
Chapter 4

Classical and Bayesian Estimation of
Stress-Strength Reliability for Inverse
Pareto Lifetime Model using Progressively
Censored Data*

4.1 Introduction

In this chapter, we deal with a problem from reliability theory and we estimate the stress-
strength reliability (SSR) for IP lifetime model using progressively censored data from both
classical and Bayesian approaches. The IP lifetime model already has been discussed in Chap-
ter 2 under randomly censored data.

In life testing experiments the incomplete information commonly arises because of time limits
and other restrictions on data collection or study. The incomplete information in life testing ex-
periments is termed as censoring and it arises when components are removed or destroyed from
the experiment before the final termination point. Therefore, censored samples are frequently
available around us as a result and we use censored samples rather than the complete sample
in life testing experiments. Several censoring schemes have been utilized in the literature to
demonstrate the various motive belonging to the life testing experiments. Type-I and Type-II

*Part of this chapter has been published in the form of a research paper with the following details: Kumar, I.
and Kumar, K. (2021). On estimation of P(V < U) for inverse Pareto distribution under progressively censored data.
International Journal of System Assurance Engineering and Management, DOI: https://doi.org/10.1007/s13198-
021-01193-w.
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FIGURE 4.1: The schematic diagram of progressive censoring scheme.

censoring schemes are the two most common censoring schemes in the literature. These cen-
soring schemes are used to save money and time by prefixing time or number of failures. These
censoring schemes become ineffective when items are removed at intermittent stages from an
experiment. To overcome such type difficulty, Cohen (1963) introduced a censoring scheme
in the literature, known as progressive censoring scheme. It is one of the popular censoring
scheme which supplies the adaptability of removals of the experimental units throughout the
experiments. After that, many scholars have studied this censoring scheme for various life-
time models under different scenarios. Two excellent monographs on the progressive censoring
scheme are given by Balakrishnan and Aggarwala (2000) and Balakrishnan and Cramer (2014),
respectively. According to Hofmann et al. (2005) the progressive censoring schemes signifi-
cantly improve upon the Type-II censoring scheme in many real-life situations. More details
and applications of the progressive censoring scheme can be found in the following latest arti-
cles carried out by various scholars like: Kohansal and Rezakhah (2019), Aslam et al. (2020),
Goel and Singh (2020), Abu-Moussa et al. (2021), Ghanbari et al. (2021), Asgharzadeh and
Fallah (2021), Bedbur and Mies (2021), Wu and Gui (2021), Wu and Chang (2021), Hashem
and Alyami (2021), and reference cited therein.

Mathematically, the progressive censoring can be articulated as follows; Let n test units are put
on the life test, and only m(m ≤ n) failures are obtained. Suppose U1:m:n,U2:m:n, . . . ,Um:m:n be
the obtained ordered lifetimes and m be the prefixed number of failures with prefixed censoring
scheme

˜
S = (S1,S2, . . . ,Sm). When the ith unit fails (i = 1,2, . . . ,m− 1), Si live units are ran-

domly withdrawn from the experiments. Finally, the remaining Sm = n−m−
m−1
∑

i=1
Si live units

are withdrawn when the mth unit fails. The schematic diagram of the progressive censoring
scheme is given in Figure 4.1.

Let u1,u2, . . . ,um be a progressively Type-II censored sample with prefixed censoring scheme
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˜
S = (S1,S2, . . . ,Sm) from a population with pdf gU(.) and cdf GU(.), the likelihood function is
defined as, see, (Balakrishnan and Aggarwala, 2000)

L(u1:m:n,u2:m:n, . . . ,um:m:n) = K
m

∏
i=1

gU(ui:m:n){1−GU(ui:m:n)}Si,

0 < u1:m:n < u2:m:n < · · ·< um:m:n < ∞

(4.1)

where, K = n(n−S1 −1)(n−S1 −S2 −2) . . .(n−S1 −S2 −·· ·−Sm−1 −m+1).

