
Chapter 2

Statistical Inference in Inverse Pareto
Lifetime Model using Randomly Censored
Data*

2.1 Introduction

The main objective of this chapter is to build classical and Bayesian inferences about the model
parameters of the IP lifetime model using randomly censored data.

In the survival analysis, the entire lifetime of a person or an animal is not always observable.
Some lifetimes may be censored, in that case, only a part of the lifetime is recorded. Therefore,
censoring is a necessary part of life testing experiments. The units in these experiments are
lost or removed, resulting in incomplete information. In the literature, there are different types
of censoring schemes. Type-I and Type-II censoring schemes are the most extensively used
censoring techniques in reliability and life testing experiments. The censoring time or the
number of censored items are prefixed in these censoring techniques. Many scholars, such as
Mann et al. (1974) and Sinha (1986), have examined these censoring techniques with various
lifetime models extensively.

Random censoring is a common occurrence in real-world life testing experiments. For ex-
ample, patients with leukemia enter into the study simultaneously after their treatments. We
aim to track them throughout their lives, but censoring can take many forms, including loss to

*Part of this chapter has been published in the form of a research paper with the following details: Kumar, K.,
and Kumar, I. (2020). Parameter Estimation for Inverse Pareto Distribution with Randomly Censored Life Time
Data. International Journal of Agricultural Statistical Sciences. 16 (1): 419-430.
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follow-up (e.g., the patient may elect to relocate), drop out (e.g., inadequate side effects or an
unfinished course of treatment), death from other conditions, or study layoff. That is, these ran-
dom features are uncontrollable by the treatments, resulting in an independent random variable
called a censoring time variable. This censoring scheme was introduced by Gilbert (1962) in
literature. After that some early study on random censoring can be found in Breslow and Crow-
ley (1974), Koziol and Green (1976), etc. Recently, several authors investigated the usefulness
of random censoring in literature for different lifetime models like, Ghitany and Al-Awadhi
(2002) discussed ML estimates of parameters for Burr Type XII distribution, the generalized
inverted Rayleigh distribution is studied by Kumar and Garg (2014), Krishna et al. (2015) stud-
ied Maxwell distribution, the generalized inverted exponential distribution is studied by Garg
et al. (2016), Krishna and Goel (2017) discussed geometric distribution, the log-logistic dis-
tribution is discussed by Kumar (2018), the Birnbaum-Saunders distribution is discussed by
El-Sharkawy and Ismail (2020), EL-Sagheer et al. (2020) studied three parameters Burr Type
XII distribution etc.

Mathematically, random censoring can be described as follows: suppose the failure times
X1,X2, . . . ,Xn are independent and identically distributed (iid) random variables with pdf fX ,x>

0 and survival function SX ,x > 0. Associated with these failure times, T1,T2, . . . ,Tn are iid cen-
soring times with pdf fT , t > 0 and survival function ST , t > 0. Now, suppose X ′

i s and T ′
i s mutu-

ally independent ∀ i = 1,2, . . . ,n. We observe failure or censored time Yi = min(X ′
i s,T ′

i s) ; i =

1,2, . . . ,n, and the corresponding censor indicators

Di =

1; if failure occurs

0; if censoring occurs.

Some spacial cases of this censoring scheme are as follows: (i) It become complete sample case
when Ti = ∞ ∀ i = 1,2, . . . ,n. (i) It reduces to Type I censoring when Ti = t0 ∀i = 1,2, . . . ,n,
where, t0 is the pre-fixed study period. Thus, the joint pdf of Y and D is given by

fY,D(y,d) = { fX(y)ST (y)}d{ fT (y)SX(y)}1−d ; y > 0,d = 0,1. (2.1)

The marginal distribution of Y and D can be obtained as

fY (y) = fX(y)ST (y)+ fT (y)SX(y), y > 0, and

P[D = d] = pd(1− p)1−d ;d = 0,1,
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respectively, where, p is the probability of observing a failure and it is given by

p = P[X ≤ T ] =
∞∫

0

ST (y) fX(y)dy.

