by many authors on the shape and scale parameters of IW lifetime model, see,
for example Singh et al. (2013), Krishna et al. (2019). It is also noted that the non-informative
priors are the special cases of independent gamma priors when hyper-parameters a1 = b1 =

a2 = b2 = a3 = b3 = 0 in (3.13).

Based on the observed randomly censored data (y,d), likelihood function in (3.7) and joint
prior distribution of (α , β , λ ) in (3.13), the joint posterior distribution of α , β and λ is given
by

π(α,β ,λ |y,d) = L(y,d|α,β ,λ )g(α,β ,λ )
∞∫
0

∞∫
0

∞∫
0

L(y,d|α,β ,λ )g(α,β ,λ )dαdβdλ

π(α,β ,λ |y,d) ∝ α
n+a1−1e

−α

(
b1+

n
∑

i=1
lnyi

)
β

m+a2−1e
−β

(
b2+

n
∑

i=1
diy−α

i

)
λ

n−m+a3−1

e
−λ

(
b2+

n
∑

i=1
(1−di)y−α

i

)
n

∏
i=1

(1− e−λy−α

i )di
n

∏
i=1

(1− e−βy−α

i )1−di

(3.14)

Thus, the Bayes estimator of any function of α , β and λ , say, φ(α,β ,λ ) under SELF is the
posterior expectation of φ(α,β ,λ ) and is given by

E[φ(α,β ,λ )|y,d] =

∞∫
0

∞∫
0

∞∫
0

φ(α,β ,λ )L(y,d|α,β ,λ )g(α,β ,λ )dαdβdλ

∞∫
0

∞∫
0

∞∫
0

L(y,d|α,β ,λ )g(α,β ,λ )dαdβdλ

(3.15)

The Bayes estimator is in the form of a ratio of two integrals for which there is no closed form
solution, as shown in the accompanying equation (3.15). As a result, the following integral ratio
can be solved numerically. To construct the Bayes estimators, we employ the TK approximation
approach given by Tierney and Kadane (1986), as well as MCMC techniques such as the Gibbs
sampling methods followed by the M-H algorithm.
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3.5.1 TK Approximation Method

According to TK approximation method, the approximate Bayes estimator of φ (α ,β ,λ ) under
SELF is given by

φ̂T K = E[φ(α,β ,λ )|y,d] =

∞∫
0

∞∫
0

∞∫
0

enδ ∗
φ
(α,β ,λ )dαdβdλ

∞∫
0

∞∫
0

∞∫
0

enδ (α,β ,λ )dαdβdλ

(3.16)

where, δ (α,β ,λ )= 1
n [l(α,β ,λ )+ρ(α,β ,λ )] and δ ∗(α,β ,λ )=

[
δ (α,β ,λ )+ 1

n lnφ(α,β ,λ )
]
,

here, l(α,β ,λ ) is the log-likelihood function and ρ(α,β ,λ ) = lng(α,β ,λ ).

The expression (3.16) is approximated by the TK method as

φ̂(α,β ,λ ) =

√
|Σ∗|
|Σ|

en[δ ∗
φ
(α̂δ∗ ,β̂δ∗ ,λ̂δ∗)−δ (α̂δ ,β̂δ ,λ̂δ )], (3.17)

where, |Σ∗| and |Σ| are the determinants of inverse of negative hessian of δ ∗(α,β ,λ ) and
δ (α,β ,λ ) at (α̂δ ∗, β̂δ ∗ , λ̂δ ∗) and (α̂δ , β̂δ , λ̂δ ), respectively. Also, (α̂δ ∗, β̂δ ∗, λ̂δ ∗) and (α̂δ , β̂δ , λ̂δ )

maximize δ ∗(α,β ,λ ) and δ (α,β ,λ ), respectively. Next, we observe that

δ (α,β ,λ ) =
1
n

[
(n+a1 −1) lnα +(m+a2 −1) lnβ +(n−m+a3 −1) lnλ − (α +1)S

−β
(
b2 +

n

∑
i=1

diy−α

i
)
−λ

(
b3 +

n

∑
i=1

(
1−di)y−α

i
)
−b1α

+
n

∑
i=1

di ln
(
1− e−λy−α

i
)
+

n

∑
i=1

(1−di) ln
(
1− e−βy−α

i
)]

Then, (α̂δ , β̂δ , λ̂δ ) are computed by solving the following non-linear equations

∂δ

∂α
=

n+a1 −1
α

−S+β

n

∑
i=1

diy−α

i lnyi +λ

n

∑
i=1

(1−di)y−α

i lnyi −b1

−λ

n

∑
i=1

die−λy−α

y−α

i lnyi(
1− e−λy−α

i
) −β

n

∑
i=1

(1−di)e−βy−α

i y−α

i lnyi(
1− e−βy−α

i
) = 0

∂δ

∂β
=

m+a2 −1
β

−
(
b2 +

n

∑
i=1

diy−α

i
)
+

n

∑
i=1

(1−di)e−βy−α

i y−α

i(
1− e−βy−α

i
) = 0

∂δ

∂λ
=

n−m+a3 −1
λ

−
(
b3 +

n

∑
i=1

(1−di)y−α

i
)
+

n

∑
i=1

die−λy−α

i y−α

i(
1− e−λy−α

i
) = 0
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Now, obtain |Σ| from

Σ
−1 =

1
n

δ11 δ12 δ13

δ21 δ22 δ23

δ31 δ32 δ33

 ,
where,

δ11 =− ∂ 2δ

∂α2 =
n+a1 −1

α2 +β

n

∑
i=1

diy−α

i (lnyi)
2 +λ

n

∑
i=1

(1−di)y−α

i (lnyi)
2

+λ

n

∑
i=1

diy−α

i (lnyi)
2e−λy−α

i (e−λy−α

i +λy−α

i −1)(
1− e−λy−α

i
)2

+β

n

∑
i=1

(1−di)y−α

i (lnyi)
2e−βy−α

i (e−βy−α

i +βy−α

i −1)(
1− e−βy−α

i
)2

δ12 = δ21 =− ∂ 2δ

∂α∂β
=−

n

∑
i=1

diy−α

i lnyi −
n

∑
i=1

(1−di)y−α

i lnyie−βy−α

i (e−βy−α

i +βy−α

i −1)(
1− e−βy−α

i
)2

δ13 = δ31 =− ∂ 2δ

∂α∂λ
=−

n

∑
i=1

(1−di)y−α

i lnyi −
n

∑
i=1

diy−α

i lnyie−λy−α

i (e−λy−α

i +λy−α

i −1)(
1− e−λy−α

i
)2

δ22 =−∂ 2δ

∂β 2 =
m+a2 −1

β 2 +
n

∑
i=1

(1−di)y−2α

i e−βy−α

i

(1− e−βy−α

i )2
, δ23 = δ32 =− ∂ 2δ

∂β∂λ
= 0,

δ33 =
∂ 2δ

∂λ 2 =
n−m+a3 −1

λ 2 +
n

∑
i=1

diy−2α

i e−λy−α

i(
1− e−λy−α

i
)2

In order to compute the Bayes estimator of α we take φ(α,β ,λ ) = α and accordingly function
δ ∗(α,β ,λ ) becomes

δ
∗
α(α,β ,λ ) = δ (α,β ,λ )+

1
n

lnα

and then (α̂δ ∗, β̂δ ∗ , λ̂δ ∗) are obtained as solution of the following non-linear equations

∂δ ∗
α

∂α
=

∂δ

∂α
+

1
α

= 0,
∂δ ∗

α

∂β
=

∂δ

∂β
= 0,

∂δ ∗
α

∂λ
=

∂δ

∂λ
= 0

and obtain |Σ∗| from

Σ
∗
α

−1 =
1
n

δ ∗
11 δ ∗

12 δ ∗
13

δ ∗
21 δ ∗

22 δ ∗
23

δ ∗
31 δ ∗

32 δ ∗
33

 ,
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where,

δ
∗
11 =−∂ 2δ ∗

α

∂α2 =− ∂ 2δ

∂α2 +
1

α2 , δ
∗
12 = δ12, δ

∗
13 = δ13, δ

∗
21 = δ21, δ

∗
22 = δ22, δ

∗
23 = δ23, δ

∗
31 = δ31,

δ
∗
32 = δ32, δ

∗
33 = δ33.

Thus, the approximate Bayes estimator of α under SELF is given by

α̂T K =

√
| Σ∗

α |
| Σ |

en[δ ∗
α (α̂δ∗ ,β̂δ∗ ,λ̂δ∗)−δ (α̂δ ,β̂δ ,λ̂δ )]

Similarly, we can derive the approximate Bayes estimator of β and λ as

β̂T K =

√
| Σ∗

β
|

| Σ |
en[δ ∗

β
(α̂δ∗ ,β̂δ∗ ,λ̂δ∗)−δ (α̂δ ,β̂δ ,λ̂δ )]

λ̂T K =

√
| Σ∗

λ
|

| Σ |
en[δ ∗

λ
(α̂δ∗ ,β̂δ∗ ,λ̂δ∗)−δ (α̂δ ,β̂δ ,λ̂δ )],

respectively. Next, We compute the Bayes estimator of survival function S(t).
In this case, φ(α,β ,λ ) = 1− e−β t−α

, then

δ
∗
λ
(α,β ,λ ) = δ (α,β ,λ )+

1
n

ln
(
1− e−β t−α)

.

Now compute (α̂δ ∗, β̂δ ∗, λ̂δ ∗) by solving the following non-linear equations:

∂δ ∗
S(t)

∂α
=

∂δ

∂α
− βe−β t−α

t−α ln t
(1− e−β t−α

)
= 0,

∂δ ∗
S(t)

∂β
=

∂δ

∂β
+

e−β t−α

t−α

(1− e−β t−α
)
= 0,

∂δ ∗
S(t)

∂λ
=

∂δ

∂λ
= 0

Now we find Σ∗
S(t) from

Σ
∗
S(t)

−1 =
1
n


δ ∗

S(t)11 δ ∗
S(t)12 δ ∗

S(t)13

δ ∗
S(t)21 δ ∗

S(t)22 δ ∗
S(t)23

δ ∗
S(t)31 δ ∗

S(t)32 δ ∗
S(t)33

 ,
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where,

δ
∗
S(t)11 =−

∂ 2δ ∗
S(t)

∂α2 =−∂ 2δ

∂α2 −
βe−β t−α

t−α(ln t)2(e−β t−α

+β t−α −1)
(1− e−β t−α

)2 ,

δ
∗
S(t)12 = δ

∗
S(t)21 =−

∂ 2δ ∗
S(t)

∂α∂β
=− ∂ 2δ

∂α∂β
− e−β t−α

t−α ln t(e−β t−α

+β t−α −1)
(1− e−β t−α

)2 ,

δ
∗
S(t)13 =−

∂ 2δ ∗
S(t)

∂α∂λ
=− ∂ 2δ

∂α∂λ
, δ

∗
S(t)22 =−

∂ 2δ ∗
S(t)

∂β 2 =−∂ 2δ

∂β 2 +
t−2αe−β t−α

(1− e−β t−α
)2 ,

δ
∗
S(t)23 = δ23,δ

∗
S(t)31 = δ31, δ

∗
S(t)33 = δ33 .

Thus, the Bayes estimator of S(t) is given by

Ŝ(t)T K =

√
| Σ∗

S(t) |
| Σ |

en[δ ∗
S(t)(α̂δ∗ ,β̂δ∗ ,λ̂δ∗)−δ (α̂δ ,β̂δ ,λ̂δ )]

Similarly, the Bayes estimator of failure rate function is given by

ĥ(t)T K =

√
| Σ∗

h(t) |
| Σ |

en[δ ∗
h(t)(α̂δ∗ ,β̂δ∗ ,λ̂δ∗)−δ (α̂δ ,β̂δ ,λ̂δ )],

3.5.2 Gibbs Sampling Method

To do sample-based inference, we consider adopting one of the MCMC methods as Gibbs sam-
pling technique to produce a random sample from the joint posterior distribution. For detailed
study about MCMC techniques and their applications, one may refer Robert and Casella (2004)
and Gelman et al. (2013). The Gibbs sampling approach uses the full conditional posterior den-
sities of α , beta, and lambda, respectively

π1(β | α,y,d) = β
m+a2−1e

−β

(
b2+

n
∑

i=1
diy−α

i

)
n

∏
i=1

(
1− e−βy−α

i
)(1−di), (3.18)

π2(λ | α,y,d) = λ
n−m+a3−1e

−λ

(
b3+

n
∑

i=1
(1−di)y−α

i

)
n

∏
i=1

(
1− e−βy−α

i
)di, (3.19)

π3(α | β ,λ ,y,d) = α
n+a1−1e

−α

(
b1+

n
∑

i=1
lnyi

)
e
−
(

β
n
∑

i=1
diy−α

i +λ
n
∑

i=1
(1−di)y−α

i

)
n

∏
i=1

(1− e−λy−α

i )di
n

∏
i=1

(1− e−βy−α

i )(1−di).
(3.20)
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To produce samples from the full conditional posterior densities (3.18), (3.19) and (3.20), we
utilise the following algorithm:

Gibbs Sampler Algorithm

Step 1: Start with initial guess of α , β and λ say α(0), β (0) and λ (0).
Step 2: Set j = 1 .
Step 3: Generate β ( j) from π1(β | α( j−1),y,d) in (3.18) using M-H algorithm with normal
proposal density.
Step 4: Generate λ ( j) from π2(λ | α( j−1),y,d) in (3.19) using M-H algorithm with normal
proposal density.
Step 5: Generate α( j) from π3(α | β ( j−1),λ ( j−1),y,d) in (3.20) using M-H algorithm with nor-
mal proposal density.
Step 6: Set j = j+1 and repeat steps 3-5 for all j = 1,2, . . . ,M to obtain MCMC samples

(
α(1),β (1),λ (1)),(α(2),β (2),λ (2)), . . . ,(α(M),β (M),λ (M)

)
.

Now, the approximate Bayes estimator of φ(α,β ,λ ), can be obtained as

φ̂GS(α,β ,λ ) =
1

M−M0

M

∑
j=M0+1

φ
(
α
( j),β ( j),λ ( j)), (3.21)

where, M0 is the burn-in period i.e. a number of iterations in Markov chain before the station-
ary distribution is achieved. Thus, taking, φ(α,β ,λ ) = α,β and λ , the Bayes estimators of the
parameters α , β and λ under SELF, respectively, are given by

α̂GS =
1

M−M0

M

∑
j=M0+1

α
( j), β̂GS =

1
M−M0

M

∑
j=M0+1

β
( j), and

λ̂GS =
1

M−M0

M

∑
j=M0+1

λ
( j).

Also, the Bayes estimators of the survival and failure rate functions, respectively, are given by

Ŝ(t)GS =
1

M−M0

M

∑
j=M0+1

(
1− e−β ( j)t−α( j)

)
; t > 0, and
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ĥ(t)GS =
1

M−M0

M

∑
j=M0+1

α( j)β ( j)t−(α( j)+1)

eβ ( j)t−α( j)
−1

; t > 0.

3.5.3 HPD Credible Intervals

Using the produced MCMC samples, we now compute the HPD credible interval of the un-
known parameters. Let α(1),α(2), . . . ,α(M−M0) be the ordered values of α(M0+1),α(M0+2), . . . ,α(M).

Then 100(1-ξ )% of HPD credible intervals of the parameter α , is given by

(
α( j), α( j+[(1−ξ )(M−M0)])

)
, 0 < ξ < 1

where j is chosen such that

α( j+[(1−ξ )(M−M0)])−α( j) = min
1≤iξ≤(M−M0)

(
α(i+[(1−ξ )(M−M0)])−α(i)

)
; j = 1,2, . . . ,(M−M0),

here, [x] is the largest integer less than or equal to x, see, Chen and Shao (1999).

Similarly, 100(1-ξ )% HPD credible intervals for β and λ can be constructed.

3.6 Numerical Computations

In this section, we run a simulation study to compare the proposed estimators developed in the
preceding sections. All of the computations were done with the statistical software R, see, R
Core Team (2021). In this simulation study, we use five distinct sample sizes n= 20, 30, 40,
50, and 60. In all situations, the true value of λ = 1.0 is used, as well as two distinct values
of β=0.5, 1.5, and two different values of α=0.5, 2. Under SELF, non-informative as well as
gamma informative priors are considered for Bayesian computation. In case of informative pri-
ors following values of hyper-parameters (a1,b1,a2,b2,a3,b3) are taken so that prior means are
exactly equal to the true values of the parameters: (2,4,2,4,2,2),(2,4,3,2,2,2),(4,2,2,4,2,2)
and (4,2,3,2,2,2).

For each case, the ML and Bayes estimates of the unknown parameters, survival and failure
rate functions are computed. The mission time t = 0.80 is taken for survival and failure rate
functions. The TK approximation and Gibbs sampling methods are used to compute the Bayes
estimators of the parameters and reliability characteristics. The 95% asymptotic CIs based
on expected Fisher information matrix and HPD credible intervals based on Gibbs sampling
method are constructed. The integrals associated with expected Fisher information matrix are
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solved using the integrate function of software R. We take, M = 10,000 with burn-in period
M0 = 2,000 for Gibbs sampling method. The whole process was simulated 1,000 times and the
average absolute biases (AB) with the corresponding mean squared errors (MSE) are computed
for different estimators. Also, the average length (AL) and the coverage probabilities (CP)
of 95% asymptotic confidence and HPD credible intervals are calculated. The results of the
simulation study are reported in following Tables 3.2 , 3.6, 3.3, 3.7, 3.4, 3.8, 3.5, 3.9.

In simulation tables, the short notations TK stands for Tierney-Kadane method, GS stand for
Gibbs sampling method, P1 for non-informative prior and P2 for gamma informative prior.
From these results the following conclusions are made:

(i) The AB and MSEs of the ML and Bayes estimators of the parameters and reliability
characteristics decrease as the sample size increases in all situations.

(ii) The AB and MSE decrease as the failure time parameter β increases.

(iii) In terms of both AB and MSEs, Bayes estimates outperform ML estimates as they in-
clude prior knowledge. In terms of both AB and MSEs, the Gibbs sampling approach
outperforms the TK approximation method.

(iv) As the sample size n increases, the ALs of all intervals shrinks. Also, the ALs of HPD
credible intervals are less than the ALs of ACIs.