Remarks: There are two particular cases of progressive Type II censoring scheme: (i) It be-
comes Type II censoring scheme when Si = 0; ∀ i = 1,2, . . .m−1 and Sm = n−m, and (ii) It
becomes complete sample case when Si = 0; ∀ i = 1,2, . . . ,m.

In reliability and life testing theory, the stress-strength reliability (SSR) model contains two
independent random variables, one as a strength variable, say U and another as a stress variable,
say V , the quantity R = P(V <U) is known as SSR. Birnbaum (1956) studied the SSR model
in connection with the classical Mann-Whitney statistic. The SSR system is applicable in many
real-life problems. Johnstone (1983) showed an anti-tank sabot round being shot at a Soviet
T-62 tank as an example of SSR in military applications. The Bayesian method was used to
calculate the chances of a particular bullet penetrating its intended target. Another application
of SSR was presented by Johnson (1988) in rocket engines. The maximal chamber pressure
generated by the ignition of a solid propellant was denoted by V and the strength of the rocket
chamber was denoted by U , so that SSR becomes the probability of successful firing of an
engine. An excellent monograph on the several SSR models with their applications are given by
Kotz et al. (2003). Some recent studies on SSR for different lifetime models based on complete
samples are as follows: The Weibull lifetime model is discussed by Jia et al. (2017). Jovanović
(2017) studied geometric-exponential lifetime model. The IP lifetime model is studied by Guo
and Gui (2018). The generalized inverse Lindley lifetime model is discussed by Sharma (2018),
Scaria et al. (2021) studied generalized Pareto lifetime model, the inverse Chen lifetime model
is discussed by Agiwal (2021) and the references cited therein. Also, some recent studies on
SSR for different lifetime models in case of progressive censoring are carried out by many
scholars like: Maxwell lifetime model studied by Chaudhary and Tomer (2018). Yadav et al.
(2018) studied IW lifetime. Two parameter Rayleigh lifetime model is discussed by Kohansal
and Rezakhah (2019). Goel and Singh (2020) studied modified Weibull lifetime model. Abu-
Moussa et al. (2021) discussed Rayleigh lifetime model, and references cited therein.

For a clear view of the study, the rest of the chapter is designed as follows: Section 4.2, deals
with the model description. The maximum likelihood estimator (MLE) and asymptotic con-
fidence interval (ACI) of SSR are presented in Section 4.3. The Bayes estimator and highest
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posterior density (HPD) credible interval of SSR has appeared in Section 4.4. The numeri-
cal computations are performed Section 4.5 to compare the ML and Bayes estimators of SSR,
numerically. In Section 4.6, two different pairs of real data sets are analyzed to illustrate the
proposed methodology. Finally, the concluding remarks are provided in Section 4.7.

4.2 The Model

The pdf and corresponding cdf of IPD with parameter θ , respectively, are given by

gU(u;θ) =
θuθ−1

(1+u)θ+1 ; θ > 0, u > 0, (4.2)

GU(u;θ) =

(
u

1+u

)θ

; θ > 0, u > 0, (4.3)

Let U and V be independent random variables following IPD(θ1) and IPD(θ2), respectively,
then the SSR is defined as

R = P(V <U) =

∞∫
0

GV (u)gU du

=

∞∫
0

(
u

1+u

)θ2 θ1uθ1−1

(1+u)θ1+1 du

=
∫

∞

0

θ1uθ1+θ2−1

(1+u)θ1+θ2+1 du

=
θ1

θ1 +θ2
= δ (θ1,θ2) say. (4.4)

4.3 Maximum Likelihood Estimation

The ML estimates of the unknown parameters θ1 and θ2 are developed in this section to get
the ML estimate of SSR R. Let ui:m1:n1; i = 1,2, . . . ,m1, be the progressively Type II censored
sample from IP(θ1) with presumed censoring scheme