There are numerous real-life situations in survival analysis where data requires a probability
distribution with both decreasing and upside-down bathtub-shaped failure rate functions. For
example, a disease’s mortality may reach a high after a while and then gradually drop, as
shown in Kundu and Howlader (2010). During the first few days after a heart transplant, while
the body adjusts to the new organ, patients face an increasing failure rate of mortality. As the
patient recovers, the failure rate reduces, as seen in Collett (2015). The failure function shaped
like an upside-down bathtub would be acceptable in such cases.

The one parameter IP lifetime model has both the decreasing and upside-down bathtub-shaped
failure rate functions depending on the true value of the parameter. Also, it has nice closed-form
expressions of the cumulative distribution function (cdf) and failure rate function, both of which
are useful in reliability theory or survival analysis. However, the IP lifetime model has a very
nice closed form failure rate function, it has not gained much attention in the literature. Guo
and Gui (2018) studied IP lifetime model based on stress-strength reliability in the case of both
classical and Bayesian approaches. The application of IP lifetime model in extreme events is
studied by Dankunprasert et al. (2021), Kumar et al. (2021) developed some estimation methods
for associated parameter and reliability characteristics of IP lifetime model.

The main aim of this chapter is to develop the classical and Bayesian estimation procedures for
the parameters of the IP lifetime model using randomly censored data. The rest of the chapter is
laid out as follows: the IP lifetime model is discussed in Section 2.2. Also, a mathematical for-
mulation is given for random censoring with failure and censoring time distributions. Section
2.3 deals with the ML estimation and ACIs of the parameters. Section 2.4 describes the formu-
lation of Bayes estimation procedure using MCMC methods under LINEX loss function using
gamma informative priors. The HPD credible intervals for the parameters are derived using
MCMC techniques. Section 2.5 deals with an MC simulation study to explore the properties
of various estimates developed in this chapter. Two real datasets are analyzed for illustration
purposes in Section 2.6. Finally, concluding remarks are given in Section 2.7.
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2.2 The Model

If a random variable X follows the IP lifetime model with parameter α denoted by IP(α), the
pdf of IP lifetime model is given by

fX(x;α) =
αxα−1

(1+ x)α+1 ; α > 0, x > 0. (2.2)

Figure 2.1 shows the pdf of IP lifetime model for distinct values of α , say 0.25, 0.75, 1.5 and

FIGURE 2.1: Plot of pdf of IPD.

2.5. Also, the corresponding cdf, survival and failure rate functions are, respectively, given by

FX(x;α) =

(
x

1+ x

)α

; α > 0, x > 0, (2.3)

S(x;α) = P(X > x) = 1−
(

x
1+ x

)α

; x > 0, α > 0, and (2.4)

h(x;α) =
αxα−1

(1+ x)α+1
[
1−
( x

1+x

)α] ; α > 0,x > 0. (2.5)
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FIGURE 2.2: Plot of failure rate function of IPD.

Figure 2.2 shows the failure rate function of IP lifetime model for distinct values of α , say 0.25,
0.75, 1.5 and 2.5. From the figure 2.2, it is clear that IP lifetime model holds both decreasing
and upside-down bathtub shaped failure rate functions.

Next, suppose the failure time X folow IP lifetime model with parameter α , say IP(α), and
censoring time T follows IP lifetime model with parameter β , say IP(β ). Then using equation
(2.1), the joint pdf of randomly censored IP lifetime model is given by

fY,D(y,d,α,β ) =
αdβ 1−dyd(α−β )+β−1

(1+ y)d(α−β )+β+1

[
1−
(

y
1+ y

)β]d[
1−
(

y
1+ y

)α]1−d

;

y > 0,α > 0,β > 0,d = 0,1, (2.6)

and the probability of observing a failure is given by

p =

∞∫
0

ST (y) fX(y)dy =
β

α +β
.
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2.3 Maximum Likelihood Estimation

In this section, we derive the ML estimates, α̂ and β̂ of α and β , respectively. For the observed
sample (y, d) = (y1, d1),(y2, d2), . . .(yn, dn) of size n. Also, compute ACIs of the parameters
based on observed Fisher information matrix. The likelihood function can be written as