(v) The CPs achieve their required confidence levels quite satisfactorily in classical estima-
tion. However, when the true value of parameter α = 0.5 is used in the Bayesian estimate
approach, CPs only reach their nominal level. In most situations, as the true value of α

and the sample size n increase, they don’t hit their nominal levels.
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TABLE 3.6: The AL and CPs of 95% ACIs and HPD credible intervals of parameters when
α=0.5, β=0.5, λ=1.

n Method α̂ β̂ λ̂

AL CP AL CP AL CP

20
ACI 0.3671 0.935 0.5843 0.920 1.2637 0.943

HPD P1 0.2281 0.930 0.5834 0.932 0.3498 0.935
HPD P2 0.2153 0.941 0.3299 0.941 0.7012 0.945

30
ACI 0.2851 0.930 0.4827 0.935 0.9586 0.938

HPD P1 0.1784 0.938 0.2902 0.941 0.6215 0.944
HPD P2 0.1718 0.932 0.2814 0.946 0.5878 0.952

40
ACI 0.2433 0.947 0.4135 0.930 0.8181 0.938

HPD P1 0.1511 0.941 0.2556 0.941 0.5355 0.940
HPD P2 0.1471 0.946 0.2452 0.945 0.5157 0.941

50
ACI 0.2159 0.940 0.3718 0.943 0.7231 0.940

HPD P1 0.1338 0.940 0.2296 0.947 0.4791 0.940
HPD P2 0.1312 0.948 0.2231 0.948 0.464 0.9453

60
ACI 0.1954 0.949 0.3426 0.936 0.6567 0.943

HPD P1 0.1204 0.948 0.2123 0.948 0.4344 0.942
HPD P2 0.1189 0.949 0.2072 0.947 0.4255 0.952

TABLE 3.7: AL and CPs of 95% ACIs and HPD credible intervals of parameters when α=0.5,
β=1.5, λ=1.

n Method α̂ β̂ λ̂

AL CP AL CP AL CP

20
ACI 0.3642 0.952 1.7017 0.953 0.9861 0.929

HPD P1 0.2497 0.939 1.1026 0.937 0.6654 0.929
HPD P2 0.2395 0.976 0.9716 0.945 0.6184 0.931

30
ACI 0.2840 0.954 1.2835 0.943 0.8124 0.942

HPD P1 0.1969 0.940 0.8683 0.941 0.5399 0.942
HPD P2 0.1909 0.952 0.8055 0.957 0.5249 0.943

40
ACI 0.2418 0.935 1.1032 0.961 0.6874 0.95

HPD P1 0.1684 0.939 0.7378 0.944 0.4715 0.943
HPD P2 0.1633 0.947 0.7133 0.946 0.4521 0.955

50
ACI 0.2152 0.949 0.9663 0.947 0.6188 0.951

HPD P1 0.1486 0.942 0.6615 0.942 0.4219 0.949
HPD P2 0.1459 0.946 0.6368 0.955 0.4111 0.952

60
ACI 0.1955 0.945 0.8734 0.965 0.5618 0.936

HPD P1 0.1339 0.944 0.6076 0.937 0.3819 0.945
HPD P2 0.1328 0.948 0.582 0.955 0.3756 0.955
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TABLE 3.8: The AL and CPs of 95% ACIs and HPD credible intervals of parameters when
α=2, β=0.5, λ=1.

n Method α̂ β̂ λ̂

AL CP AL CP AL CP

20
ACI 1.4658 0.918 0.5896 0.929 1.2104 0.933

HPD P1 0.8695 0.938 0.3921 0.932 0.7789 0.939
HPD P2 0.8107 0.941 0.3579 0.935 0.7164 0.942

30
ACI 1.1445 0.948 0.4825 0.928 0.9524 0.926

HPD P1 0.6727 0.946 0.3210 0.935 0.6383 0.936
HPD P2 0.6475 0.952 0.3050 0.941 0.6041 0.940

40
ACI 0.9762 0.939 0.4165 0.934 0.8203 0.943

HPD P1 0.5659 0.940 0.2717 0.936 0.5553 0.944
HPD P2 0.5487 0.943 0.2606 0.943 0.5298 0.948

50
ACI 0.8637 0.941 0.3722 0.936 0.7243 0.937

HPD P1 0.4904 0.943 0.2339 0.938 0.4926 0.941
HPD P2 0.4820 0.944 0.2290 0.941 0.4724 0.952

60
ACI 0.7808 0.949 0.3400 0.935 0.6517 0.947

HPD P1 0.4355 0.952 0.2011 0.940 0.4427 0.947
HPD P2 0.4307 0.951 0.1989 0.943 0.4372 0.951

TABLE 3.9: The AL and CPs of 95% ACIs and HPD credible intervals of parameters when
α=2, β=1.5, λ=1.

n Method α̂ β̂ λ̂

AL CP AL CP AL CP

20
ACI 1.4535 0.948 1.6405 0.955 1.0017 0.931

HPD P1 0.9936 0.946 1.0499 0.940 0.6852 0.936
HPD P2 0.9293 0.949 0.9477 0.945 0.6452 0.945

30
ACI 1.1502 0.957 1.2786 0.945 0.7987 0.937

HPD P1 0.7845 0.955 0.8503 0.929 0.5575 0.940
HPD P2 0.7476 0.952 0.7969 0.958 0.5387 0.942

40
ACI 0.9687 0.954 1.1014 0.948 0.6938 0.958

HPD P1 0.6611 0.945 0.7416 0.923 0.4875 0.944
HPD P2 0.6452 0.948 0.7010 0.959 0.4722 0.948

50
ACI 0.8667 0.946 0.9628 0.931 0.6200 0.943

HPD P1 0.5901 0.945 0.6541 0.912 0.4373 0.943
HPD P2 0.5740 0.946 0.6338 0.949 0.4216 0.952

60
ACI 0.7814 0.945 0.8769 0.934 0.5626 0.938

HPD P1 0.5319 0.945 0.5994 0.938 0.3976 0.940
HPD P2 0.5196 0.951 0.5781 0.947 0.3889 0.945
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3.7 Real Data Analysis

With the help of real data, we demonstrate the estimation techniques developed in this chapter.
Here, we consider a secondary data set having remission times (in weeks) of a group of 30
leukemia patients who received similar treatments. This data set is reported in Lawless (2003)
and observations with + sign are censored times.
1, 1, 2, 4, 4, 6, 6, 6, 7, 8, 9, 9, 10, 12, 13, 14, 18, 19, 24, 26, 29, 31+, 42, 45+, 50+, 57, 60, 71+,
85+, 91.
Before going further, we fit the randomly censored IW lifetime model and compared its fitting
with some well-known lifetime models like generalized inverted exponential (GIE), gamma,
and Weibull lifetime models for this data set. We calculate ML estimates of the associated
unknown parameters together with some useful measure of goodness-of-fit tests, namely, the
negative log-likelihood function − lnL, the AIC defined by AIC = 2×k−2× lnL, proposed by
Akaike (1974) and BIC defined by BIC = k× ln(n)− 2× lnL, proposed by Schwarz (1978),
where k is the number of parameters in the model, n is the number of observations in the
given data set, L is the maximized value of the likelihood function for the estimated model
and Kolmogorov-Smirnov (KS) statistic with its p-values. The lowest –lnL, AIC, BIC, and KS
statistics, as well as the highest p-value, indicate the optimal lifetime model. Table 3.10 con-
tains the results of the ML estimates as well as goodness-of-fit test measures. These findings

TABLE 3.10: Summary fit of the real data set of remission times (in weeks) of 30 leukemia
patients.

KS Test
Model MLE -lnL AIC BIC Statistic p-value

X ∼ IW(α ,β )
T ∼ IW(α ,λ )

α̂=0.7774
137.7351 281.4701 285.6737 0.1373 0.624β̂=4.9231

λ̂=33.3523

X ∼ GIE(α ,β )
T ∼ GIE(α ,λ )

α̂=0.6619
138.2794 282.5587 286.7623 0.1599 0.4272β̂= 4.7952

λ̂=63.1718

X ∼ Weibull(α ,β )
T ∼ Weibull(α ,λ )

α̂=0.9714
140.4595 286.9191 291.1227 0.1556 0.4621β̂=0.0365

λ̂=0.0073

X ∼ gamma(α ,β )
T ∼ gamma(α ,λ )

α̂=1.0441
140.4587 286.9175 291.1211 0.1710 0.3444β̂=0.0346

λ̂=0.0072

demonstrate that for the data set under consideration, a randomly censored IW lifetime model
is the appropriate choice. For the fitting of randomly censored data via the graphs, we also
consider the Kaplan-Meier (KM) product limit estimator. The KM product-limit estimator for



Chapter 3 52

survival function was proposed by Kaplan and Meier (1958) and is given by

Ŝ(t) = ∏
yi≤t

(
1− 1

ni

)di

,

where, ni is the number of items survived at time yi and di = 1 if item failed, 0 otherwise.
Figure 3.2 shows the graphs of the KM estimator and the estimated survival functions of the
considered models. The survival function estimate for the IW lifetime model is fairly close to
that provided by the KM estimator, as seen in 3.2. As a result, the KM estimator recommends
using the IW lifetime model to describe this data set. We provide the results of the estimation
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FIGURE 3.2: The plot of estimates of survival functions of considered models

techniques examined in this article based on the above real data set in Table 3.11. The unknown
parameters and reliability characteristics are estimated using ML and Bayes methods. We use
the median of the data as the mission time (t = 13.5) for reliability characteristics. The Bayes
estimates are derived using non-informative priors under SELF since we don’t have any prior
information about the parameters. The TK approximation and Gibbs sampling procedures are
used to get the Bayes estimates of parameters. We create a Markov chain using M = 1,00,000
for the Gibbs sampling technique using the MH algorithm. The first M0 = 20,000 observations
are discarded as burn-in observations, and every 10th observation is used as the iid observation
of produced MCMC samples of α , β , and λ . We also use graphical diagnostic tools like trace,
autocorrelation function (ACF), and histogram with Gaussian kernel density plots to assess the
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TABLE 3.11: The ML and Bayes estimates of the parameters and reliability characteristics
corresponding to the real data set of remission times (in weeks) of 30 leukemia patients.

Method α̂ β̂ λ̂ Ŝ(t) ĥ(t)

MLE
0.7774 4.9231 33.3524 0.4784 0.0409

(0.5768, 0.9781) (2.7112, 7.1349) (2.3046, 64.4001)
TK 0.7759 4.9254 36.4505 0.4760 0.0410

MCMC
0.7238 4.6407 24.4085 0.5048 0.0370

(0.6146, 0.8573) (3.3702, 5.8947) (22.4474, 26.2966)

convergence of their stationary distributions. Figure 3.3 shows the trace, ACF, and histogram
with Gaussian kernel plots for the parameters. For all parameters, the trace plots demonstrate a
random dispersion around the mean value (represented by a solid line) and fine chain mixing.
Chains exhibit very low autocorrelations, as shown by ACF plots. The marginal distributions
of the parameters are remarkably symmetrical, as seen by the histogram plots of the produced
MCMC samples, implying that the mean is the best estimate for the parameters. These graphs
are, in fact, indicative of rapid MCMC convergence.

3.8 Concluding Remarks

The IW lifetime model is a useful lifetime model for representing the failure rate functions
with unimodal behaviour. The classical and Bayesian estimation procedures for the parameters
and reliability characteristics of IWD under the random censoring model were discussed in
this chapter. The MLEs for the unknown parameters as well as the reliability characteristics
were calculated. Based on expected Fisher information, asymptotic confidence intervals for
the parameters are also calculated. ETT was computed for a randomly censored experiment.
TK approximation and Gibbs sampling methods were used to approximate Bayes estimators of
the parameters and reliability characteristics under SELF. A comprehensive simulation study
was used to evaluate the performance of various estimators. The Bayes estimates with gamma
informative priors and the Gibbs sampling technique had lower average absolute biases and
mean squared errors than the ML and Bayes estimates with non-informative priors. When
there is some prior knowledge, we recommend Bayes estimators.
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Chapter 4

Classical and Bayesian Estimation of
Stress-Strength Reliability for Inverse
Pareto Lifetime Model using Progressively
Censored Data*

4.1 Introduction

In this chapter, we deal with a problem from reliability theory and we estimate the stress-
strength reliability (SSR) for IP lifetime model using progressively censored data from both
classical and Bayesian approaches. The IP lifetime model already has been discussed in Chap-
ter 2 under randomly censored data.

In life testing experiments the incomplete information commonly arises because of time limits
and other restrictions on data collection or study. The incomplete information in life testing ex-
periments is termed as censoring and it arises when components are removed or destroyed from
the experiment before the final termination point. Therefore, censored samples are frequently
available around us as a result and we use censored samples rather than the complete sample
in life testing experiments. Several censoring schemes have been utilized in the literature to
demonstrate the various motive belonging to the life testing experiments. Type-I and Type-II

*Part of this chapter has been published in the form of a research paper with the following details: Kumar, I.
and Kumar, K. (2021). On estimation of P(V < U) for inverse Pareto distribution under progressively censored data.
International Journal of System Assurance Engineering and Management, DOI: https://doi.org/10.1007/s13198-
021-01193-w.

55
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FIGURE 4.1: The schematic diagram of progressive censoring scheme.

censoring schemes are the two most common censoring schemes in the literature. These cen-
soring schemes are used to save money and time by prefixing time or number of failures. These
censoring schemes become ineffective when items are removed at intermittent stages from an
experiment. To overcome such type difficulty, Cohen (1963) introduced a censoring scheme
in the literature, known as progressive censoring scheme. It is one of the popular censoring
scheme which supplies the adaptability of removals of the experimental units throughout the
experiments. After that, many scholars have studied this censoring scheme for various life-
time models under different scenarios. Two excellent monographs on the progressive censoring
scheme are given by Balakrishnan and Aggarwala (2000) and Balakrishnan and Cramer (2014),
respectively. According to Hofmann et al. (2005) the progressive censoring schemes signifi-
cantly improve upon the Type-II censoring scheme in many real-life situations. More details
and applications of the progressive censoring scheme can be found in the following latest arti-
cles carried out by various scholars like: Kohansal and Rezakhah (2019), Aslam et al. (2020),
Goel and Singh (2020), Abu-Moussa et al. (2021), Ghanbari et al. (2021), Asgharzadeh and
Fallah (2021), Bedbur and Mies (2021), Wu and Gui (2021), Wu and Chang (2021), Hashem
and Alyami (2021), and reference cited therein.

Mathematically, the progressive censoring can be articulated as follows; Let n test units are put
on the life test, and only m(m ≤ n) failures are obtained. Suppose U1:m:n,U2:m:n, . . . ,Um:m:n be
the obtained ordered lifetimes and m be the prefixed number of failures with prefixed censoring
scheme

˜
S = (S1,S2, . . . ,Sm). When the ith unit fails (i = 1,2, . . . ,m− 1), Si live units are ran-

domly withdrawn from the experiments. Finally, the remaining Sm = n−m−
m−1
∑

i=1
Si live units

are withdrawn when the mth unit fails. The schematic diagram of the progressive censoring
scheme is given in Figure 4.1.

Let u1,u2, . . . ,um be a progressively Type-II censored sample with prefixed censoring scheme
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˜
S = (S1,S2, . . . ,Sm) from a population with pdf gU(.) and cdf GU(.), the likelihood function is
defined as, see, (Balakrishnan and Aggarwala, 2000)

L(u1:m:n,u2:m:n, . . . ,um:m:n) = K
m

∏
i=1

gU(ui:m:n){1−GU(ui:m:n)}Si,

0 < u1:m:n < u2:m:n < · · ·< um:m:n < ∞

(4.1)

where, K = n(n−S1 −1)(n−S1 −S2 −2) . . .(n−S1 −S2 −·· ·−Sm−1 −m+1).

Remarks: There are two particular cases of progressive Type II censoring scheme: (i) It be-
comes Type II censoring scheme when Si = 0; ∀ i = 1,2, . . .m−1 and Sm = n−m, and (ii) It
becomes complete sample case when Si = 0; ∀ i = 1,2, . . . ,m.

In reliability and life testing theory, the stress-strength reliability (SSR) model contains two
independent random variables, one as a strength variable, say U and another as a stress variable,
say V , the quantity R = P(V <U) is known as SSR. Birnbaum (1956) studied the SSR model
in connection with the classical Mann-Whitney statistic. The SSR system is applicable in many
real-life problems. Johnstone (1983) showed an anti-tank sabot round being shot at a Soviet
T-62 tank as an example of SSR in military applications. The Bayesian method was used to
calculate the chances of a particular bullet penetrating its intended target. Another application
of SSR was presented by Johnson (1988) in rocket engines. The maximal chamber pressure
generated by the ignition of a solid propellant was denoted by V and the strength of the rocket
chamber was denoted by U , so that SSR becomes the probability of successful firing of an
engine. An excellent monograph on the several SSR models with their applications are given by
Kotz et al. (2003). Some recent studies on SSR for different lifetime models based on complete
samples are as follows: The Weibull lifetime model is discussed by Jia et al. (2017). Jovanović
(2017) studied geometric-exponential lifetime model. The IP lifetime model is studied by Guo
and Gui (2018). The generalized inverse Lindley lifetime model is discussed by Sharma (2018),
Scaria et al. (2021) studied generalized Pareto lifetime model, the inverse Chen lifetime model
is discussed by Agiwal (2021) and the references cited therein. Also, some recent studies on
SSR for different lifetime models in case of progressive censoring are carried out by many
scholars like: Maxwell lifetime model studied by Chaudhary and Tomer (2018). Yadav et al.
(2018) studied IW lifetime. Two parameter Rayleigh lifetime model is discussed by Kohansal
and Rezakhah (2019). Goel and Singh (2020) studied modified Weibull lifetime model. Abu-
Moussa et al. (2021) discussed Rayleigh lifetime model, and references cited therein.

For a clear view of the study, the rest of the chapter is designed as follows: Section 4.2, deals
with the model description. The maximum likelihood estimator (MLE) and asymptotic con-
fidence interval (ACI) of SSR are presented in Section 4.3. The Bayes estimator and highest
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posterior density (HPD) credible interval of SSR has appeared in Section 4.4. The numeri-
cal computations are performed Section 4.5 to compare the ML and Bayes estimators of SSR,
numerically. In Section 4.6, two different pairs of real data sets are analyzed to illustrate the
proposed methodology. Finally, the concluding remarks are provided in Section 4.7.