L(y, d, α, β ) =
n

∏
i=1

αdiβ 1−diydi(α−β )+β−1
i

(1+ yi)di(α−β )+β+1

[
1−
(

yi

1+ yi

)β]di
[

1−
(

yi

1+ yi

)α]1−di

. (2.7)

Thus, the log-likelihood function becomes

l(α,β |data) = m ln α +(n−m) ln β +(α −β )
n

∑
i=1

di ln yi +(β −1)
n

∑
i=1

ln yi

− (α −β )
n

∑
i=1

di ln (1+ yi)− (β +1)
n

∑
i=1

ln (1+ yi)

+
n

∑
i=1

di ln
[

1−
(

yi

1+ yi

)β]
+

n

∑
i=1

(1−di) ln
[

1−
(

yi

1+ yi

)α]
,

(2.8)

where, m =
n
∑

i=1
di. The corresponding normal equations of the log-likelihood function obtain as

follows:

∂ l(α,β |data)
∂α

=
m
α
+

n

∑
i=1

di ln yi −
n

∑
i=1

di ln (1+ yi)−
n

∑
i=1

(1−di)

( yi
1+yi

)α ln
( yi

1+yi

)[
1−
( yi

1+yi

)α] = 0 (2.9)

∂ l(α,β |data)
∂β

=
n−m

β
+

n

∑
i=1

ln yi −
n

∑
i=1

di ln yi +
n

∑
i=1

di ln (1+ yi)−
n

∑
i=1

ln (1+ yi)−

n

∑
i=1

di

( yi
1+yi

)β ln
( yi

1+yi

)
[
1−
( yi

1+yi

)β ] = 0
(2.10)

The ML estimates α̂ and β̂ of the parameters α and β , respectively, are the solutions of the
non-linear equations (2.9) and (2.10). Here, equations (2.9) and (2.10) do not have closed form
solutions, any iterative method can be used to solve these equations for α and β , respectively.
Here, for the computation purpose, nlm or optim or maxLik functions of statistical software R

can be used.

2.3.1 Asymptotic Confidence Intervals

As the ML estimates of the unknown model parameters are not in closed form, driving the exact
distributions of the ML estimates is difficult. As a result, we build the ACIs of the parameters
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based on the observed Fisher information matrix using the asymptotic distribution of ML esti-
mates. Let θ̂ = (α̂, β̂ ), be the MLE of θ = (α, β ), the observed Fisher information matrix is
given by

I(θ̂) =

−∂ 2l(α,β |data)
∂α2 −∂ 2l(α,β |data)

∂α∂β

−∂ 2l(α,β |data)
∂β∂α

−∂ 2l(α,β |data)
∂β 2


θ=θ̂

where,

∂ 2l(α,β |data)
∂α2 =− m

α2 −
n

∑
i=1

(1−di)

(
yi

1+yi

)α (
ln
(

yi
1+yi

))2

[
1−
(

yi
1+yi

)α]2 ,

∂ 2l(α,β |data)
∂β 2 =−n−m

β 2 −
n

∑
i=1

di

( yi
1+yi

)β( ln
( yi

1+yi

))2[
1−
( yi

1+yi

)β ]2 ,

∂ 2l(α,β |data)
∂α∂β

=
∂ 2l(α,β |data)

∂β∂α
= 0.

The asymptotic distribution of ML estimates θ̂ follows a bivariate normal distribution i.e. θ̂ ∼
N(θ , I−1(θ̂)), see, Lawless (2003). Consequently, two sided equal tailed 100(1−ξ )% ACIs of
parameters α and β are given by

(
α̂ ± zξ/2

√
V̂ar(α̂)

)
and

(
β̂ ± zξ/2

√
V̂ar(β̂ )

)
,

respectively. Here, V̂ar(α̂) and V̂ar(β̂ ) are diagonal elements of the observed Fisher informa-
tion matrix I−1(θ̂) and zξ/2 is the upper (ξ/2)th percentile of the standard normal distribution
N(0,1). Also, the coverage probability (CPs) for the parameters are given by

CPα =

[∣∣∣∣ α̂ −α√
V̂ar(α̂)

∣∣∣∣≤ zξ/2

]
and CPβ =

[∣∣∣∣ β̂ −β√
V̂ar(β̂ )

∣∣∣∣≤ zξ/2

]
.

2.4 Bayesian Estimation

Here, we discussed the Bayes estimators of unknown parameters associated with the model
in (2.6) under the LINEX loss function. In decision theory, a suitable loss function must be
given in order to get the optimal decision. For this purpose, the squared error loss function
(SELF) is commonly employed loss function in the literature. This loss function is appropriate,
when overestimation and underestimation of equal magnitude have the same effects. When
the true loss is not symmetric in terms of overestimation and underestimation, asymmetric
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loss functions are employed to characterise the implications of various losses. Varian (1975)
introduced an asymmetric loss function for the first time known as LINEX loss function and it
is given as follows:

L(φ , φ̂) = ek(φ̂−φ)− k(φ̂ −φ)−1, (2.11)

where, φ̂ is an estimate of parameter φ , k ̸= 0 is the known loss parameter. The sign and
magnitude of the loss parameter k reflects the direction and degree of asymmetry, respectively.
When k is positive, the over estimation is more serious than under estimation and the situation
is reverse when k is negative. The LINEX loss function reduces to SELF when magnitude of k

tends to zero, see, Zellner (1986). Under the LINEX loss function, the Bayes estimate of φ is
given as follows

φ̂ Bayes =−1
k

lnE[e−kφ |data],

where, E[e−kφ |data] is the posterior expectation which exist and finite. Further, we assume the
prior belief of the unknown parameters α and β follows gamma distributions with the following
pdfs:

g1(α) =
ba1

1
Γ(a1)

α
a1−1e−b1α ;α, a1, b1 > 0,

g2(β ) =
ba2

2
Γ(a2)

β
a2−1e−b2β ;β , a2, b2 > 0, respectively.

Thus, the joint prior distribution of α and β can be written as

g(α,β ) ∝ α
a1−1e−b1α

β
a2−1e−b2β , a1, b1,a2, b2 > 0. (2.12)

The assumption of the piece-wise independent gamma priors is quite reasonable. It is noted
that the non-informative priors are the special cases of independent gamma priors when hyper-
parameters a1 = b1 = a2 = b2 = 0. Based on the observed randomly censored data, likelihood
function in (2.7) and joint prior distribution of (α , β ) in (2.12), the joint posterior distribution
of α and β is given by

π(α,β |data) =
L(data|α,β )g(α,β )

∞∫
0

∞∫
0

L(data|α,β )g(α,β )dαdβ
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π(α,β |data) ∝ α
m+a1−1e

−α

[
b1−

n
∑

i=1
di ln

(
yi

1+yi

)]
n

∏
i=1

[
1−
(

yi

1+ yi

)α]1−di

×β
n−m+a2−1e

−β

[
b2−

n
∑

i=1
(1−di) ln

(
yi

1+yi

)]
n

∏
i=1

[
1−
(

yi

1+ yi

)β
]di

(2.13)

From the joint posterior distribution of α and β given in equation (2.13), we observe that the
posterior distributions of α and β are independent. Thus the marginal posterior distribution of
α given data (y, d) is obtained as

π1(α | data) ∝ α
m+a1−1e

−α

[
b1−

n
∑

i=1
di ln

(
yi

1+yi

)]
n

∏
i=1

[
1−
(

yi

1+ yi

)α](1−di)

; α > 0 (2.14)

Similarly, the marginal posterior distribution of β given data (y, d) is obtained as

π2(β | data) ∝ β
n−m+a2−1e

−β

[
b2−

n
∑

i=1
(1−di) ln

(
yi

1+yi

)]
n

∏
i=1

[
1−
(

yi

1+ yi

)β
]di

;β > 0 (2.15)

Thus, the expectations of any function of α say φ1(α) and β say φ2(β ), respectively, are given
by

E[φ1(α) | data] =
∞∫

0

φ1(α)π1(α | data)dα (2.16)

and E[φ2(β ) | data] =
∞∫

0

φ2(β )π1(β | data)dβ . (2.17)

From the above equation (2.16) and (2.17), we observe that the closed form solutions are not
available. The above integrals can be solved numerically. Here, we use Markov Chain Monte
Carlo (MCMC) techniques like, the Metropolis-Hastings (M-H) algorithm to derive the Bayes
estimates of the parameters α and β , respectively.