4.2 The Model

The pdf and corresponding cdf of IPD with parameter θ , respectively, are given by

gU(u;θ) =
θuθ−1

(1+u)θ+1 ; θ > 0, u > 0, (4.2)

GU(u;θ) =

(
u

1+u

)θ

; θ > 0, u > 0, (4.3)

Let U and V be independent random variables following IPD(θ1) and IPD(θ2), respectively,
then the SSR is defined as

R = P(V <U) =

∞∫
0

GV (u)gU du

=

∞∫
0

(
u

1+u

)θ2 θ1uθ1−1

(1+u)θ1+1 du

=
∫

∞

0

θ1uθ1+θ2−1

(1+u)θ1+θ2+1 du

=
θ1

θ1 +θ2
= δ (θ1,θ2) say. (4.4)

4.3 Maximum Likelihood Estimation

The ML estimates of the unknown parameters θ1 and θ2 are developed in this section to get
the ML estimate of SSR R. Let ui:m1:n1; i = 1,2, . . . ,m1, be the progressively Type II censored
sample from IP(θ1) with presumed censoring scheme

˜
S = (S1,S2, . . . ,Sm1) and similarly let

v j:m2:n2; j = 1,2, . . . ,m2 be independent progressively Type-II censored sample from IP(θ2)

with presumed censoring scheme
˜
T = (T1,T2, . . . ,Tm2), then using equations (4.2), (4.3) and
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(6.7), the likelihood function is given by

L(θ1,θ2;
˜
u,

˜
v) = K1K2

m1

∏
i=1

gU(ui)[1−GU(ui)]
Si ×

m2

∏
j=1

gV (v j)[1−GV (v j)]
Tj

= K1K2θ
m1
1 θ

m2
2

m

∏
i=1

uθ1−1
i

(1+ui)θ1+1

[
1−
(

ui

1+ui

)θ1
]Si

×
m2

∏
j=1

vθ2−1
j

(1+ v j)θ2+1

[
1−
(

v j

1+ v j

)θ2
]Tj

(4.5)

where,

K1 = n1(n1 −S1 −1)(n1 −S1 −S2 −2) . . .(n1 −S1 −S2 −·· ·−Sm1−1 −m1 +1)

and

K2 = n2(n2 −T1 −1)(n2 −T1 −T2 −2) . . .(n2 −T1 −T2 −·· ·−Tm2−1 −m2 +1)

. The corresponding log-likelihood function is obtained as

l(θ1,θ2) =C+m1 lnθ1 +θ1

m1

∑
i=1

ln
(

ui

1+ui

)
+

m1

∑
i=1

Si ln

[
1−
(

ui

1+ui

)θ1
]

+m2 lnθ2 +θ2

m2

∑
j=1

ln
(

vi

1+ vi

)
+

m2

∑
j=1

Tj ln

[
1−
(

v j

1+ v j

)θ2
]
, (4.6)

where, C = lnK1+ lnK2−
m1
∑

i=1
(lnui+ ln(1+ui))−

m2
∑
j=1

(lnv j+ ln(1+v j)). The following normal

equations are obtained by differentiating the log-likelihood function w.r.t. θ1 and θ2, respec-
tively:

∂ l(θ1,θ2)

∂θ1
=

m1

θ1
+

m1

∑
i=1

ln
(

ui

1+ui

)
−

m1

∑
i=1

Si

(
ui

1+ui

)θ1
ln
(

ui
1+ui

)
[

1−
(

ui
1+ui

)θ1
] = 0. (4.7)

and,
∂ l(θ1,θ2)

∂θ2
=

m2

θ2
+

m2

∑
j=1

ln
(

v j

1+ v j

)
−

m2

∑
j=1

Tj

(
v j

1+v j

)θ2
ln
(

v j
1+v j

)
[

1−
(

v j
1+v j

)θ2
] = 0. (4.8)

The ML estimates of θ1 and θ2, say θ̂1 and θ̂2 are the solutions of normal equations (4.7) and
(4.8), respectively. Here, the closed form solutions are not available for equations (4.7) and
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(4.8). A appropriate iterative technique can be utilised to get numerical solutions to these non-
linear equations. A number of functions, such as nlm, optim, maxLik, and others, are available
in the statistical software R to compute MLEs. Once the ML estimates of unknown parameters
are computed, the ML estimate of SSR parameter R, say R̂ is derived using invariance property
of MLEs and is given by

R̂ =
θ̂1

θ̂1 + θ̂2
. (4.9)

4.3.1 Asymptotic Confidence Interval

Here, the ACI of SSR R is constructed using delta method as it is difficult to obtain exact
distribution of R̂. Let φ̂ = (θ̂1, θ̂2) be the ML estimates of unknown parameters φ = (θ1,θ2).
The asymptotic variance of R̂ using delta method, see, Krishnamoorthy and Lin (2010), is given
by

Var(R̂) = [b′CI−1(φ)bC],

where, I(φ)=−E

∂ 2l(θ1,θ2)

∂θ 2
1

∂ 2l(θ1,θ2)
∂θ1∂θ2

∂ 2l(θ1,θ2)
∂θ2∂θ1

∂ 2l(θ1,θ2)

∂θ 2
2

 is the Fisher information matrix and bC =
(

∂R
∂θ1

, ∂R
∂θ2

)′
.

The observed Fisher information can be utilized as a consistent estimator of the Fisher infor-
mation under modest regularity conditions. As a result, the observed variance of R̂ is equal
to

V̂ar(R̂)≃ [b′CI−1(φ)bC]φ=φ̂
.

The elements of partial derivatives in the Fisher information matrix I(φ) are given by

∂ 2l(θ1,θ2)

∂θ 2
1

=−m1

θ 2
1
−

m1

∑
i=1

Si

{
ln
(

ui
1+ui

)}2( ui
1+ui

)θ1

[
1−
(

ui
1+ui

)θ1
]2 ,

∂ 2l(θ1,θ2)

∂θ 2
2

=−m2

θ 2
2
−

m2

∑
j=1

Tj

{
ln
(

v j
1+v j

)}2( v j
1+v j

)θ2

{
1−
(

v j
1+v j

)θ1
}2 ,

∂ 2l(θ1,θ2)

∂θ1∂θ2
=

∂ 2l(θ1,θ2)

∂θ2∂θ1
= 0,
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and the elements of bC are given by

∂R
∂θ1

=
θ2

(θ1 +θ2)2 ,
∂R
∂θ2

=− θ1

(θ1 +θ2)2 .

Thus R̂−R√
V̂ar(R̂)

∼ N(0,1). Therefore, the 100(1−ξ )% ACI of R is given by R̂± zξ/2

√
V̂ar(R̂),

where zξ/2 is the upper (ξ/2)th quantile of N(0,1). Also, the coverage probability (CP) for R

is given by

CPR =

∣∣∣∣ R̂−R√
V̂ar(R̂)

∣∣∣∣≤ zξ/2

 .

4.4 Bayesian Estimation

In this part, we use the importance sampling (IS) approach to get the Bayes estimator of SSR
R under the generalised entropy loss function (GELF) using non-informative and gamma infor-
mative priors.

4.4.1 Loss function

A suitable loss function must be specified in Bayesian estimation. The SELF is the most often
used loss function in the literature. When over and under estimations of equal magnitude have
the same effects, the SELF is appropriate. When the real loss is not symmetric in terms of over
and under estimates, asymmetric loss functions are employed to illustrate the consequences of
various inaccuracies. For this, a general-purpose loss function, such as GELF, can be employed.
The GELF was proposed in the literature by Calabria and Pulcini (1996). This loss function is
an extension of the entropy loss function and is defined by

L(α, α̂) ∝

[(
α̂

α

)q

−q ln
(

α̂

α

)
−1
]

; q ̸= 0,

where, α̂ is the decision rule which estimate α . When q > 0, a positive error has more impli-
cations than a negative error, and when q < 0, a negative error has greater effects. The Bayes
estimator under GELF is calculated as follows:

α̂ = E
[
α
−q|data

]−1/q
. (4.10)
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Remark: The Bayes estimator in equation (4.10) is reduced to a Bayes estimator under pre-
cautionary loss function (PLF), SELF, and entropy loss function (ELF) for q =−2, −1, and 1,
respectively.

4.4.2 Prior and Posterior Distributions

We suppose the unknown parameters θ1 and θ2 are a-priori independent and have the following
gamma distributions with their corresponding pdfs:

η1(θ1) ∝ θ
a1−1
1 exp(−b1θ1); θ1 > 0,a1,b1 > 0,

and η2(θ2) ∝ θ
a2−1
2 exp(−b2θ2); θ2 > 0,a2,b2 > 0,

where, ai,bi; i = 1,2 are the hyper-parameters so chosen to reflect prior information about the
parameters θ1 and θ2, respectively. As a result, the joint prior distribution of θ1 and θ2 can be
expressed as

η(θ1,θ2) ∝ θ
a1−1
1 θ

a2−1
2 exp{−(b1θ1 +b2θ2)}. (4.11)

The selection of independent gamma priors is not unreasonable. The gamma distribution fam-
ily is highly flexible, and it includes a variety of distributions. It is also worth noting that
non-informative priors are special instances of independent gamma priors. Several researchers
have utilised gamma priors in various contexts, including Guo and Gui (2018) Kumar (2018),
Krishna et al. (2019), and many more. The posterior distribution of θ1 and θ2 is now obtained
by incorporating joint prior distribution (4.11) to the likelihood function (4.5),

π(θ1,θ2|˜
u,

˜
v) =

L(θ1,θ2;data)η(θ1,θ2)
∞∫
0

∞∫
0

L(θ1,θ2;
˜
u,

˜
v)g(θ1,θ2)dθ1dθ2

⇒ π(θ1,θ2|˜
u,

˜
v) ∝ θ

m1+a1−1
1 θ

m2+a2−1
2 exp

{
−θ1

[
b1 −

m1

∑
i=1

ln
(

ui

1+ui

)]}

× exp

{
−θ2

[
b2 −

m2

∑
j=1

ln
(

v j

1+ v j

)]} m1

∏
i=1

[
1−
(

ui

1+ui

)θ1
]Si

×
m2

∏
j=1

[
1−
(

v j

1+ v j

)θ2
]Tj

. (4.12)

From the posterior distribution given in equation (4.12), we observe that the Bayes estimator
for SSR R cannot obtain in closed form. Therefore, an approximation method, importance
sampling technique is used to derive Bayes estimate of R.
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4.4.3 Importance Sampling Technique

Here, the IS technique is used to construct the Bayes estimator and HPD credible interval of
SSR R. The posterior distribution of θ1 and θ2 given in equation (4.12) can be rewritten as

π(θ1,θ2|˜
u,

˜
v) ∝ θ

m1+a1−1
1 exp

{
−θ1

[
b1 −

m1

∑
i=1

ln
(

ui

1+ui

)]}

×θ
m2+a2−1
2 exp

{
−θ2

[
b2 −

m2

∑
j=1

ln
(

v j

1+ v j

)]}

× exp

{
m1

∑
i=1

Si ln

[
1−
(

ui

1+ui

)θ1
]
+

m2

∑
j=1

Tj

[
1−
(

v j

1+ v j

)θ2
]}

π(θ1,θ2|˜
u,

˜
v) ∝ fGA (θ1;m1 +a1,B1) fGA (θ2;m2 +a2,B2)W (θ1,θ2) = π1(θ1,θ2|data) (say),

where, B1 =

[
b1 −

m1
∑

i=1
ln
(

ui
1+ui

)]
, B2 =

[
b2 −

m2
∑
j=1

ln
(

v j
1+v j

)]
,

W (θ1,θ2) = exp

{
m1

∑
i=1

Si ln

[
1−
(

ui

1+ui

)θ1
]
+

m2

∑
j=1

Tj

[
1−
(

v j

1+ v j

)θ2
]}

and fGA(.;a,b) is a gamma distribution having shape and scale parameters a and b, respectively.
Now the posterior expectation of φ(θ1,θ2) is given by

E[φ(θ1,θ2)|˜
u,

˜
v] =

∞∫
0

∞∫
0

φ(θ1,θ2)π1(θ1,θ2|˜
u,

˜
v)dθ1dθ2

∞∫
0

∞∫
0

π1(θ1,θ2|˜
u,

˜
v)dθ1dθ2

(4.13)

The posterior mean E[φ(θ1,θ2)|˜
u,

˜
v] given in equation (4.13) is the ratio of two integrals and

the closed form solution of this mean is not available. The IS approach is utilised to provide an
approximate solution, and the following steps are taken into account for computation:

Step 1: Generate θ
(1)
1 from fGA (θ1;m1 +a1,B1).

Step 2: Generate θ
(1)
2 from fGA (θ2;m2 +a2,B2).

Step 3: Generate δ (1) =
θ
(1)
1

θ
(1)
1 +θ

(1)
2

using equation (4.4).

Step 4: Repeat the above steps 1-3, M times to obtain the importance sample (δ (1), . . . ,δ (M)).
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Now, using the IS technique under GELF, the approximate Bayes estimator of SSR is given by

R̂B =


M
∑
j=1

{
δ (θ

( j)
1 ,θ

( j)
2 )
}−q

W (θ
( j)
1 ,θ

( j)
2 )

M
∑
j=1

W (θ
( j)
1 ,θ

( j)
2 )


−1/q

. (4.14)

4.4.4 HPD Credible Interval

Using the produced importance sample, the HPD credible interval of SSR R can be constructed.
Let δ(1) < δ(2) < · · ·< δ(M) be the ordered values of δ (1), δ (2), . . . ,δ (M). Now, using the algo-
rithm proposed by Chen and Shao (1999), the 100(1− ξ )%, where, 0 < ξ < 1, HPD credible
interval of SSR is given by

(
δ( j), δ( j+[(1−ξ )M])

)
, where j is chosen such that

δ( j+[(1−ξ )M])−δ( j) = min
1≤i≤ξ M

(
δ(i+[(1−ξ )M])−δ( j)

)
, j = 1,2, . . . ,M,

where, [x] is the integral part of x.

4.5 Numerical Computations

A Monte Carlo simulation study is provided in this section to assess the efficacy of the es-
timation methods developed in this chapter. The mean squared errors (MSEs) and average
estimates (AEs) of the ML and Bayes estimators of RSS R are calculated. The Bayes estimate
of SSR is computed in case of non-informative prior (Prior A) and informative gamma prior
(Prior B) under GELF. Also, the average length (ALs) of 95% ACI and HPD credible intervals
with their corresponding coverage probabilities (CP) of SSR R are obtained. For computation
purpose, two independent progressively Type II censored samples

˜
u and

˜
v of sample sizes n1

and n2, effective sample sizes m1 and m2 are produced from IP(θ1) and IP(θ2) with prefixed
censoring schemes Si; i = 1,2, . . . ,m1 and Tj; j = 1,2, . . . ,m2, respectively, using the algo-
rithm provided by Balakrishnan and Sandhu (1995). The several combinations of sample sizes
(n1,n2), effective sample sizes (m1,m2), and prefixed censoring schemes (

˜
S,

˜
T ) are considered.

For simulation purpose, we assign n = n1 = n2, m = m1 = m2 and CS = (
˜
S =

˜
T ), and these

combinations are reported in Table 4.1. In Table 4.1, schemes [4], [8] and [12] are the cases for
complete sample data.
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We consider two sets of true values for the parameters (θ1, θ2) = (1.5, 0.5) and (θ1, θ2) =

(0.5, 1.5) so that SSR R becomes, R = 0.75 and R = 0.25, respectively. In Bayesian compu-
tations, for informative priors the choices of hyper-parameters are chosen such that the prior
means are exactly equal to true values of the parameters. For informative priors {(a1,b1) =

(3,2), (a2,b2) = (2,4)} and {(a1,b1) = (2,4), (a2,b2) = (3,2)} are considered for above con-
sidered two sets of true values of the parameters, respectively. In case of non-informative
priors, we consider ai = bi = 0.0001; i = 1,2. Also, we consider three different choices of
q = −2, −1, 1 for GELF. We take M = 10,000 for importance sampling technique and con-
sider 20% of M as burn-in-period. The entire process is repeated 1,000 times. All computations
in this article are done with the statistical software R (see R Core Team (2021)). All the sim-
ulated results are presented in Tables 4.2, 4.3, 4.4 and 4.5. From these simulation Tables,
following conclusion are made:

In view of Tables 4.2 and 4.4, this experiment has brought up some interesting observations. In
almost all cases, the output of ML and Bayes estimates of SSR in terms of MSEs are very ade-
quate even for small sample sizes. MSEs are found to decrease as n and m increase. It confirms
the consistent behavior of estimators of SSR. Also, the performance of Bayes estimators with
Prior B is better than ML estimator even with Prior A in terms of MSEs, as Bayes estimators
with Prior B includes prior information about the parameters.

In view of Tables 4.3 and 4.5 show that the average lengths of ACIs and HPD credible intervals
are shrinking with increase in number of failures. According to Table 4.3 asymptotic intervals
has smaller average length and than HPD credible intervals with Prior A and Prior B both. The
coverage probability for HPD credible with Prior A and Prior B attains their prescribed confi-
dence coefficient in almost all cases but ACI does not. Also, from Table 4.5 as the true value
of SSR increases, the coverage probability for ACI estimator attain their prescribed confidence
coefficient.

TABLE 4.1: Progressive censoring schemes used in simulation study.

n m CS Schemes n m CS Schemes

20 15 [1] (5*1,0*14) 30 24 [7] (0*23,6*1)
15 [2] (1*2,0*5,1,0*5,1*2) 24 [8] (0*30)
15 [3] (0*14,5*1) 40 35 [9] (5*1,0*34)
20 [4] (0*20) 35 [10] (1*1,0*8,1*1,0*6,1*1,0*8,1*1,0*8,1*1)

30 24 [5] (6*1,0*23) 35 [11] (0*34,5*1)
24 [6] (2*1,0*10,2*1,0*11,2*1) 40 [12] (0*40)
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4.6 Real Data Analysis

The applicability of the considered model and methodology presented in this chapter is ad-
dressed in this section. We examine two distinct pairs of real data sets for this purpose.

4.6.1 Real Data Set I

This pair of real data sets are taken from Bain and Englehardt (1991). These data are the failure
times (in hours) of the air conditioning system of two different aeroplanes. The failure times of
the air conditioning system of two aeroplanes, respectively, are as follows:

Plane 720 (U): 1.2, 2.1, 2.6, 2.7, 2.9, 2.9, 4.8, 5.7, 5.9, 7.0, 7.4, 15.3, 32.6, 38.6, 50.2

Plane 7911 (V): 3.3, 4.7, 5.5, 5.6, 10.4, 17.6, 18.2, 22.0, 23.9, 24.6, 32.0.