2.4.1 MCMC Technique

Here, we use MCMC techniques to generate sequences of samples from the marginal poste-
rior distributions of the parameters. The M-H algorithm is used to obtain sample based Bayes
estimates of the unknown parameters. For more details about MCMC and M-H algorithm
techniques, one may refer, Gelman et al. (2013), Robert and Casella (2004), Metropolis et al.
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(1953), Hastings (1970). The marginal posterior distributions of the parameters α and β in
equations (2.14) and (2.15), respectively, are not well known distributions. Therefore random
numbers from these distributions can be generated by using M-H algorithm. The following
steps are used to generate random numbers from the marginal posterior distribution in (2.14):

Step 1: Begin with an initial guess. α(0).
Step 2: From the proposed density δ (α( j) | α( j−1)), create a candidate point α

( j)
c .

Step 3: Generate u using the Uniform (0,1) distribution.

Step 4: Obtain z(α( j)
c | α( j−1)) = min

{
π1(α

( j)
c |data)δ (α( j)|α( j−1))

π1(α( j−1)|data)δ (α( j)
c |α( j−1))

,1
}

Step 5: If u ≤ z set α( j) = α
( j)
c with acceptance probability z otherwise α( j) = α( j−1).

Step 6: To acquire the parameter sequence of α as
(
α(1),α(2), . . . ,α(M)

)
, repeat steps 2-5 for

j = 1,2, . . . ,M,.

Here, we consider proposal density as a normal distribution. The ML estimates and variance
of ML estimates from posterior distribution of α are considered as mean and variance of the
proposal normal distribution, see, (Ntzoufras, 2009, pp. 44-45). To get an independent sample
from the stationary distribution of the Markov chain, which is generally the posterior distribu-
tion, we discard first M0, α( j)’s ; j = 1,2, . . . ,M0, where, M0 (< M) is the burn-in-period. Now,
the approximate posterior mean of φ1(α) using M-H algorithm is obtained as

φ̂1MH(α) =
1

M−M0

M

∑
j=M0+1

φ1(α
( j)).

Similarly, the approximate posterior mean of φ2(β ) using M-H algorithm is obtained as

φ̂2MH(β ) =
1

M−M0

M

∑
j=M0+1

φ2(β
( j)).

Therefore, the Bayes estimates of the parameters α and β under LINEX loss function using
M-H algorithm are, respectively, given by

α̂MH =−1
k

ln(φ̂1MH(α)) and β̂MH =−1
k

ln(φ̂2MH(β )).

2.4.2 HPD Credible Intervals

Here, we compute the HPD credible intervals of the parameters α and β using the gener-
ated MCMC samples. Let α(1) < α(2) < · · · < α(M−M0) denote the ordered values of α(M0+1),

α(M0+2), . . . ,α(M). Then, using the algorithm proposed by Chen and Shao (1999), the 100(1−
ξ )%, where 0 < ξ < 1, HPD credible interval for α is given by (α( j),α( j+[(1−ξ )(M−M0)])),
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where j is chosen such that

α( j+[(1−ξ )(M−M0)])−α( j) = min
1≤i≤(M−M0)

(
α(i+[(1−ξ )(M−M0)])−α(i)

)
; j = 1,2, . . . ,M−M0,

where, [x] is the largest integer less than or equal to x. Similarly, we can construct the 100(1−
ξ )% HPD credible interval for β .