Guo and Gui (2018) studied these data sets for SSR for IP lifetime model in a complete sample
case. They showed that these data sets good fit the IP lifetime model. Before further proceeding,
we perform Kolmogorov-Smirnov (KS) and Anderson-Darling (AD) goodness of fit tests to
check whether the given data sets follow IPD or not using ML estimation. The ML estimates
of the unknown parameters, KS, and AD test statistics with their corresponding p-values for
these data sets are reported in Table 4.6. From Table 4.6, it is clear that p-values are greater
than 0.05, corresponding to both KS and AD goodness of fit tests for these data sets. Therefore,
we can assume that these data sets follow the IP lifetime model at a 5% level of significance.
Now, using the four distinct progressive censoring techniques, the following four progressively

TABLE 4.6: Fitting of real data set I for IP lifetime model.

Data Set I MLE

KS Test AD Test
KS p-value AD p-value

Plane 720 (U) 4.7844 0.1880 0.6638 0.4547 0.7907
Plane 7911 (V) 9.6022 0.2558 0.3996 0.7421 0.5212

censored samples are generated from the above complete sample data sets:

Scheme 1 : (n1 = 15, m1 = 10), S1 = [5∗1,0∗9], and (n2 = 11, m2 = 8), T1 = [3∗1,0∗7].

U : 1.2,4.8,5.7,5.9,7.0,7.4,15.3,32.6,38.6,50.2

V : 3.3,10.4,17.6,18.2,22.0,23.9,24.6,32.0
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Scheme 2 : (n1 = 15, m1 = 10), S2 = [1 ∗ 1,0 ∗ 1,1 ∗ 1,1 ∗ 0,1 ∗ 1,0 ∗ 2,1 ∗ 1], and (n2 =

11, m2 = 8) T2 = [1∗1,0∗3,1∗1,0∗2,1∗1].

U : 1.2,2.6,2.7,2.9,4.8,5.9,7.0,15.3,32.6,38.6

V : 3.3,5.5,5.6,10.4,17.6,22.0,23.9,24.6

Scheme 3 : (n1 = 15, m1 = 10), S3 = [0∗9,5∗1], and (n2 = 11, m2 = 8), T3 = [0∗7,3∗1].

U : 1.2,2.1,2.6,2.7,2.9,2.9,4.8,5.7,5.9,7.0

V : 3.3,4.7,5.5,5.6,10.4,17.6,18.2,22.0

Scheme 4 : (n1 = 15, m1 = 15), S4 = [0∗15], and (n2 = 11, m2 = 11), T4 = [0∗11].

U : 1.2,2.1,2.6,2.7,2.9,2.9,4.8,5.7,5.9,7.0,7.4,15.3,32.6,38.6,50.2

V : 3.3,4.7,5.5,5.6,10.4,17.6,18.2,22.0,23.9,24.6,32.0

Furthermore, for the applicability of considered methodology, we analyzed data set I under
consideration of the proposed study. The ML, Bayes estimates, and 95% of asymptotic con-
fidence/HPD credible intervals of SSR R are obtained. We further confirm the presence and
uniqueness of the MLEs by plotting the log-likelihood function of the parameters θ1 and θ2 for
four distinct progressively censored samples. These plots for four different censoring schemes
are given in Figure 4.2. These plots show that the likelihood surfaces have curvature in both θ1

and θ2 directions, indicating that the MLEs θ̂1 and θ̂2 exist and are unique.

The Bayes estimates of SSR are computed using the importance sampling approach under
GELF in the situation of non-informative priors because we do not have prior information. For
the importance sampling approach, M = 10,000 samples are generated, with the burn-in period
accounting for 20% of M. For GELF, we look at three distinct q =−1,1,−2 values. Figure 4.3
shows the trace plots and histograms with posterior density plots based on importance samples
for all four progressively censored data sets in Bayesian computations. From Figure 4.3, we
observe that the trace plots represent fine mixing of the chains and converge to their stationary
distributions. Also, histograms with corresponding density plots are almost symmetrical about
their means in all cases. This shows good performance of the importance sampling technique
and therefore, we can conclude that the Bayes estimates are good. In the case of real data set I
estimation results are reported in Tables 4.7 for all four censoring schemes.
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For censoring scheme (S1,T1). For censoring scheme (S2,T2).

For censoring scheme (S3,T3). For censoring scheme (S4,T4).

FIGURE 4.2: Plots of log-likelihood function of θ1 and θ2 for different censoring schemes in
case of real data set I.

4.6.2 Real Data Set II

Here, we consider breakdown times (in minutes) of an insulating fluid between electrodes at
different voltages 34 kV and 36 kV, respectively. These data sets are reported in (Nelson, 1982,
p. 105). The breakdown times at two different electrodes, respectively, are as follows:

34 kV (U): 0.19, 0.78, 0.96, 1.31, 2.78, 3.16, 4.15, 4.67, 4.85, 6.50, 7.35, 8.01, 8.27, 12.06,
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TABLE 4.7: The ML, Bayes estimates and 95% ACIs and HPD credible intervals of SSR in
case of real data set I.

Schemes

ACI q=-1 q=1 q=-2

R̂ CI R̂B HPD R̂B HPD R̂B HPD

Scheme 1 0.3379 (0.1785,0.4973) 0.3470 (0.1381,0.5962) 0.3185 (0.1387,0.5980) 0.3600 (0.1310,0.5944)
Scheme 2 0.3451 (0.1946,0.4956) 0.3532 (0.1329,0.5913) 0.3287 (0.1369,0.5947) 0.3650 (0.1330,0.5904)
Scheme 3 0.3204 (0.1813,0.4596) 0.3295 (0.1180,0.5609) 0.3059 (0.1218,0.5629) 0.3409 (0.1194,0.5606)
Scheme 4 0.3326 (0.1899,0.4752) 0.3405 (0.1640,0.5500) 0.3177 (0.1578,0.5439) 0.3523 (0.1599,0.5461)

For censoring scheme (S1,T1). For censoring scheme (S2,T2).

For censoring scheme (S3,T3). For censoring scheme (S4,T4).

FIGURE 4.3: Trace plots and histogram with density plots of R for different censoring schemes
in case of real data set I.

31.75, 32.52, 33.91, 36.71, 72.89.

36 kV (V): 0.35, 0.59, 0.96, 0.99, 1.69, 1.97, 2.07, 2.58, 2.71, 2.90, 3.67, 3.99, 5.35, 13.77,
25.50.

A similar procedure is followed in this sub-section as discussed in the case of real data sets I
for fitting the real data sets. We perform KS and AD goodness of fit tests to check whether
the given data sets follow the IP lifetime model or not. The ML estimates of the unknown
parameters, KS, and AD test statistics with their corresponding p-values for these data sets are
reported in Table 4.8. From Table 4.8, it is clear that these data sets follow the IP lifetime model
at a 5% level of significance. Now, four progressively censored samples are generated from the
above complete sample data sets based on following censoring schemes:

Scheme 1 : (n1 = 19, m1 = 15), S1 = [4∗1,0∗14], and (n2 = 15, m2 = 10), T1 = [5∗1,0∗
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TABLE 4.8: Fitting of real data set II for IP lifetime model.

Data Set MLE

KS Test AD Test
KS p-value AD p-value

34 kV (U) 2.8327 0.2267 0.2433 1.5718 0.1605
36 kV (V) 2.2371 0.1937 0.5623 0.5227 0.7209

9].

U : 0.19,3.16,4.15,4.67,4.85,6.50,7.35,8.01,8.27,12.06,31.75,32.52,33.91,36.71,72.89

V : 0.35,2.07,2.58,2.71,2.90,3.67,3.99,5.35,13.77,25.50

Scheme 2 : (n1 = 19, m1 = 15), S2 = [1∗1,0∗3,1∗1,0∗4,1∗1,0∗4,1∗1], and
(n2 = 15, m2 = 10) T2 = [1∗1,0∗1,1∗1,0∗1,1∗1,0∗1,1∗1,0∗2,1∗1].

U : 0.19,0.96,1.31,2.78,3.16,4.67,4.85,6.50,7.35,8.01,12.06,31.75,32.52,33.91,36.71

V : 0.35,0.96,0.99,1.97,2.07,2.71,2.90,3.99,5.35,13.77

Scheme 3 : (n1 = 19, m1 = 15), S3 = [0∗14,4∗1], and (n2 = 15, m2 = 10), T3 = [0∗9,5∗
1].

U : 0.19,0.78,0.96,1.31,2.78,3.16,4.15,4.67,4.85,6.50,7.35,8.01,8.27,12.06,31.75

V : 0.35,0.59,0.96,0.99,1.69,1.97,2.07,2.58,2.71,2.90

Scheme 4 : (n1 = 19, m1 = 19), S4 = [0∗19], and (n2 = 15, m2 = 15), T4 = [0∗15].

U : 0.19, 0.78, 0.96, 1.31, 2.78, 3.16, 4.15, 4.67, 4.85, 6.50, 7.35, 8.01, 8.27, 12.06, 31.75,
32.52, 33.91, 36.71, 72.89

V : 0.35,0.59,0.96,0.99,1.69,1.97,2.07,2.58,2.71,2.90,3.67,3.99,5.35,13.77,25.50

Similarly as we have discussed in case of real data set I, we analyze data set II for the applicabil-
ity of considered methodology. The ML, Bayes estimates, and 95% of ACIs and HPD credible
intervals of SSR R are obtained. To confirm the existence and uniqueness of the MLEs, we
display the log-likelihood function of the parameters θ1 and θ2 for four distinct progressively
censored samples. Figure 4.4 shows these graphs for four distinct censoring schemes. In the
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For censoring scheme (S1,T1). For censoring scheme (S2,T2).

For censoring scheme (S3,T3). For censoring scheme (S4,T4).

FIGURE 4.4: Plots of log-likelihood function of θ1 and θ2 for different censoring schemes in
case of real data set II.

case of real data set II, these graphs demonstrate that the likelihood surfaces exhibit curvature
in both θ1 and θ2 directions, suggesting that the ML estimates θ̂1 and θ̂2 exist and are unique.

The Bayes estimate of SSR are obtained in case of non-informative priors as we do not have
prior information, using the IS procedure under GELF. For the IS technique, M = 10,000 obser-
vations are generated and first 20% observations are considered as burn-in-period. Again here,
we consider three different values of q =−2, −1, 1 for GELF. In Bayesian computations, the



Chapter 4 76

trace plots and histograms with posterior density plots based on importance samples are plotted
for all four progressively censored data sets and are given in Figure 4.5. From this Figure we
observe that the trace plots represent fine mixing of the chains and converge to their stationary
distributions. Also, histograms with corresponding density plots are almost symmetrical about
their means in all cases. This shows good performance of the IS technique and therefore, we
can conclude that the Bayes estimates are good. In case of real data set II estimation results are
reported in Tables 4.9 for all four pairs of progressively censored samples.

TABLE 4.9: The ML, Bayes estimates and 95% asymptotic confidence/HPD credible intervals
of SSR in case of real data set II.

Schemes

MLE q=-1 q=1 q=-2

R̂ ACI R̂B HPD R̂B HPD R̂B HPD

Scheme 1 0.5923 (0.3667,0.8179) 0.5890 (0.3839,0.8050) 0.5737 (0.3863,0.8059) 0.5960 (0.3869,0.8069)
Scheme 2 0.5515 (0.3507,0.7523) 0.5775 (0.3832,0.8050) 0.5644 (0.3830,0.8021) 0.5830 (0.3849,0.8061)
Scheme 3 0.5205 (0.3314,0.7095) 0.5903 (0.3933,0.8113) 0.5775 (0.3967,0.8135) 0.5971 (0.3973,0.8138)
Scheme 4 0.5188 (0.3303,0.7074) 0.5922 (0.4073,0.7674) 0.5797 (0.4083,0.7696) 0.5971 (0.4029,0.7692)

For censoring scheme (S1,T1). For censoring scheme (S2,T2).

For censoring scheme (S3,T3). For censoring scheme (S4,T4).

FIGURE 4.5: Trace plots and histogram with density plots of R for different censoring schemes
in case of real data set II.

4.7 Concluding Remarks

In this chapter, we discussed the problem of estimation of SSR R = P(V < U) for the IP life-
time model using progressively censored data. We derived ML estimate and 95% of asymptotic
confidence interval with corresponding coverage probability of SSR. We computed Bayes es-
timates in case of both informative and non-informative priors under generalized entropy loss
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function using importance sampling technique. Also, 95% HPD credible interval of SSR was
constructed. The performance of ML and Bayes estimators of SSR were examined by compu-
tational analysis using a Monte Carlo simulation. The computational results suggested that the
Bayes estimator is more precise than the ML estimator and these can be used for all practical
purposes when the prior information is available. Two pairs of real data sets were also discussed
for practical applicability of considered methodology developed in this chapter. The method-
ology and estimation results studied in this article will be beneficial to reliability practitioners
in real life situations. In this chapter, iterative and approximation methods were used for ML
and Bayesian computations, respectively. In future work exact estimation procedures can be
developed. Also, we can obtain optimum censoring plans to achieve the optimum accuracy of
the estimators. More work is needed along with these directions as future scope.





Chapter 5

Classical and Bayesian Estimation in
Inverse Pareto Lifetime Model using
Progressively First Failure Censored Data

5.1 Introduction

The main objective of this chapter is to develop statistical inferences for the associated param-
eter and reliability characteristics of the IP lifetime model using the progressively first failure
censored (PFFC) data from both a classical and Bayesian perspective.

Because of the severe competition in the market, product reliability is typically improving with
the advancement of manufacturing technologies. Generally, in life-testing experiments, observ-
ing the failure time for all test units often takes a long time, resulting in a substantial increase
in experimental time and cost. As a consequence of the time and cost constraints of the ex-
periments, censoring is a regular phenomenon in reliability and life-testing experiments. Many
researchers have investigated the Type-I censoring scheme, in which the life-testing experiment
terminates when the experimental period exceeds the prescribed time, and the Type-II censoring
scheme, in which the life-testing experiment terminates when the number of recorded failure
units meets the intended aim. One of their limitations is that none of them allows control units
to be removed during the experiment. It may be required to remove test units in some circum-
stances. For example, in certain exceptional instances, the unit failure is beyond the control of
the experimenters and might be triggered by unforeseen laboratory equipment damage. It’s also
possible to remove test units from the experiment on purpose to free up laboratory equipment
and supplies for other projects, as well as save time and money. Because of such limitations,
Cohen (1963) introduced progressive censoring in the literature, which allows the adaptability
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to remove the test units before they fails from the ongoing experiment. For more details one
may refer Balakrishnan and Aggarwala (2000) and Balakrishnan and Cramer (2014).

It may not always be able to fulfill the test’s time and cost constraints. As a result, distinct
censoring schemes have been introduced one after the other to boost the efficiency of testing
procedures. When testing materials are inexpensive, we may conduct the test by putting m

groups with k items within each group of n individual items. During this procedure, the first
failures in each group are recorded, and the assessment will not be completed until all groups
have experienced the first failure. Such a situation of the testing plan was proposed by Bala-
sooriya (1995) called a first-failure censoring scheme.

Furthermore, Wu and Kuş (2009) suggested a novel censoring plan by combining progressive
and first failure censoring schemes, known as the progressive first-failure censoring scheme
(PFFCS) and data collected by using this scheme is termed as progressively first failure cen-
sored (PFFC) data. This censoring scheme bears some special cases to other censoring schemes,
due to its compatible features with other censoring plans, this censoring scheme has gained a
lot of coverage in literature under multiple scenarios. For example, the estimation of SSR for
GIE lifetime model is studied by Krishna et al. (2017), Kayal et al. (2019) developed inferences
on Chen lifetime model, Bi et al. (2020) studied bathtub shaped lifetime model for reliability
estimation, the statistical inferences for inverse power Lomax lifetime model is discussed by
Shi and Shi (2021), estimation of SSR for generalized Maxwell lifetime model is discussed by
Saini et al. (2021a), the estimation of multicomponent SSR for Bur Type XII lifetime model is
discussed by Saini et al. (2021b) etc.

Practically, the PFFCS is defined as follows: Assume that in a real-life testing experiment, n

classes of individuals are being tested at the same time, each with k test units, and they are
entirely independent to one another. During the experiment, when the first failure unit, say
XG

1:m:n:k occurs, the group it belongs to, as well as any G1 live groups from remaining live
n− 1 groups are randomly discarded from the experiment. Similarly, at the second failure
unit, say XG

2:m:n:k, the group it belongs to, as well as any G2 live groups in the remaining live
n− 2−G1 groups, are excluded from the experiment at random. This process is continued
until the mth failed unit, say XG

m:m:n:k occurs, at that point all remaining Gm live groups are
removed from the experiment. Here m and

˜
G = (G1,G2, . . . ,Gm) are the prefixed number of

failures and censoring schemes, respectively, in such a way that n=m+
m
∑
j=1

G j. Then XG
1:m:n:k <

XG
2:m:n:k < · · ·< XG

m:m:n:k are recorded as PFFC ordered sample with prefixed censoring schemes

˜
G = (G1,G2, . . . ,Gm) . To further demonstrate this censoring scheme, Figure 5.1 depicts the
PFFC sample generation procedure. It’s worth noting that the PFFCS has the following special
cases:
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(a) It reduces to complete sample case, when k = 1,n = m and G j = 0; j = 1,2, . . .m.

(b) It become conventional type-II censoring plan, if k= 1 and G j =(0, n−m); j = 1,2, . . .m−
1.

(c) It becomes progressively-II censoring plan, when k = 1.

(d) It reduces to first-failure censoring plan, when G j = 0; j = 1,2, . . .n.

FIGURE 5.1: Schematic diagram of PFFCS.

Suppose the lifetimes of n× k test units are put on a life testing experiment following a contin-
uous population with cdf FX(x) and pdf fX(x), then the joint pdf of XG

1:m:n:k,X
G
2:m:n:k, . . . ,X

G
m:m:n:k

is expressed as, see, (Wu and Kuş, 2009)

L
(

xG
1: m: n: k, xG

2: m: n: k, . . . ,x
G
m: m: n: k

)
= Akm

m

∏
j=1

fX(xG
j: m: n: k){1−FX(xG

j: m: n: k)}
k(G j+1)−1,

0 < xG
j: m: n: k < ∞; ∀ j = 1,2, . . .m

(5.1)

where, A = n(n−G1 −1) (n−G1 −G2 −2) . . . (n−G1 −G2 − . . . −Gm−1 −m+1).

This chapter is organized as follows: The IP lifetime model based on PFFC data is discussed
in Section 5.2. In Section 5.3 is devoted to derive MLEs of parameter and reliability charac-
teristics. Also, derived asymptotic and bootstrap CIs for the associated model parameter. The
Bayes estimators of parameter and reliability characteristics under SELF using three approxi-
mation techniques, namely TK approximation, importance sampling (IS) and M-H algorithm
are discussed in Section 5.4. Also, we derived HPD credible interval for the associated model
parameter. Section 5.5 presents the numerical computations using Monte Carlo simulations.
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For demonstration purpose, a real data analysis is presented in Section 5.6. Finally, a conclud-
ing remarks are presented in Section 5.7.

5.2 The Model

The IP lifetime model has already been discussed in the following Chapters 2 and 4 under
random censoring and progressive censoring schemes, respectively. Here, we also describe pdf,
cdf and reliability characteristics of IP lifetime model for quick response under consideration
of this chapter. The pdf and cdf of IP lifetime model with parameter θ , respectively, are given
by

fX(x;θ) =
θxθ−1

(1+ x)θ+1 ; θ > 0, x > 0, (5.2)

and

FX(x) =
(

x
1+ x

)θ

; θ ≥ 0, x > 0. (5.3)

Also, the corresponding reliability ( or survival) and hazard (pr failure rate) functions of IP
lifetime model, respectively, are given by

R(x;θ) = 1−
(

x
1+ x

)θ

; θ > 0, x > 0, (5.4)

and

h(x;θ) =
θxθ−1

(1+ x)θ+1
[
1−
( x

1+x

)θ
] ; θ > 0,x > 0. (5.5)

As the moment of IP lifetime model does not in closed form, therefore, we consider median
time to system failure (MdTSF) and given as

MdT SF =
1

21/θ −1
; θ > 0. (5.6)

5.3 Classical Estimation

In case of classical estimation method, the associated parameter and reliability characteristics
are estimated by using ML estimation, asymptotic confidence and bootstrap confidence inter-
vals methods.



Chapter 5 83

5.3.1 Maximum Likelihood Estimation

This section is devoted to derive ML estimates of the associated model parameter θ and reliabil-
ity characteristics R(t), h(t) and MdT SF , respectively. Also, obtain asymptotic and bootstrap
CIs of θ . Let x ˜

G
i:m:n:k; i = 1,2, . . . ,m, be the PFFC sample from IP lifetime model with pre-

fixed number of failures m and censoring plan
˜
G = (G1,G2, . . . ,Gm). For notation simplicity,

hereafter we use
˜
x = (x1,x2, . . . ,xm) as PFFC sample. Then, using (6.6), (6.2) and (5.4), the

likelihood function becomes

L(
˜
x,θ) = Akm

θ
m

m

∏
i=1

xθ−1
i

(1+ xi)θ+1

[
1−
(

x1

1+ xi

)θ
]k(Gi+1)−1

(5.7)

where, A = n(n−G1 − 1)(n−G1 −G2 − 2) . . .(n−G1 −G2 −·· ·−Gm−1 −m+ 1). The log-
likelihood function is obtained as

l(
˜
x,θ) =C+m lnθ +θ

m

∑
i=1

ln
(

xi

1+ xi

)
+

m

∑
i=1

[k(Gi +1)−1] ln

[
1−
(

xi

1+ xi

)θ
]
, (5.8)

where, C = lnA+m lnk−
m
∑

i=1
ln [xi(1+ xi)]. The solution of the following normal equation of

log-likelihood yields the ML estimate of θ ,

∂ l(
˜
x,θ)

∂θ
=

m
θ
+

m

∑
i=1

ln
(

xi

1+ xi

)
−

m

∑
i=1

[k(Gi +1)−1]

(
xi

1+xi

)θ

ln
(

xi
1+xi

)
[

1−
(

xi
1+xi

)θ
] = 0. (5.9)

Here, the ML estimate of θ is the solution of (5.9), and because the closed form solution for
(5.9) is not accessible, a suitable numerical iterative technique can be employed to compute
the ML estimate of θ numerically. Once we get the ML estimate of θ say θ̂ , then using
the invariance property of ML estimation, we can obtain the ML estimates of R(t), h(t), and
MdT SF , respectively.

R̂(t) = 1−
(

t
1+ t

)θ̂

, (5.10)

ĥ(t) =
θ̂ t θ̂−1

(1+ t)θ̂+1
[
1−
( t

1+t

)θ̂
] . (5.11)

M̂dT SF =
1

21/θ̂ −1
. (5.12)
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Now, under mild regularity constraints, the MLE of θ is asymptotically normally distributed
i.e. θ̂ ∼ N(θ , I−1(θ̂)), where I(θ̂) is the observed Fisher information,

I(θ̂) = E
[
−∂ 2l(x,θ)

∂θ 2

]
θ=θ̂

, (5.13)

with,

∂ 2l(
˜
x,θ)

∂θ 2 =− m
θ 2 −

m

∑
i=1

[k(Gi +1)−1]
{

ln
(

xi

1+ xi

)}2
(

xi
1+xi

)θ

[
1−
(

xi
1+xi

)θ
]2

Suppose V̂ar(θ̂) = I−1(θ̂) is the observed variance of θ̂ , the asymptotic CI of θ can be obtained
as

θ̂ ± zξ/2

√
V̂ar(θ̂),

here, zξ/2 is the upper (ξ/2)th percentile of N(0,1). Also, the coverage probability (CP) for θ

is given by

CPθ =

∣∣∣∣ θ̂ −θ√
V̂ar(θ̂)

∣∣∣∣≤ zξ/2

 .

5.3.2 Bootstrap Confidence Intervals

In literature, Efron (1979) was the first who developed the bootstrap approach. This technique
employs as a simple resampling technique that permits inferential statistics to be constructed,
when samples are not sufficiently large or need heavy assumptions about the underlying distri-
bution. Later on this concept has been applied in several applications. For more details one may
refer Efron (1982), Hall (1988), Davison and Hinkley (1997). In the literature, several boot-
strap techniques have been developed. In this chapter, we employ two bootstrap techniques as
percentile bootstrap (boot-p) and Student’s t bootstrap (boot-t) based on t-statistic to construct
bootstrap CIs of the associated parameter θ of IP lifetime model. In order to compute two
parametric bootstrap CIs of θ , the following steps are used as follows:

5.3.2.1 Percentile Bootstrap (boot-p) Confidence Interval

Step 1: Produce a PFFC sample x = (x1,x2, . . . ,xm) from the IP lifetime model with a prefixed
censoring scheme

˜
G = (G1,G2, . . . ,Gm) and an effective sample size of m, and then compute

the ML estimate θ̂ of θ

Step 2: Produce an independent bootstrap PFFC sample, say
˜
x∗ = (x∗1,x

∗
2, . . . ,x

∗
m) using θ̂ .
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Then, obtain the bootstrap ML estimate, say θ̂ ∗ of θ based on the generated bootstrap sample

˜
x∗.

Step 3: Replicate the Step 2, B times to generate a sequence of bootstrap ML estimates θ̂ ∗
i ; i=

1,2, . . . ,B.

Step 4: Let θ̂ ∗
(1) ≤ θ̂ ∗

(2) ≤ ·· · ≤ θ̂ ∗
(B) denote the ordered values of θ̂i for i = 1,2, . . . ,B. The

approximate 100(1−α)% boot-p CI of θ is given by
(

θ̂ ∗
[(α/2)×B], θ̂

∗
[(1−α/2)×B]

)
, where [a] is

the integral part of a.

5.3.2.2 Student’s t Bootstrap (boot-t) Confidence Interval

Step 1 and Step 2 are same as in boot-p procedure.

Step 3: Obtain the boot-t statistic τ∗ = θ̂∗−θ̂√
I−1(θ̂∗)

for θ̂ ∗.

Step 4: Replicate steps 2-3, B times to generate a sequence of boot-t statistics τ∗i ; i= 1,2, . . . ,B.

Step 5: Suppose τ∗(1) ≤ τ∗(2) ≤ ·· · ≤ τ∗(B) be the ordered values of τ∗i for i = 1,2, . . . ,B.
Thus, the approximate 100(1−α)% boot-t CI of θ is given by(

θ̂ − τ
∗
[(1−α/2)×B]

√
I−1(θ̂ ∗), θ̂ − τ

∗
[(α/2)×B]

√
I−1(θ̂ ∗)

)
.

5.4 Bayesian Estimation

This part focuses on developing Bayesian estimate methods for unknown parameters and reli-
ability characteristics of the IP lifetime model using PFFC data under SELF. Let us consider
the prior belief of an unknown parameter θ is measured to follow a gamma distribution with
hyper-parameters a and b, and the corresponding pdf of prior belief is termed as

p(θ) =
ba

Γ(a)
θ

a−1e−bθ ; θ > 0, a,b > 0.

Therefore, by incorporating prior belief in maximum likelihood function in (5.7), the posterior
distribution become

π(θ |x) ∝ θ
m+a−1 exp

{
−θ

(
b−

m

∑
i=1

ln
(

xi

1+ xi

))}
exp

{
[k(Gi +1)−1] ln

[
1−
(

xi

1+ xi

)θ
]}

.

(5.14)
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The posterior mean under SELF is the Bayes estimator of every parametric function. Here, it
can be seen that the posterior distribution does not belong to any well known family of distribu-
tions, so it is quite difficult to obtain the posterior mean. In addition, the ideal posterior means
are ratios of two integrals that cannot be simplified in some expressions of the closed form. In
order to solve these integrals, we proposed using the following approximation methods: The
TK approximation, IS, and M-H algorithm techniques.

5.4.1 TK Approximation

Here, the TK approximation procedure is used to compute the point Bayes estimates of the
parameter and reliability characteristics. For the parametric function φ(θ), the posterior mean
is given as follows:

J(x) =

∞∫
0

φ(θ)exp{L(
˜
x,θ)+ρ(φ)}dθ

∞∫
0

exp{L(
˜
x,θ)+ρ(φ)}dθ

, (5.15)

where, L(
˜
x,θ) is log-likelihood function and ρ(θ) = ln p(θ). Using TK approximation, we

can write J(x) as an explicit form, we have δ (θ) =
L(

˜
x,θ)+ρ(θ)

mk and δ ∗(θ) = δ (θ)+ lnφ(θ)
mk , and

assume that φ̂δ (θ) and φ̂δ ∗(θ) maximizes the functions δ (θ) and δ ∗(θ), respectively. Then
according to the TK approximation method J(x) can be described as

J(x) =

(
det(∆∗

φ
)

det(∆φ )

) 1
2

exp
[
mk
{

δ
∗
φ (θ̂δ ∗)−δ (θ̂)

}]
. (5.16)

Here, we need to compute det(∆∗
φ
) and det(∆φ ) which is the determinants of negative inverse

Hessian of δ ∗(θ) and δφ (θ). By incorporating prior distribution to the log-likelihood function,
the Bayes estimator of θ using the TK approximation is computed, and δ (θ) is given as

δ (θ) =
1

mk

[
(m+a−1) lnθ −θ

{
b−

m

∑
i=1

ln
(

xi

1+ x1

)}
+

m

∑
i=1

[k(Gi +1)−1] ln

{
1−
(

xi

1+ xi

)θ
}]

Therefore, θ̂δ is computed by solving the following non-linear equation

∂δ (θ)

∂θ
=

m+a−1
θ

−b+
m

∑ ln
(

xi

1+ xi

)
−

m

∑
i=1

[k(Gi +1)−1]

(
xi

1+xi

)θ

ln
(

xi
1+xi

)
[

1−
(

xi
1+xi

)θ
] = 0.
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Also,

∂ 2δ (θ)

∂θ 2 =
1

mk

−m+a−1
θ 2 −

m2

∑
j=1

[k(Gi +1)−1]

{
ln
(

xi
1+xi

)}2( xi
1+xi

)θ

[
1−
(

xi
1+xi

)θ
]2

 ,

Hence,

det(∆φ ) =
∣∣∣∂ 2δ (θ)

∂θ 2

∣∣∣−1

θ=θ̂
. (5.17)

Since, δ ∗(θ) is the function of φ(θ), the Bayes estimator of φ(θ) is computed by considering

δ
∗(θ) = δ (θ)+

lnφ(θ)

mk
. (5.18)

Now, for φ(θ) = θ , then θ̂ ∗ is computed by solving the following equation

∂δ ∗(θ)

∂θ
=

∂δ (θ)

∂θ
+

1
mk

1
θ
= 0. (5.19)

Also, using the derivative

∂ 2δ ∗(θ)

∂θ 2 =
∂ 2δ (θ)

∂θ 2 − 1
mk

1
θ 2 , (5.20)

we get det(∆∗
θ
) as

det(∆∗
θ ) =

∣∣∣∂ 2δ ∗(θ)
∂θ 2

∣∣∣−1

θ=θ̂∗
.

Thus, the Bayes estimator of θ is finally obtained by

θ̂T K =

(
det(∆∗

θ
)

det(∆θ )

) 1
2

exp
[
mk
{

δ
∗
θ (θ̂δ ∗)−δ (θ̂δ )

}]
.

Similarly, the Bayes estimators of reliability characteristics R(t),h(t), and MdT SF , respec-
tively are given as follows

R̂T K(t) =

(
det(∆∗

R(t))

det(∆R(t))

) 1
2

exp
[
mk
{

δ
∗
R(t)(R̂δ ∗(t))−δ (R̂δ (t))

}]
,

ĥT K(t) =

(
det(∆∗

h(t))

det(∆h(t))

) 1
2

exp
[
mk
{

δ
∗
h(t)(ĥδ ∗(t))−δ (ĥδ (t))

}]
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and

M̂dT SFT K(t) =
(

det(∆∗
MdT SF)

det(∆MdT SF)

) 1
2

exp
[
mk
{

δ
∗
MdT SF(M̂dT SFδ ∗)−δ (M̂dT SFδ )

}]
.

5.4.2 Importance Sampling Technique

The importance sampling (IS) approach is used to find the Bayes estimator of the parameter
and reliability characteristics under SELF. The posterior distribution described in (5.14) can be
rewritten as

π(θ |
˜
x) ∝ fGA (θ ;m+a,S)U(θ) (5.21)

where, S =

[
b−

m
∑

i=1
ln
(

xi
1+xi

)]
and U(θ) = exp

{
m
∑

i=1
[k(Gi + 1)− 1] ln

[
1−
(

xi
1+xi

)θ
]}

and

fGA(.; p,q) is a gamma density with shape p and scale q parameters, respectively. Under SELF,
the Bayes estimator of φ(θ), a function of θ , is now given by

φ̂IS(θ) = E[φ(θ)|
˜
x] =

∞∫
0

φ(θ)π(θ |
˜
x)dθ

∞∫
0

π(θ |
˜
x)dθ

. (5.22)

Therefore, we do not need to compute the normalizing constant to approximate φ̂ IS(θ) given
in (5.22) using the IS techniques. The steps below are used for programming purposes:

Step 1: Produce θ (1) from fGA(θ ;m+a,b+S).

Step 2: To obtain importance sample, repeat the above Step 1, M times, (θ (1)),(θ (2)), . . . ,(θ (M)).

Now we can obtain the approximate Bayes estimates of the function of parameter φ(θ) as fol-
lows:

φ̂IS(θ) =

M
∑
j=1

φ(θ ( j))U(θ ( j))

M
∑
j=1

U(θ ( j))

. (5.23)
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Hence, the Bayes estimates of parameter and reliability characteristics under SELF using IS
method are, respectively given by

θ̂IS =

M
∑
j=1

θ ( j)U(θ ( j))

M
∑
j=1

U(θ ( j))

, R̂IS(t) =

M
∑
j=1

(
1−
( 1

1+t

)θ ( j)
)

U(θ ( j))

M
∑
j=1

U(θ ( j))

; t > 0,

ĥIS(t) =

M
∑
j=1

θ ( j)tθ( j)−1

(1+t)θ( j)+1
(

1−( t
1+t )

θ( j)
)U(θ ( j))

M
∑
j=1

U(θ ( j))

; t > 0, M̂dT SF =

M
∑
j=1

1

2
1

θ( j) −1
U(θ ( j))

M
∑
j=1

U(θ ( j))

.

5.4.3 Metropolis-Hastings Algorithm

Here, we consider one of the popular MCMC technique as M-H algorithm to compute the
Bayes estimates of parameter and reliability characteristics. We take candidate point from a
normal distribution to draw samples from the posterior distribution of θ |

˜
x from (5.14). For

programming or computation purposes, the following steps are carried out:

Step 1: Consider initial guess value of θ say θ (0).

Step 2: From the proposal density η(θ ( j)|θ ( j−1)), generate a candidate point θ
( j)
c .

Step 3: Generate u using a uniform distribution U(0,1).

Step 4: Obtain A
(

θ
( j)
c |θ ( j−1)

)
= min

{
π

(
θ
( j)
c |

˜
x
)

η

(
θ ( j−1)|θ ( j)

c

)
π(θ ( j−1)|

˜
x)η

(
θ
( j)
c |θ ( j−1)

) ,1
}

.

Step 5: If u ≤ A set θ ( j) = θ
( j)
c with acceptance rate A otherwise θ ( j) = θ ( j−1).

Step 6: In order to compute the parameter sequence of θ , repeat steps 1-5, for j = 1,2, . . . ,M,
say

{
θ (1),θ (2),θ (3), . . . ,θ (M)

}
.

Using the (M −M0) observations, where M0 is the burn-in period, we get an estimate. Hence,
the approximate Bayes estimate using M-H algorithm procedure under SELF is given by

φ̂MH(θ) =
1

M−M0

M

∑
j=M0+1

φ(θ ( j)).
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Thus, using the M-H algorithm, the Bayes estimates of the parameter θ and the reliability
characteristics R(t),h(t), and MdT SF are computed under SELF as follows:

θ̂MH =
1

M−M0

M

∑
j=M0+1

θ
( j), R̂MH(t) =

1
M−M0

M

∑
j=M0+1

[
1−
(

t
1+ t

)θ ( j)]
,

ĥMH(t)=
1

M−M0

M

∑
j=M0+1

θ ( j)tθ ( j)−1

(1+ t)θ ( j)+1
[
1−
( t

1+t

)θ ( j)] , M̂dT SF =
1

M−M0

M

∑
j=M0+1

1

(21/θ ( j) −1)
.

5.4.4 HPD Credible Interval

In this subsection, the HPD credible interval of θ can be obtained using generated MCMC sam-
ple. Suppose θ(1) < θ(2) < · · ·< θ(M) denotes the ordered values of θ (1), θ (2), . . . ,θ (M). Thus,
100(1−ξ )%, where, 0 < ξ < 1, HPD credible interval of θ is given by

(
θ( j), θ( j+[(1−ξ )M])

)
,

where j is chosen such that

θ( j+[(1−ξ )M])−θ( j) = min
1≤i≤ξ M

(
θ(i+[(1−ξ )M])−θ( j)

)
, j = 1,2, . . . ,M,

where, [x] is the integer part of x.