2.5 Numerical Computations

Here, we perform a MC simulation study to examine the different estimators created in the pre-
ceding sections. The simulation study considers six distinct sample sizes n= 30,40,50,60,70,80
for different combinations of true parameters (α , β ) = (0.75, 1.5) and (1.5, 0.75), respectively.
The unknown parameter α and β are estimated using ML and Bayes estimation methods in
each cases. The hyper-parameters (a1,b1,a2,b2) = (3, 2, 3, 4) and (3, 4, 3, 2) are taken into ac-
count for gamma informative priors (Prior 1) in Bayesian calculations such that the prior means
precisely the same as the true values of the parameters. In case of non-informative priors (Prior
0), the hyper-parameters are taken as a1 = b1 = a2 = b2 = 0.0001. Two distinct values of loss
parameter k = -1 and 1 are taken for LINEX loss function. For MCMC technique, M = 10,000
sequence of parameter samples are drawn from posterior distribution and M0 = 1,000 taken
as burn-in-period. The 95% ACIs based on OFI matrix and HPD credible intervals based on
MCMC technique are computed. The entire procedure is replicated by 1000 times. The average
estimates (AE) and their associated mean squared error (MSE) are estimated for various esti-
mators. Also determined the average length (AL) and coverage probabilities (CP) of 95% ACI
and HPD credible intervals. Tables 2.1, 2.2, and 2.3 describe the findings of the MC simulation
study.

These observations can lead to the following conclusions: In almost every case, as sample
size grows, AEs become closer to the real value of the parameters, while MSEs go lower.
Similarly, when the sample size grows, the ALs of interval estimates shrink, demonstrating
the estimators’ asymptotic behaviour. CPs achieve the required levels of confidence in almost
every case. Bayes estimators perform more effectively in the case of Prior 1 than Prior 0 or
ML estimators in terms of biases. On average, HPD credible intervals are shorter AL than
ACIs. When some prior information about parameters is provided or non-informative priors
are used, we suggest Bayes estimators. ML estimators can also be utilised for rapid results in
other situations.
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2.6 Real Data Analysis

With the help of two real datasets, we illustrate the estimation procedures discussed in the
previous sections. Here, we consider two real datasets, namely leukemia patients’ data (Data I)
and Hodgkin’s disease patients’ data (Data II). These datasets are reported in (Lawless, 2003,
pp. 139). Data I depicts the remission periods (in weeks) of a group of 30 leukemia patients who
all got the same therapy. Data II considered the survival times (in months) of 15 patients with
Hodgkin’s disease who were treated with nitrogen mustards and received heavy prior therapy.
Data I and Data II, respectively, are given below:

Data I: 1, 1, 2, 4, 4, 6, 6, 6, 7, 8, 9, 9, 10, 12, 13, 14, 18, 19, 24, 26, 29, 31+, 42, 45+, 50+, 57,
60, 71+, 85+, 91.
Data II: 1.05, 2.92, 3.61, 4.20, 4.49, 6.72, 7.31, 9.08, 9.11, 14.49+, 16.85, 18.82+, 26.59+,
30.26+, 41.34+.
The observations with + sign are censored times.

Before going further, we fit Data I and Data II to randomly censored IP lifetime and compare
its fitting with some well-known lifetime models, namely, inverse exponential (IE) and gener-
alized inverted exponential (GIE) lifetime models in case of random censoring. The pdfs of the
competitive lifetime models are as follows:

IE: f (x,θ) =
θ

x2 e−θ/x x > 0,θ > 0,

GIE: f (x,α,θ) =
αθ

x2 e−θ/x
(

1− e−θ/x
)α−1

x > 0,α,θ > 0.