5.5 Numerical Computations

To analyze the impact of the different estimators produced in this chapter, extensive numerical
computations are done in this section. The estimators are compared with their corresponding
average estimates (AE) and mean squared errors (MSE). For computations, first of all we gen-
erated PFFC samples for different combinations of (k,n,m) with prefixed censoring plans

˜
G

and distinct values of a model parameter θ . To generate PFFC samples, we use the algorithm
suggested by Balakrishnan and Sandhu (1995) with some modifications in such a way that, the
PFFC sample x1,x2, ...,xm can be viewed as a progressively censored sample from a population
with cdf (1− (1−F(x))k), see, Wu and Kuş (2009). To see the behaviour of estimation meth-
ods, the following parameters are taken as follows: number of items within each group k = 3,5,
number of groups n = 20,30 and prefixed number of failures m = (80,100)% of n with prefixed
censoring plans

˜
G, respectively. Also, two sets of parameter values are taken as θ = 0.5 and

θ = 1.5, respectively. For each n, four different failure plans are adopted, and out of these,
three are common for each n. The three different common failure plans are as follows:
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Plan 1: [(k,n,m),(G1 = n−m,Gi = 0, ∀ i = 2,3, . . .m)], in this case (n−m) groups are dis-
carded from the test at the first failure only,

Plan 2: [(k,n,m),(Gi = 0, ∀i = 1,2, . . . ,m− 1,Gm = n−m)], in this case (n−m) groups are
removed at mth failure, and

Plan 3: [(k,n = m),Gi = 0, ∀i = 1,2, . . . ,m] this is the case of first failure censored sample.

TABLE 5.1: Several combinations of progressive censoring plans

(n,m) CS Plans (n,m) CS Plans

(20,16) 1 (4,0*15) (30,24) 5 (6,0*23)
1 (1,0*4,1,0*4,1,0*4,1) 6 (2,0*11,2,0*10,2)
3 (0*15,4) 7 (0*23,6)

(20,20) 4 (0*20) (20,30) 8 (0*30)

The simplified notations are used for different combinations of censoring plans as shown in the
Table 6.1. In addition, t = 0.80 (in time units) is taken as mission time to compute the reliability
characteristics. The ML estimate of parameter and reliability characteristics are computed in
the case of a non-Bayesian estimation process. The interval estimates of the associated model
parameter θ are also computed using asymptotic and bootstrap (boot-p & boot-t) CIs, as well
as their respective coverage probabilities.

Furthermore, employing an informative gamma prior, Bayes estimates of parameter and relia-
bility characteristics are derived under SELF (Prior 1). Its related hyper-parameters (a,b) for
Prior 1 are set so that the prior mean is θ = a/b, i.e. θ = a/b. Therefore, chosen (a,b) = (3,2)
and (a,b) = (1.2,2.4) for θ = 1.5 and 0.5, respectively. For non-informative prior (Prior 0),
hyper-parameters are taken as (a,b)→ (0,0). To obtain Bayes estimates, the TK approxima-
tion, IS, and M-H algorithms are utilized. M = 10,000 samples are generated for the IS and
M-H algorithms, of which M0 = 2000 is considered as the burn-in period. Also, obtained 95%
HPD credible interval for the parameter θ , as well as the coverage probability.

The simulations are carried out with N = 1000 replications. Then, the AEs with correspond-
ing MSEs of different estimates are computed. Suppose φ̂ j is the estimate of φ for the jth

sample, then AE = 1
N

N
∑
j=1

φ̂ j, MSE = 1
N

N
∑
j=1

(φ̂ j −φ)2. Also, the average lengths (AL) with cor-

responding coverage probabilities (CP) of 95% ACI, bootstrap (boot-p & boot-t) CI, and HPD
credible intervals of parameter θ are computed. All the simulated results are summarizes in the
following Tables 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9, 5.10, 5.11.
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From these findings, the following interpretations are drawn: the MSEs of ML and Bayes
estimates of parameter and reliability characteristics decrease as n increases in almost all cases.
Also, it is seen that Bayes estimates have smaller MSEs than ML estimates in almost all cases.
Also, the Bayes estimates using Prior 1 performed quite better than Prior 0, as it includes prior
information. It is also observed that the MSEs are decreasing with an increasing number of
individuals within each group. The ALs of asymptotic, bootstrap (boot-p, boot-t) and HPD
narrow down with an increase in n in almost all cases. In the case of HPD, ALs are more
narrow as compared to the asymptotic and bootstrap confidence intervals. In almost all cases,
the CPs of ML and Bayes estimates of θ achieve the desired confidence coefficient.

5.6 Real Data Analysis

In this section, we analyzed a real data set as an example to illustrate the situation of life testing
experiments for IP lifetime model with PFFC data. Here, we take head and neck cancer data
from Efron (1988). These data are survival times (in days) treated with combined radiotherapy
and chemotherapy of 45 patients suffering from head and neck cancer disease and given as
follows:

12.20, 23.56, 23.74, 25.87, 31.98, 37, 41.35, 47.38, 55.46,58.36, 63.47, 68.46,78.26,74.47,81,43,
84, 92, 94, 110, 112, 119, 127, 130, 133, 140, 146, 155, 159, 173, 179, 194, 195, 209,249, 281,
319, 339, 432, 469, 519, 633, 725, 817, 1776.

Recently, Sharma et al. (2015) and Sharma (2018) studied and fitted head neck cancer data to
the inverse Lindley (IL) and generalized inverse Lindley (GIL) lifetime models, respectively.
To begin, we assess the failure rate function of the data set using the scaled total time on test
(TTT) transform. The scaled TTT is calculated as follows:

ψ(r/n) =

[
r

∑
j=1

t(i)+(n− r)tr

]/(
r

∑
j=1

t(i)

)
,

where, t(i), i = 1,2, . . . ,n represent the ith order statistic and r = 1,2, . . . ,n. If the plot
(r/n,ψ(r/n)) is convex (concave), the failure rate function has a decreasing (increasing) shape.
If it start concave and then become convex (begins convex and then becomes concave), the fail-
ure rate function is upside down bathtub shaped (bathtub shaped), respectively, for more details
about scale TTT, see, Mudholkar et al. (1996). The scaled TTT plot of head-neck cancer data
set is given in Figure 6.1. This Figure suggests that the head-neck cancer data set follow upside
down bathtub shaped failure rate function. This empirical behaviour of failure rate function
is quite similar to the considered IPD model. Further, check whether the considered real data
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FIGURE 5.2: TTT plot for plots for head-neck cancer disease data.

set is good-fit to the IP lifetime model or not using some goodness-of-fit tests. Kolmogrov-
Smirnov (KS) and Anderson-Darling (AD) goodness-of-fit tests were employed in this study,
and test statistics and p-values were obtained. The ML estimates of associated parameters are
also used to generate two information theoretic criteria based on the log-likelihood function,
namely AIC and BIC. To assess the goodness-of-fit, test statistics and p-values are used. Then,
based on the considered real data set, compare the fitting of the IP lifetime model with the IL
and GIL lifetime models. The best lifetime model has the lowest AIC, BIC, − lnL, KS, and AD
test statistics and the greatest p-value for the KS and AD tests. The fittings of IP lifetime model
and competitive models are reported in table 5.12. From Table 5.12, it is noticed that IP, IL and

TABLE 5.12: Summery of fitted models for head-neck cancer disease data.

AD Test KS Test

Models MLE AIC BIC -lnL statistic p-value statistic p-value

IP θ̂ = 76.4848 570.9288 572.7354 284.4644 0.4095 0.8386 0.0783 0.9255
IL θ̂ = 76.3539 571.0640 572.8707 284.5320 0.4190 0.8290 0.0818 0.9002

GIL α̂ = 1.0248 573.0149 576.6282 284.5074 0.4153 0.8326 0.0890 0.8376
β̂ = 83.9189

GIL all models are good-fitted to the consider data set. Among all the fitted models IP lifetime
model outperform as it has lower AIC, BIC, − lnL, KS and AD statistics with high p-value. So
choice of IP lifetime model is quite reasonable for this data set.

Furthermore, the first failure censored sample was collected by randomly arranging the con-
sidered complete data-set into n = 15 groups with k = 3 sample points inside each group. The
observation with ‘+’ sings are first failure observations in the respective groups as shown in
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TABLE 5.13: First failure censored head neck cancer disease data.

Group 1 2 3 4 5 6 7 8
Items

(i) 74.47 155.00 63.47+ 23.56+ 173.00 47.38 12.20+ 195.00
(ii) 43.00+ 130.00+ 194.00 119.00 58.36+ 41.35 68.46 725.00
(iii) 140.00 159.00 519.00 432.00 84.00 37.00+ 110.00 23.74+

Group 9 10 11 12 13 14 15
Items

(i) 55.46+ 339.00 133.00 209.00 94.00+ 633.00 469.00
(ii) 1776.00 817.00 281.00 112.00+ 319.00 146.00 92.00
(iii) 78.26 179.00+ 25.87+ 127.00 249.00 31.98+ 81.00+

Table 5.13. Consequently, the ordered first failure censored sample is given by

12.20,23.56,23.74,25.87,31.98,37,43,55.46,58.36,63.47,81,94,112,130,179.

Now, applying four different progressive censoring plans on the above first failure censored
sample with prefixed number failure m = 10. The four different censoring plans and their
corresponding PFFC samples are as follows:

Scheme 1: k = 3,n = 15,m = 10,
˜
G = (5,0∗9),

˜
x = 12.20, 43, 55.46, 58.36, 63.47, 81, 94, 112, 130, 179.

Scheme 2: k = 3,n = 15,m = 10,
˜
G = (1,0∗2,1,0∗2,2,0∗2,1),

˜
x = 12.20, 23.74, 25.87, 31.98, 43, 55.46, 58.36, 94, 112, 130.

Scheme 3: k = 3,n = 15,m = 10,
˜
G = (0∗9,5),

˜
x = 12.20, 23.56, 23.74, 25.87, 31.98, 37, 43, 55.46, 58.36, 63.47.

Scheme 4: k = 3,n = m = 15,
˜
G = (0∗15),

˜
x = 12.20, 23.56, 23.74, 25.87, 31.98, 37, 43, 55.46, 58.36, 63.47, 81, 94, 112, 130,
179.

The ML and Bayes estimators of parameter and reliability characteristics under consideration
of different censoring plans are obtained and reported in Table 5.14. The reliability characteris-
tics R(t) and h(t) are computed at mission time t as median of the considered data. The Bayes
estimates of parameter and reliability characteristics are obtained using non-informative prior
as information about considered data are unavailable. For M-H algorithm and importance sam-
pling, M = 10,000 Markov chains are generated and M0 = 2500 are taken as burn-in-period.
The 95% ACI, boot-p, boot-t CIs and HPD credible intervals are computed and tabulated in
Table 5.15. For bootstrap confidence intervals each PFFC samples are replicated by B = 1000
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times. Also, Figure 6.3 shows the diagnostic plots of Markov chains for all censoring schemes
under consideration of real data set, which verifies the convergence of stationary distributions
for generation of Markov chain from posterior. The trace plot shows a random scatter about the
mean and shows fine mixture of the parameter chains. The boxplots and histograms of gener-
ated samples shows the posterior distribution are almost symmetric i.e. posterior mean can be
the best estimate in almost all censoring schemes under consideration of real data set.

TABLE 5.14: ML and Bayes estimates of parameter and reliability characteristics under con-
sideration of head-neck cancer disease data for k = 3,n = 15,m = 10.

Schemes Scheme 1 Scheme 2 Scheme 3 Scheme 4
Parameters

θ̂ 90.9509 83.8542 74.7172 74.9301
θ̂TK 91.3190 84.2256 75.0075 75.1549
θ̂IS 87.4737 81.3659 72.6638 72.9190
θ̂MH 91.5311 83.3144 73.0104 94.0702

R̂(t) 0.7174 0.8404 0.8479 0.7909
R̂TK(t) 0.7186 0.8339 0.8417 0.7851
R̂IS(t) 0.7112 0.8325 0.8367 0.8421
R̂MH(t) 0.7034 0.8315 0.8398 0.7819

ĥ(t) 0.0069 0.0076 0.0085 0.0086
ĥTK(t) 0.0070 0.0077 0.0086 0.0087
ĥIS(t) 0.0069 0.0078 0.0088 0.0070
ĥMH(t) 0.0071 0.0079 0.0088 0.0089

M̂dT SF 130.7150 120.4767 107.2949 107.6020
M̂dT SFTK 131.2270 121.0074 107.7120 107.9234
M̂dT SF IS 131.5521 119.6980 104.8326 135.2153
M̂dT SFMH 125.6985 116.8870 104.3325 104.7007

TABLE 5.15: The 95% asymptotic, boot-p, boot-t confidence and HPD credible intervals of
parameter θ under consideration of head-neck cancer disease data.

Schemes Scheme 1 Scheme 2 Scheme 3 Scheme 4
Parameters

θ̂ACI (56.14, 125.75) (55.56, 112.14) (50.49, 98.93) (50.94, 98.91)
θ̂boot-p (66.13, 162.29) (54.61, 129.40) (45.54, 91.92) (52.83, 111.10)
θ̂boot-t (44.66, 127.29) (53.94, 129.27) (60.82, 119.90) (50.61, 106.11)
θ̂HPD (45.02, 78.92) (78.92, 83.85) (70.21, 75.15) (70.46, 75.35)
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(A) Scheme 1.

(B) Scheme 2.

(C) Scheme 3.

(D) Scheme 4.

FIGURE 5.3: MCMC diagnostic plots for different censoring schemes under consideration of
head-neck cancer disease data.
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5.7 Concluding Remarks

In this chapter, some inference procedures about the parameter and reliability characteristics for
IP lifetime under PFFC data were developed. The ML and Bayes estimates of unknown param-
eter and reliability characteristics were computed. For Bayesian estimation, TK approximation,
importance sampling, and the M-H algorithm using non-informative and gamma informative
priors under SELF were considered. Based on the asymptotic normality of ML estimates and
bootstrap methods, the 95% asymptotic, boot-p, and boot-t CIs of the parameter were con-
structed. Also, the HPD credible interval of a parameter based on MCMC samples was com-
puted. An extensive numerical computation was performed to determine the potentiality of
different estimators developed in this chapter. A real data set was studied to determine the
feasibility of the considered IP lifetime model. From the simulated results, it is observed that
Bayesian estimation using MCMC followed by the M-H algorithm outperforms. Therefore, we
recommend the use of this consider methodology for all practical purpose in classical as well
as Bayesian point of views.





Chapter 6

Statistical Inference of Shannon’s Entropy
from Maxwell Lifetime Model using
Progressively First Failure Censored Data

6.1 Introduction

In this chapter, we consider a problem from information theory and proposed to developed sta-
tistical inference of Shannon’s entropy for the Maxwell lifetime model based on PFFC data.
The construction and application of the PFFCS have already been explored in depth in Chap-
ter 5. Information theory provides a simple approach for measuring the uncertainty and re-
ciprocal information of random variables as entropy measures. The applications of entropy
are described in a variety of fields, including computer science, molecular biology, hydrology,
meteorology, and others. For example, in the study of trends in gene sequences, molecular bi-
ologists use the principle of Shannon’s entropy. For more details, one may refer Cover (1999),
which contains an excellent monograph on the information theory and implications of the con-
cept of entropy in various disciplines. Shannon’s entropy is the most widely used entropy in
statistical and information theory, and it was introduced by Shannon (1948). Let X be a random
variable with pdf f (.), the Shannon’s entropy of X is expressed as follow

H( f ) = E [− ln f (X)] =−
∞∫

−∞

f (x) ln ( f (x)) dx. (6.1)

Recently, some attempts have been made by many scholars in parametric statistical inferences
to measure the entropy for different lifetime models based on complete as well as censored
data. For example, entropy for several shifted exponential populations is studied by Kayal and

109
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Kumar (2013), Cho et al. (2014) discussed entropy for Rayleigh lifetime model under doubly
generalized Type-II hybrid censoring scheme, based on generalized progressive hybrid censor-
ing Liu and Gui (2019) estimated entropy, Du et al. (2018) established a statistical inference of
information entropy for the log-logistic lifetime model based on progressively Type-I interval
censored data, Yu et al. (2019) studied Shannon’s entropy for the inverse Weibull lifetime model
using PFFC data, Rajesh and Sunoj (2021) discussed Shannon’s entropy based on length-bias
and Type-I censoring, Hassan and Zaky (2021) developed Bayes estimate of entropy for the
Lomax lifetime model based on record data, Shakhatreh et al. (2021) discussed differential
entropy for the Weibull lifetime model in the case of objective Bayesian, and references were
cited therein. The main objective of this chapter is to develop classical and Bayesian infer-
ences for the associated parameter and Shannon’s entropy of the Maxwell lifetime model using
PFFC data. The Maxwell-Boltzmann distribution was first proposed by James Clerk Maxwell
and Ludwig Boltzmann in late 1800 as a distribution of velocities in a gas at a given temper-
ature, for more details, see, Bekker and Roux (2005). The Maxwell-Boltzmann distribution,
popularly known as the Maxwell (MW) lifetime model, is widely used in the fields of chem-
istry and physics for a variety of purposes. Many basic properties of gases, such as pressure
and diffusion, are explained by the MW lifetime model. The MW lifetime model has recently
gained popularity as a well-known lifetime model in the literature. This lifetime model has
been widely investigated by various researchers for modelling several lifetime data scenarios.
For example, Krishna and Malik (2009) studied the MW lifetime model under Type-II censored
data, Krishna and Malik (2012) discussed the MW lifetime model under progressive censoring,
Krishna et al. (2015) discussed the MW lifetime model under randomly censored data, Tomer
and Panwar (2015) established estimation procedures for the MW lifetime model using Type-I
progressive hybrid censoring, and Bayesian analysis for MW lifetime model is discussed by
Panwar and Tomer (2019), etc. The remainder of this chapter is as follows: Section 6.2 deals
with the model description. Classical estimation methods such as ML, ACIs, and bootstrap CIs
methods are developed in Section 6.3. Section 6.4, devoted to Bayesian estimation methods
using TK approximation and MCMC techniques. Extensive numerical simulations are done in
Section 6.5 to demonstrate the influence of numerous estimators created in this chapter. The
application of the considered methodology is examined by a real data analysis in Section 6.6.
Finally, in Section 6.7, there are some concluding remarks.
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6.2 The Model

Let X be random variable following MW lifetime model with parameter λ i.e. X ∼ MW(λ ),
the pdf, cdf and failure rate (or hazard) function, respectively, are given by

f (x;λ ) =
4√
π

1
λ 3/2 x2e−

x2
λ ; 0 < x < ∞,λ > 0, (6.2)

F(x;λ ) = Γ

(
x2

λ
,
3
2

)
; 0 ≤ x < ∞,λ > 0, (6.3)

and, h(x) =
4√

πλ 3/2
x2e−x2λ

[1−Γ(x2/λ ,3/2)]
; x > 0, λ > 0. (6.4)

where, Γ(t,b) = 1
Γ(b)

∞∫
0

e−xxb−1dx is the incomplete gamma ratio. The failure rate of the MW is

increasing, see Krishna and Malik (2012). Now using equations (6.2) and (6.1), the Shannon’s
entropy is given by

H( f ) = E [− ln f (x)] =−
∞∫

0

f (x) ln f (x)dx

=−
∞∫

0

f (x)
{

ln4− 1
2

lnπ − 3
2

lnλ +2lnx− x2

λ

}
dx

=−A
∞∫

0

f (x)dx−2
∞∫

0

lnx f (x)dx+
1
λ

∞∫
0

x2 f (x)dx

=−A− 8√
π

1
λ 3/2

∞∫
0

x2 lnxe−x2/λ dx+
4√
π

1
λ 5/2

∞∫
0

x4e−x2/λ dx

H( f ) =
1
2

lnλ + γ +
1
2

lnπ − 1
2
≃ H(λ ) (say), (6.5)

where, A = ln4− 1
2 lnπ − 3

2 lnλ ,
∞∫
0

f (x)dx = 1, and γ is a Euler–Mascheroni constant.