We compute ML estimates of the unknown parameters along with some useful measure of
goodness-of-fit tests and model comparison criteria for both datasets, namely, the negative
log-likelihood -lnL, the AIC defined by AIC = 2× k − 2× lnL, proposed by Akaike (1974)
and Bayesian information criterion (BIC) defined by BIC = k× ln(n)−2× lnL, proposed by
Schwarz (1978), where k is the number of associated parameters in the model, n is the number
of data points in the given datasets, L is the maximised value of the likelihood function for the
estimated model and the Kolmogorov-Smirnov (KS) statistics with its p-values. The best life-
time model corresponds to the lowest –lnL, AIC, BIC, and KS statistic and the highest p-value.
The KS statistic with its p-values are obtained using ks.test function in statistical software R,
see R Core Team (2021). The results of the ML estimates and measures of goodness-of-fit
tests are reported in Table 2.4 and 2.5, respectively. From these results, we observed that the
performance of the randomly censored IP lifetime model is the best choice for the considered
datasets.
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Moreover, ML and Bayes estimates with their corresponding 95% ACIs and HPD credible
intervals of the unknown parameters associated with randomly censored IP lifetime model cor-
responding to the above real datasets (Data I and Data II) are computed and reported in Table
2.6. The Bayes estimates are computed using non-informative priors under SELF with the help
of the MCMC technique. For the M-H algorithm, we generate Markov chain M = 10,000 from
the posterior distribution. We also examine the convergence of their stationary distributions
using graphical diagnostic tools such as trace and histogram plots with Gaussian kernel density
plots, as shown in Figures 2.3 and 2.4. The trace plots indicate a random scatter and show
the fine mixing of the chains. The histogram plots of the generated MCMC samples show that
the marginal posterior distributions of the parameters are almost symmetrical i.e. we can take
the mean as the best estimate for the parameters. These plots are hallmarks of rapid MCMC
convergence. From these results, we see that ML and Bayes estimates of parameters based on
MCMC techniques are quite closed.

TABLE 2.4: Summary fit of the leukemia patients data (Data I).

Models MLE − lnL AIC BIC
KS-Test

KS-Statistic p-value
X ∼ IE(α) α̂ = 6.4343

139.8547 283.7094 286.5118 0.1755 0.3137
T ∼ IE(β ) β̂ = 76.3664

X ∼ IP(α) α̂ = 7.863
137.7025 279.4049 282.2073 0.1371 0.6256

T ∼ IP(β ) β̂ = 77.3696

X ∼ GIE(α,β ) α̂ = 0.6619
138.2794 282.5587 286.7623 0.1599 0.4271T ∼ GIE(α,λ ) β̂ = 4.7952

λ̂ = 63.1718

FIGURE 2.3: MCMC plot of leukemia patients data (Data I)
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TABLE 2.5: Summary fit of the Hodgkin’s disease patient data (Data II).

Models MLE − lnL AIC BIC
KS-Test

KS-Statistic p-value

X ∼ IE(α) α̂ = 5.5533
60.0676 124.1352 125.5513 0.1303 0.9323T ∼ IE(β ) β̂ = 27.2313

X ∼ IP(α) α̂ = 6.6481
59.7491 123.4982 124.9143 0.0966 0.9965

T ∼ IP(β ) β̂ = 28.1105

X ∼ GIE(α,β ) α̂ = 0.9172
60.0400 126.0800 128.2041 0.1157 0.9740T ∼ GIE(α,λ ) β̂ = 5.2465

λ̂ = 26.1409
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FIGURE 2.4: MCMC plot of Hodgkin’s disease data (Data II)

TABLE 2.6: The ML, Bayes estimates and 95% asymptotic and HPD credible intervals of the
unknown parameters corresponding to Data I and Data II, respectively.

Datasets Parameters MLE 95% CI Bayes estimates 95% HPD CI

Data I
α 7.863 (5.0484, 10.6775) 7.6672 (5.7135, 9.598)
β 77.3696 (31.6325, 123.1067) 72.6036 (40.328, 106.8078)

Data II
α 6.6481 (3.2792, 10.017) 6.3191 (4.0975, 8.6322)
β 28.1105 (8.3706, 47.8505) 25.6675 (12.6852, 40.3103)
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2.7 Concluding Remarks

The classical and Bayesian estimation techniques for the parameters of the IP lifetime model
using randomly censored data were discussed in this chapter. The ML estimators and their cor-
responding ACIs based on the observed Fisher information matrix of the unknown parameters
were derived. MCMC methods were used to approximate Bayes estimates of the parameters
under the LINEX loss function. A comprehensive Monte Carlo simulation study was conducted
to evaluate the performance of different estimators, and the results show that ML estimates may
be employed easily with acceptable results. For more efficient estimators, the Bayesian esti-
mation method with available prior information or convenient non-informative priors in the
absence of prior information is appropriate and recommended.
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