6.3 Classical Estimation

In this part, we use the expectation-maximization (EM) approach to create ML estimates of the
related parameter λ and entropy H(λ ). Based on ML estimates we constructed ACIs of λ and
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H(λ ). Also, we construct the bootstrap CIs for λ and H(λ ).

6.3.1 Maximum Likelihood Estimation

Let x j:m:n:k; j = 1,2, . . .m be the PFFC sample drown from MW(λ ), with presumed censoring
plans

˜
G and the number of groups n, each group having k individuals with effective sample size

m. Then, the likelihood function using equations (6.2), (6.3) and (5.1) is given by

L(
˜
x;λ ) = Akm

(
4√
π

)m

λ
− 3m

2 exp

{
− 1

λ

m

∑
j=1

x2
j

}
m

∏
j=1

x2
j

[
1−Γ

(
x2

j

λ
,
3
2

)]k(G j+1)−1

, (6.6)

where, A = n(n−G1 −1)(n−G1 −G2 −2) . . .(n−G1 −G2 −·· ·−Gm−1 −m+1).

To begin, assume that the observed and censored data are represented by
˜
X =(x1:m:n:k,x2:m:n:k, . . . ,xm:m:n:k),

and
˜
Z =

(
z11, . . . ,z1[k(G1+1)−1], . . . ,zm1, . . . ,zm[k(Gm+1)−1]

)
, respectively. The combined forms

of complete sample is given by
˜
Y = (

˜
X ,

˜
Z). After ignoring the additive constant, we have

log-likelihood function

Lc(˜
Y ;λ ) =−3nk

2
lnλ − 1

λ

m

∑
i=1

x2
i −

1
λ

k(Gi+1)−1

∑
j=1

Z2
i j. (6.7)

We must compute the pseudo log-likelihood function for the E-step. It can be calculated from
complete sample by replacing any Zi j function, such as η(Zi j), with E

[
η(Zi j|Zi j > xi)

]
. As a

result, the pseudo log-likelihood function is given as follows

Lc(˜
Y ;λ ) =−3nk

2
ln λ − 1

λ

m

∑
i=1

x2
i −

1
λ

k(Gi+1)−1

∑
j=1

E
[
Z2

ik|Zi j>wi

]
. (6.8)

For given Xi = x, the conditional distribution of Zi j, follows a truncated MW lifetime model
with left truncation at xi. That is,

f (Zi j|xi,λ ) =
f (Zi j,λ )

1−F(xi,λ )
; Zi j > xi i = 1,2, . . . ,m and j = 1,2, . . . , [k(Gi +1)−1].

(6.9)

The conditional expectation in (6.9) can be defined in the following way:

A(c,λ ) = E
[

Z2
i j|Zi j > c

]
=

3λ

2[1−F(xi,λ )]

[
1−Γ

(
c2

λ
,
3
2

)]
. (6.10)
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The M-step now implies trying to maximize of the pseudo log-likelihood function, with the
appropriate value of (6.8) being replaced. If the rth stage estimate of λ is λ (r), the (r+ 1)th

stage estimate λ (r+1) can be estimated by maximizing the following equation

L∗
c( ˜

W ;λ ) =−3nk
2

ln λ − 1
λ

m

∑
i=1

[k(Gi +1)−1] A(xi,λ
(r)). (6.11)

The following equations are used to compute λ (r+1):

h(λ ) = λ , (6.12)

where, h(λ ) =
2
[
∑

m
i=1 x j +∑

m
i=1[k(Gi +1)−1]A(xi,λ

(r))
]

3nk
. (6.13)

Then, in the next iteration, λ (r+1) is utilized as the new true value of λ . The ML estimate of
λ is computed by replacing the E-step and M-step until convergence, given the starting value
λ (0) of unknown parameter. Using the invariance features of ML estimates, the ML estimate
of entropy H(λ ) is computed by simply plugin λ̂ in (6.5. Thus the ML estimate of entropy is
given by

Ĥ(λ̂ ) =
1
2

ln λ̂ + γ +
1
2

lnπ − 1
2
.

6.3.2 Asymptotic Confidence Interval

The EM approach can be used to calculate the asymptotic variance-covariance (VC) matrix for
ML estimates, see Louis (1982). For this purpose, the following concepts are used as follows:

Observe information = Complete information − Missing infomation (6.14)

Now, let us define
˜
X be observed data,

˜
Y be complete data and IX be the corresponding ob-

served information, IY be the corresponding complete information, and IY |X(λ ) be the missing
information. Then, the equation (6.14) can be expressed as follows:

IX(λ ) = IY (λ )− IY |X(λ ). (6.15)

The complete information IY is given by

IY (λ ) =−E
[

∂ 2Lc(Y ;λ )

∂λ 2

]
=

3nk
2λ 2 . (6.16)
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The Fisher information in one observation is supplied by xi, which is censored at the moment
of the ith failure.

Ii
Y |X(λ ) =−EZi|xi

[
∂ 2 ln f (Zi j|xi,λ )

∂λ 2

]
=−3

2
1
λ
+ψ

′(λ )+
3

λ 2[1−F(xi,λ )]

[
1−Γ

(
x2

i
λ
,
5
2

)]
.

Therefore, the expected information for the conditional distribution of Y |X (i.e. the missing
information) is

IY |X(λ ) =
m

∑
i=1

[k(Gi +1)−1]IY |X(λ ). (6.17)

We now obtain the observed information matrix IX(λ ) by substituting equations (6.16) and
(6.17) in equation (6.14). Thus, I−1

X (λ ) =
[
IY (λ )− IY |X(λ )

]−1 can be used to derive the
VC matrix of parameter λ . Thus, an approximate (1 − α)100% CIs for λ is obtained as

λ̂ ± zα/2

√
Var(λ̂ ), here, zα/2 is the upper (α/2)th percentile of N(0,1). Also, the coverage

probability (CP) for λ is given by

CPλ =

∣∣∣∣ λ̂ −λ√
V̂ar(λ̂ )

∣∣∣∣≤ zα/2

 .
The delta approach is now used to construct the ACI of entropy H(λ ). Assuming λ̂ is the ML
estimate of unknown parameter λ , the asymptotic variance of Ĥ using the delta technique is
given by (Krishnamoorthy and Lin, 2010).

Var(H) = [b′CI−1
X (λ )bC],

here, bC = ∂H(λ )
∂λ

= 1
2λ

.

Under moderate regularity criteria, the OFI matrix is used as a consistent estimator of the Fisher
information. As a result, the observed variance of Ĥ is equal to

V̂ar(Ĥ)≃ [b′CI−1
X (λ )bC]λ=λ̂

.

Thus Ĥ−H√
V̂ar(Ĥ)

∼ N(0,1). Therefore, (1−α)100% ACI of H is given by Ĥ ± zα/2

√
V̂ar(Ĥ).

Also, the coverage probability (CP) of H is given by

CPH =

∣∣∣∣ Ĥ −H√
V̂ar(Ĥ)

∣∣∣∣≤ zα/2

 .
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6.3.3 Bootstrap Confidence Intervals

Using the similar concept as in (5.3.2 ), we construct the boot-p and boot-t CIs of associated
parameter λ and entropy H(λ ) of MW lifetime model. Let X1,X2, . . . ,Xm be a PFFC samples
of effective sample size m drawn from MW(λ ). Then the bootstrap procedures and algorithms
will be same as we have already been discussed in subsection (5.3.2).

6.3.3.1 Boot-p Confidence Intervals

Let λ̂( j) and Ĥ( j); j = 1,2, . . . ,B denotes the ordered values of boot-p samples λ̂ j and Ĥ j,
respectively. Thus, (1−α)100% boot-p CIs of λ and H, respectively, are given by(

λ̂
∗
[(α/2)B], λ̂

∗
[(1−α/2)B]

)
and

(
Ĥ∗
[(α/2)B], Ĥ

∗
[(1−α/2)B]

)
,

where, [a] is the integral part of a.

6.3.3.2 Boot-t Confidence Intervals

Let
(

τ∗1(1) ≤ τ1(2) ≤ ·· · ≤ τ1(B)

)
and

(
τ∗1(1) ≤ τ1(2) ≤ ·· · ≤ τ1(B)

)
denotes the ordered values

of boot-t samples τ∗i( j) for j = 1,2, . . . ,B, i = 1,2, respectively. Thus, (1−α)100% boot-t CIs
for λ and H(λ ), respectively, are given by(

λ̂ − τ1[(1−α/2)B]

√
I−1
X (λ̂ ), λ̂ − τ1[(α/2)B]

√
I−1
X (λ̂ )

)
,

(
Ĥ − τ2[(1−α/2)B]

√
I−1
X (Ĥ), Ĥ − τ2[(α/2)B]

√
I−1
X (Ĥ)

)
.

6.4 Bayesian Estimation

In this section, we derive Bayes estimators and HPD credible intervals for the parameter λ and
entropy H(λ ) using the LINEX loss function. The Bayesian approach to reliability inference
necessitates the inclusion of experimental data, as well as prior belief in the parameters and
technical knowledge of failure mechanisms, in the inferential methods. As a result, Bayesian
methods are frequently used to small sample data, which is especially useful in the case of
costly life testing studies. The inverted gamma distribution is a common natural conjugate prior
density for the parameter λ of the MW lifetime model in Bayesian estimation, see (Bekker
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and Roux, 2005), (Chaudhary et al., 2017). Therefore, we consider the prior distribution of
unknown parameter λ assumes to follow an inverted gamma distribution with the following
pdf:

g(λ ) ∝
1

λ a+1 exp(−b/λ ); λ > 0,a,b > 0, (6.18)

a and b are hyper-parameters, respectively. The joint posterior distribution of λ is provided by
employing the likelihood function in (6.6) and the prior distribution in (6.18).

π(λ |
˜
X) = η

1

λ
3m
2 +a+1

exp

[
− 1

λ

(
m

∑
i=1

x2
i +b

)]
m

∏
i=1

[
1−Γ

(
x2

i
λ
,
3
2

)]k(Gi+1)−1

, (6.19)

where, η−1 is the normalizing constant and is given by

η
−1 =

∞∫
0

1

λ
3m
2 +a+1

exp

[
− 1

λ

(
m

∑
i=1

x2
i +b

)]
m

∏
i=1

[
1−Γ

(
x2

i
λ
,
3
2

)]k(Gi+1)−1

dλ .

We have already defined the LINEX loss function in Chapter 2. For convenience, we again
define the LINEX loss function as follows:

L(∆) = ec∆ − c∆−1; c ̸= 0, ∆ = λ̂ −λ , (6.20)

where c is the LINEX loss parameter. Under this loss function, the Bayes estimator of any
function of the parameter λ , say φ(λ ), is given by

E [φ(λ )] =−1
c

ln


∞∫
0

e−cφ(λ )π(λ |
˜
X)dλ

∞∫
0

π(λ |
˜
X)dλ

 . (6.21)

As seen in the preceding equation (6.21), the Bayes estimators are in the form of a ratio of two
integrals for which there is no closed form solution. It is feasible to get a numerical solution for
the aforementioned integral ratio. We propose utilizing two approximation approaches to solve
the aforementioned ratio of integrals: the TK and MCMC methods.
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6.4.1 TK Approximation Method

According to TK approximation’s method proposed by Tierney and Kadane (1986), the approx-
imation of the posterior mean of φ(λ ) is given by

E [φ(λ )|
˜
X ] =

∞∫
0

enδ ∗
φ
(λ )dλ

∞∫
0

enδ (λ )dλ

≃

(
|Σ∗

φ
|

|Σ|

) 1
2

en[δ ∗
φ
(λ̂ ∗

φ
)−δ (λ̂φ )] (6.22)

where, δ (λ ) = 1
n [l(λ )+ρ(λ )], and δ ∗(λ ) = δ (λ )+ 1

n lnφ(λ ), here, l(λ ) is the log-likelihood
function and ρ(λ ) = lng(λ ). Also, |Σ∗

φ
| and |Σ| are the determinants of inverse of the negative

hessian of δ ∗(λ ) and δ (λ ) at λ̂δ ∗ and λ̂δ , respectively. Also, λ̂δ and λ̂δ ∗ maximize δ (λ ) and
δ ∗(λ ), respectively. Next, we observe that

δ (λ ) =
1
n

[
−
(

3m
2

+a+1
)

lnλ − 1
λ

(
m

∑
i=1

x2
i +b

)
+2

m

∑
i=1

lnxi+

m

∑
i=1

[k(Gi +1)−1] ln
(

1−Γ

(
x2

i
λ
,
3
2

))]

Then, by solving the following non-linear equation, λ̂δ is computed:

∂δ (λ )

∂λ
=

1
n

[
−
(

3m
2

+a+1
)

1
λ
+

1
λ 2

(
m

∑
i=1

x2
i +b

)
+

m

∑
i=1

[k(Gi +1)−1]ψ(λ )

]
,

where

ψ(λ ) =
∂ ln

[
1−Γ

(
x2

i
λ
, 3

2

)]
∂λ

=− 3

2λ

[
1−Γ

(
x2

i
λ
, 3

2

)] {3
2

Γ

(
x2

i
λ
,
5
2

)
−Γ

(
x2

i
λ
,
3
2

)}
.

Now, obtain |Σ| from Σ−1 = 1
n

(
−∂ 2δ (λ )

∂λ 2

)
,

Σ
−1 =−1

n

[(
3m
2

+a+1
)

1
λ 2 −

2
λ 3

(
m

∑
i=1

x2
i +b

)
+

m

∑
i=1

[k(Gi +1)−1]ψ ′(λ )

]
,

where,

ψ
′(λ ) =

∂ψ(λ )

∂λ
=− 3

2λ 2

{[{
1−Γ

(
x2

i /λ ,3/2
)}

Q1 +Q2
]

{1−Γ(xi/λ ,3/2)}

}
,
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where,

Q1 =
5
2
[
Γ
(
x2

i /λ ,7/2
)
−2Γ

(
x2

i /λ ,5/2
)
+Γ

(
x2

i /λ ,3/2
)]

and
Q2 =

3
2
[
Γ
(
x2

i /λ ,5/2
)
−Γ

(
x2

i /λ ,3/2
)]
.

We use φ(λ ) = e−cλ to compute the Bayes estimator of λ under the LINEX loss function, and
the function δ ∗ (λ ) becomes

δ
∗(λ ) = δ (λ )− cλ

n
.

Then, by solving the following non-linear equation, λ̂ ∗
δ ∗ is obtained:

∂δ ∗(λ )

∂λ
=

∂δ (λ )

∂λ
− c

n
= 0, and obtain |Σ∗| from Σ

∗−1
λ

=−1
n

(
∂ 2δ ∗(λ )

∂λ 2

)
.

Under the LINEX loss function, the approximate Bayes estimator of λ is given by

λ̂T K =−1
c

ln

[( |Σ∗
λ
|

|Σ|

) 1
2

exp
{

n
[
δ
∗
λ
(λ̂ ∗

δ
)−δ (λ̂δ )

]}]
.

Similarly, the Bayes estimator of entropy H(λ ) is given by

ĤT K =−1
c

ln

[(
|Σ∗

H |
|Σ|

) 1
2

exp
{

n
[
δ
∗
H(Ĥ

∗
δ
)−δ (Ĥδ )

]}]
.

6.4.2 MCMC Method

Here, the Bayes estimates of parameter and entropy are computed using the MCMC technique
followed by M-H algorithm. We create a candidate points from a normal distribution to gen-
erate a sequence of sample from the posterior distribution of λ using data

˜
X in (6.19). For the

purpose of computation, the following steps are used:

Step 1: Begin with guess value λ (0) for λ .

Step 2: Create a candidate point λ
( j)
c from the proposal density η(λ ( j)|λ ( j−1)).

Step 3: Create u from uniform (0,1).

Step 4: Compute α(λ
( j)
c |λ ( j−1)) = min

{
π

(
λ
( j)
c |

˜
w
)

η

(
λ ( j−1)|λ ( j)

c

)
π(λ ( j−1)|

˜
w)η

(
λ
( j)
c |λ ( j−1)

) ,1
}

.

Step 5: If u ≤ α set λ ( j) = λ
( j)
c with acceptance probability α otherwise λ ( j) = λ ( j−1).

Step 6: Compute H( j) = H(λ ( j)) using (6.1).
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Step 7: For j = 1,2, . . . ,M, repeat steps 2-6 to get the sequence of the parameter λ as (λ1,λ2, . . . ,λM)

and the entropy H as (H1,H2, . . . ,HM), respectively.

To get an independent sample from the stationary distribution of the Markov chain, which is
typically the posterior distribution, we discard first λ ′

js and H ′
js, where, M0; j = 1,2, . . . ,M0 is

the burn-in-period. Therefore, the Bayes estimators of the parameter λ and entropy H(λ ) under
the LINEX loss function, respectively, are given by

λ̂MH =−1
c

ln

[
1

M−M0

M

∑
j=M0+1

e−cλ j

]
,

ĤMH =−1
c

ln

[
1

M−M0

M

∑
j=M0+1

e−cH(λ j)

]
.

6.4.3 HPD Credible Interval Estimation

Using the generated MCMC samples based on the M-H algorithm, we now construct the HPD
credible intervals for the parameter λ and entropy H(λ ). Let λ(1) < λ(2) < · · ·< λ(M) represent
the ordered values of λ1,λ2, . . . ,λM. Then (1−α)100%, 0 < α < 1, HPD credible interval
for λ is given by

(
λ( j),λ( j+[(1−α)M])

)
, where j is chosen such that

λ j+[(1−α)M]−λ( j) = min
1≤i≤αM

(
λ(i+[(1−α)M])−λ(i)

)
; j = 1,2, . . . ,M.

Similarly, HPD credible interval for H(λ ) is computed as
(
H( j),H( j+[(1−α)M])

)
, where j is

chosen such that

H j+[(1−α)M]−H( j) = min
1≤i≤αM

(
H(i+[(1−α)M])−H(i)

)
; j = 1,2, . . . ,M.

6.5 Numerical Computations

In this section, we perform an extensive numerical computation in terms of an MC simulation
to understand the impact of distinct estimators created in the previous sections. The impact
of different estimators are evaluated by their average estimates (AE) and mean squared errors
(MSE). The AE and MSEs of ML and Bayes estimators of the parameter and entropy are used in
the MC simulation to determine the influence of different estimators established in the previous
sections. The Bayes estimators of parameter and entropy are computed in the case of non-
informative prior (Prior 0) and informative inverted gamma prior (Prior 1) under the LINEX
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loss function. Also, we obtain average lengths (AL) of 95% ACIs, bootstrap CIs, and HPD
credible intervals with their corresponding coverage probabilities (CP). To obtain bootstrap
CIs of the parameter λ and entropy H(λ ), we generate B = 1000 bootstrap samples for the
prescribed sample under consideration.

For the simulation purpose, the PFFC samples are generated with several combinations of
(k,n,m,

˜
G) for distinct values of associated parameter λ from MW(λ ). To generate PFFC

samples, we use the algorithm proposed by Balakrishnan and Sandhu (1995), with the addi-
tion that the PFFC sample x1,x2, ...,xm can be viewed as a progressively censored sample from
a population with cdf

[
1− (1−F(x))k], see Wu and Kuş (2009). Here, we considered two

sets of parameter values θ = 0.75 and θ = 1.5, for which the corresponding entropy becomes
0.5057 and 0.8523, respectively. We consider group sizes k = 3,5, number of groups n = 20,50
with effective sample sizes m = 40,80% of n. For each n, we adopt three different censoring
plans

˜
G and these plans are common for each n. The different common failure plans

˜
G for each

effective sample m are as follows:

Plan 1: If [(k,n,m),(G1 = n−m,G j = 0, ∀ j = 2,3, . . .m)], in this case (n−m) groups are
discarded from the experiment at the first failure only,

Plan 2: If [(k,n,m),(G j = 0, ∀ j = 1,2, . . . ,m−1,Gm = n−m)], in this case (n−m) groups
are discarded at mth failure, and

Plan 3: If [(k,n=m),G j = 0, ∀ j = 1,2, . . . ,m] this is the case of first failure censored sample.

The simplified notations are used for different combinations of censoring plans ([CS]) which
are summaries in the Table 6.1. Note: the notation used in censoring schemes like (0 ∗ 7) de-
notes (0,0,0,0,0,0,0) and (4 ∗ 3) stands for (4,4,4). For Bayesian calculations of parameter

TABLE 6.1: Several combinations of censoring plans.

n m [CS] Schemes n m [CS] Schemes
20 8 [1] (12*1,0*7) 50 20 [7] (30*1,0*19)

[2] (4*3,0*5) [8] (5*6,0*14)
[3] (0*7,12*1) [9] (0*19,30*1)

20 16 [4] (4*1,0*15) 50 40 [10] (10*1,0*39)
[5] (2*2,0*14) [11] (5*2,0*38)
[6] (0*15,4*1) [12] (0*39,10*1)

and entropy, the hyper-parameters (a,b) are chosen in such a way that the prior mean is ex-
actly equal to the true values of the parameter, i.e. λ = a

b . Here, we consider (a,b) = (3,4)
and (3,2) for θ = 0.75 and 1.5, respectively. In case of Prior 0, hyper-parameters are taken
as (a,b) = (0.0001,0.0001). In order to derive Bayes estimators under LINEX loss function,
we consider two choice of loss function parameter as c = (−0.5 and 0.5). Two approximation
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techniques such as TK approximation and M-H algorithm are used for Bayesian computations.
For M-H algorithm, we generate M = 10,000 samples and M0 = 20% of M is considered as
burn-in period. All the simulated results for several combinations of censoring plans are sum-
marizes in the following Tables 6.2, 6.3, 6.4, 6.5, 6.6, 6.7. These findings lead to the following
conclusions:

In view of Tables 6.2, 6.3, 6.5, 6.6, this experiment has brought up some interesting observa-
tions. In almost all cases, the ML and Bayes estimates output of parameter and entropy in terms
of MSEs are very adequate even for small sample sizes. MSEs are found to decrease as n or m

rise. It checks the consistent behavior of the estimators. Also, the performance of Bayes esti-
mators with Prior 1 is better than ML estimators even with Prior 0 in terms of MSEs, as Bayes
estimators with Prior 1 includes some prior information. Also, Bayes estimators computed
using M–H algorithm outperform the TK approximation procedure.

With the reference of Tables 6.4 and 6.7, the average lengths (AL) of ACIs, boot-p, boot-t CIs,
and HPD credible intervals are shrinking with an increase in the number of failures m. It is also
observed that the HPD credible intervals with Prior 1 have the smallest ALs as compared to
others. It is also fair to say that all four intervals have reasonable coverage probabilities. Also,
it is seen that the ALs of boot-p confidence intervals outperform as it has smaller ALs to ACI
and boot-t both.
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6.6 Real Data Application

A real data analysis is done in this portion to demonstrate the feasibility of the considered MW
lifetime model and methodology used in this chapter. Here, we consider the tensile strength (in
GPa) of 100 observations of carbon fibers, which are as follows:

3.70, 3.11, 4.42, 3.28, 3.75, 2.96 ,3.39, 3.31, 3.15, 2.81, 1.41, 2.76, 3.19, 1.59, 2.17, 3.51, 1.84,
1.61, 1.57, 1.89, 2.74, 3.27 ,2.41, 3.09, 2.43, 2.53, 2.81, 3.31, 2.35, 2.77, 2.68, 4.91, 1.57, 2.00,
1.17, 2.17, 0.39, 2.79 ,1.08, 2.88, 2.73, 2.87, 3.19, 1.87, 2.95, 2.67, 4.20, 2.85, 2.55, 2.17, 2.97,
3.68, 0.81, 1.22 ,5.08, 1.69, 3.68, 4.70, 2.03, 2.82, 2.50, 1.47, 3.22, 3.15, 2.97, 2.93, 3.33, 2.56,
2.59, 2.83 ,1.36, 1.84, 5.56, 1.12, 2.48, 1.25, 2.48, 2.03, 1.61, 2.05, 3.60, 3.11, 1.69, 4.90, 3.39,
3.22 ,2.55, 3.56, 2.38, 1.92, 0.98, 1.59, 1.73, 1.71, 1.18, 4.38, 0.85, 1.80, 2.12, 3.65.

Originally this set was reported by Nichols and Padgett (2006) and further studied by Mo-
hammed et al. (2017) and Xie and Gui (2020), respectively. To begin, we use the scaled TTT
transform to examine the behaviour of the failure rate function of the considered data set. The
scaled TTT is calculated as follows:

ψ(r/n) =

[
r

∑
j=1

t(i)+(n− r)tr

]/(
r

∑
j=1

t(i)

)
,

where, t(i), i= 1,2, . . . ,n denotes the ith order statistic and r = 1,2, . . . ,n. If the plot (r/n,ψ(r/n))

is convex (concave), the failure rate function has a decreasing (increasing) shape. For more de-
tails one may refer Mudholkar et al. (1996). The scaled TTT plot of the considered data set is
displayed in Figure 6.1. From Figure 6.1, it is clear that the considered data set follows increas-
ing failure rate function. This empirical behavior of failure rate function is quite similar to the
considered MW lifetime model.

Further, we check whether the considered data set is well fitted to the MW lifetime model or not
using some goodness-of-fit tests. Here, we consider Kolmogrov-Smirnov (KS) and Anderson-
Darling (AD) tests statistics along with their corresponding p-values. The KS and AD statistics
with their corresponding p-values (in parenthesis) are 0.0884 (0.4145) and 0.7977 (0.4824),
respectively. According to the obtained p-values, the considered model is fitted quite well for
the considered real data set. Also, to see the feasibility of fitting graphically for the considered
real data set, we plot empirical & fitted cdfs and probability-probability (P-P) plots of consid-
ered MW lifetime model and displayed in Figure 6.2. Figure 6.2, also suggests the considered
model is well fitted with the considered real data set.

Moreover, to illustrate the methodologies adopted throughout the study, we can consider the
PFFC data. After dividing the above-mentioned complete data set of sample size 100 into
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FIGURE 6.1: TTT plots under consideration of real data set.

n = 25 groups, each with k = 4 items, the FFC sample has been collected. The grouped data
and the corresponding FFC samples are reported in Table 6.8. The items with “+” within
each group indicate the first failure. Next, we generate six PFFC samples using 6 different
combinations of censoring plans for the obtained first failure censored data in Table 6.8, with
m=(40 & 80) % of n. The several censoring plans and the corresponding PFFC samples are
presented in Table 6.9. We construct the ML and Bayes estimates of λ and H(λ ) for all cen-
soring plans. We utilise non-informative priors to construct Bayes estimators since we don’t
have prior knowledge. Under the LINEX loss function, the Bayes estimators are calculated
using TK approximation and MCMC techniques at two distinct values of the loss parameter c=
(-0.5 & 0.5). For parameter λ and entropy H(λ ), we also build 95% ACI, boot-p, boot-t CIs,
and HPD credible intervals. ML and Bayes estimates of the parameter and entropy are shown
in Table 6.10. Also, various interval estimates of parameter and entropy are reported in Table
6.11 and 6.12, respectively. We use graphical diagnostic tools such as the trace map, boxplot,
and histogram with Gaussian density plots to confirm the convergence of their stationary dis-
tributions, as illustrated in Figure 6.3. A random dispersion around the mean (shown by a thick
red line) and a fine variety of parameter sequences can be seen in the trace plot. As shown by
the boxplots and histograms of created samples, the posterior distribution is almost symmetric,
meaning that the mean may be chosen as the best estimate of the parameter.



Chapter 6 130

TABLE 6.8: Grouped real data set (Observation with “+ ” indicates the first failure (FF) in the
group).

Groups → 1 2 3 4 5 6 7 8 9 10 11 12 13
Items↓

I 3.27 2.05 3.33 1.87 2.03 3.68 2.87 2.67+ 1.84 1.73 2.82 2.77 2.73
II 2.97 1.61 4.38 2.97 2.12 2.68 1.59+ 2.96 0.39+ 3.19 2.41+ 2.17 2.88
III 3.11 3.11 1.69 1.57+ 0.85+ 4.90 1.89 3.09 2.17 1.57+ 3.60 3.51 3.75
IV 2.03+ 1.25+ 1.18+ 1.59 1.84 2.38+ 2.43 4.20 2.35 2.93 3.22 1.08+ 1.69+

FF Obs. 2.03 1.25 1.18 1.57 0.85 2.38 1.59 2.67 0.39 1.57 2.41 1.08 1.69

Ordered FF obs. 0.39 0.81 0.85 0.98 1.08 1.12 1.18 1.22 1.25 1.36 1.41 1.47 1.57

Groups→ 14 15 16 17 18 19 20 21 22 23 24 25
Items↓

I 5.56 2.81 2.55 4.70 1.36+ 3.22 1.61 3.15 4.91 3.31 2.76 0.98+
II 1.41+ 3.39 2.17 2.59 2.83 1.71+ 2.85 4.42 1.17 1.92 5.08 3.39
III 2.48 3.68 3.56 3.19 2.74 3.65 1.47+ 2.00+ 1.12+ 1.80+ 3.28 2.50
IV 2.95 0.81+ 1.22+ 2.56+ 2.53 3.15 2.79 2.81 3.70 2.55 2.48+ 3.31

FF Obs. 1.41 0.81 1.22 2.56 1.36 1.71 1.47 2.00 1.12 1.80 2.48 0.98

Ordered FF obs. 1.57 1.59 1.69 1.71 1.80 2.00 2.03 2.38 2.41 2.48 2.56 2.67

TABLE 6.9: Censoring schemes and progressively first failure censored samples corresponding
to considered real data set.

k [CS] Schemes Progressively first failure censored samples

4 [1] (15,0*9) 0.39 ,1.80 ,1.84 ,2.03 ,2.12 ,2.17, 2.48, 2.50, 2.73 ,2.77
[2] (5*3,0*7) 0.39 ,1.18, 1.57, 2.03, 2.12, 2.17, 2.48, 2.50, 2.73, 2.77
[3] (0*9,15) 0.39, 0.81, 0.85, 0.98, 1.08, 1.12, 1.18, 1.22, 1.25, 1.36

4 [4] (5,0*19) 0.39, 1.18, 1.22, 1.25, 1.36, 1.41, 1.47, 1.57, 1.59, 1.61,
1.69 ,1.80, 1.84, 2.03, 2.12, 2.17, 2.48, 2.50, 2.73, 2.77

[5] (2,3,0*18) 0.39, 0.98, 1.22, 1.25, 1.36, 1.41, 1.47, 1.57, 1.59, 1.61,
1.69, 1.80, 1.84, 2.03, 2.12, 2.17, 2.48, 2.50, 2.73, 2.77

[6] (0*19,5) 0.39, 0.81, 0.85, 0.98, 1.08, 1.12, 1.18, 1.22, 1.25, 1.36,
1.41, 1.47, 1.57, 1.59, 1.61, 1.69, 1.80, 1.84, 2.03, 2.12

TABLE 6.10: ML and Bayes estimates of λ and H(λ ) under consideration of real data set for
k = 4,n = 25, m=(40 & 80)% of n and c=(-0.5 & 0.5).

k [CS]

MLE

TK Bayes M-H Bayes

c =−0.5 c = 0.5 c =−0.5 c = 0.5

λ̂ Ĥ λ̂ H λ̂ Ĥ λ̂ Ĥ λ̂ λ̂

4 [1] 9.2897 1.7640 13.4153 1.7800 8.7078 1.7714 9.6163 1.7467 8.5906 1.7436
[2] 10.6695 1.8333 11.5620 1.8493 9.9031 1.8411 11.1367 1.8167 9.8262 1.8137
[3] 5.6674 1.5169 6.5958 1.5330 5.5463 1.5304 5.7261 1.5016 5.3784 1.4988

4 [4] 6.6806 1.5992 7.2764 1.6083 6.5572 1.6046 6.7445 1.5903 6.4575 1.5887
[5] 6.7637 1.6054 7.3707 1.6145 6.6362 1.6107 6.8301 1.5965 6.5371 1.5949
[6] 5.7635 1.5254 6.2046 1.5344 5.6944 1.5308 5.8011 1.5169 5.5937 1.5153
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FIGURE 6.2: Empirical and fitted Maxwell distribution plots for real data.

TABLE 6.11: The 95% ACI, boot-p, boot-t confidence/HPD credible intervals of parameter λ ,
under consideration of real data set for k = 4,n = 25 m=(40 & 80)% of n and c=(-0.5 & 0.5).

k [CS] ACI
Bootstrap HPD credible intercals

boot-p boot-t c=-0.5 c=0.5

4 [1] (4.973, 13.606) (6.636, 12.366) (6.213, 11.944) (6.357, 11.872) (6.357, 11.872)
[2] (5.804, 15.535) (7.816, 13.602) (7.736, 13.523) (7.365, 13.587) (7.365, 13.587)
[3] (3.157, 8.178) (3.880, 8.365) (2.970, 7.454) (3.967, 7.187) (3.967, 7.187)
[4] (4.478, 8.883) (5.006, 8.771) (4.590, 8.355) (5.125, 8.058) (5.125,8.058)
[5] (4.538, 8.989) (5.044, 8.824) (4.703, 8.483) (5.192, 8.156) (5.192, 8.156)
[6] (3.893, 7.634) (4.064, 7.962) (3.565, 7.463) (4.443, 6.937) (4.443, 6.938)

6.7 Concluding Remarks

In this chapter, we developed some inferences of associated parameters and entropy of MW
lifetime model based on PFFC data from both classical and Bayesian points of view. For
classical estimation procedures, we applied the EM algorithm to compute ML estimates. Also,
we obtained asymptotic and two bootstraps (boot-p & boot-t) confidence intervals. Further,
in the case of Bayesian estimation procedures, we applied two approximation techniques such
as TK approximation and M-H algorithm to approximate the Bayes estimators under LINEX
loss function. In addition, we use the M-H algorithm to compute the HPD credible intervals.
Moreover, a numerical computation is performed employing a Monte Carlo simulation and
real data applications to know the performance of different estimators and the potentiality of
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(A) Scheme 1.

(B) Scheme 2.

(C) Scheme 3.

(D) Scheme 4.

(E) Scheme 5.

(F) Scheme 6.

FIGURE 6.3: MCMC diagnostic plots for different censoring schemes under consideration of
real data set.
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TABLE 6.12: The 95% ACI, boot-p, boot-t confidence/HPD credible intervals of entropy H,
under consideration of real data set for k = 4,n = 25 m=(40 & 80)% of n and c=(-0.5 & 0.5).

k [CS] ACI
Bootstrap HPD credible intercals

boot-p boot-t c=-0.5 c=0.5

4 [1] (1.532, 1.996) (1.596, 1.907) (1.621, 1.932) (1.591, 1.900) (1.591, 1.900)
[2] (1.605, 2.061) (1.678, 1.955) (1.712, 1.989) (1.664, 1.968) (1.664, 1.968)
[3] (1.295, 1.738) (1.327, 1.712) (1.322, 1.706) (1.353, 1.648) (1.353, 1.648)
[4] (1.434, 1.764) (1.455, 1.735) (1.463, 1.743) (1.472, 1.698) (1.472, 1.698)
[5] (1.441, 1.770) (1.459, 1.738) (1.472, 1.752) (1.478, 1.704) (1.478, 1.704)
[6] (1.363, 1.688) (1.351, 1.687) (1.364, 1.700) (1.400, 1.623) (1.400, 1.623)

considered methodologies and models. Finally, based on the observed data we recommend
the use of Bayesian estimation of the parameter and entropy based on the MCMC method for
the MW lifetime model when the prior information about the parameter is available. If prior
information is not available then the ML estimates may be are preferred.
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