˜
S = (S1,S2, . . . ,Sm1) and similarly let

v j:m2:n2; j = 1,2, . . . ,m2 be independent progressively Type-II censored sample from IP(θ2)

with presumed censoring scheme
˜
T = (T1,T2, . . . ,Tm2), then using equations (4.2), (4.3) and
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(6.7), the likelihood function is given by

L(θ1,θ2;
˜
u,

˜
v) = K1K2

m1

∏
i=1

gU(ui)[1−GU(ui)]
Si ×

m2

∏
j=1

gV (v j)[1−GV (v j)]
Tj

= K1K2θ
m1
1 θ

m2
2

m

∏
i=1

uθ1−1
i

(1+ui)θ1+1

[
1−
(

ui

1+ui

)θ1
]Si

×
m2

∏
j=1

vθ2−1
j

(1+ v j)θ2+1

[
1−
(

v j

1+ v j

)θ2
]Tj

(4.5)

where,

K1 = n1(n1 −S1 −1)(n1 −S1 −S2 −2) . . .(n1 −S1 −S2 −·· ·−Sm1−1 −m1 +1)

and

K2 = n2(n2 −T1 −1)(n2 −T1 −T2 −2) . . .(n2 −T1 −T2 −·· ·−Tm2−1 −m2 +1)

. The corresponding log-likelihood function is obtained as

l(θ1,θ2) =C+m1 lnθ1 +θ1

m1

∑
i=1

ln
(

ui

1+ui

)
+

m1

∑
i=1

Si ln

[
1−
(

ui

1+ui

)θ1
]

+m2 lnθ2 +θ2

m2

∑
j=1

ln
(

vi

1+ vi

)
+

m2

∑
j=1

Tj ln

[
1−
(

v j

1+ v j

)θ2
]
, (4.6)

where, C = lnK1+ lnK2−
m1
∑

i=1
(lnui+ ln(1+ui))−

m2
∑
j=1

(lnv j+ ln(1+v j)). The following normal

equations are obtained by differentiating the log-likelihood function w.r.t. θ1 and θ2, respec-
tively:

∂ l(θ1,θ2)

∂θ1
=

m1

θ1
+

m1

∑
i=1

ln
(

ui

1+ui

)
−

m1

∑
i=1

Si

(
ui

1+ui

)θ1
ln
(

ui
1+ui

)
[

1−
(

ui
1+ui

)θ1
] = 0. (4.7)

and,
∂ l(θ1,θ2)

∂θ2
=

m2

θ2
+

m2

∑
j=1

ln
(

v j

1+ v j

)
−

m2

∑
j=1

Tj

(
v j

1+v j

)θ2
ln
(

v j
1+v j

)
[

1−
(

v j
1+v j

)θ2
] = 0. (4.8)

The ML estimates of θ1 and θ2, say θ̂1 and θ̂2 are the solutions of normal equations (4.7) and
(4.8), respectively. Here, the closed form solutions are not available for equations (4.7) and



Chapter 4 60

(4.8). A appropriate iterative technique can be utilised to get numerical solutions to these non-
linear equations. A number of functions, such as nlm, optim, maxLik, and others, are available
in the statistical software R to compute MLEs. Once the ML estimates of unknown parameters
are computed, the ML estimate of SSR parameter R, say R̂ is derived using invariance property
of MLEs and is given by

R̂ =
θ̂1

θ̂1 + θ̂2
. (4.9)

4.3.1 Asymptotic Confidence Interval

Here, the ACI of SSR R is constructed using delta method as it is difficult to obtain exact
distribution of R̂. Let φ̂ = (θ̂1, θ̂2) be the ML estimates of unknown parameters φ = (θ1,θ2).
The asymptotic variance of R̂ using delta method, see, Krishnamoorthy and Lin (2010), is given
by

Var(R̂) = [b′CI−1(φ)bC],

where, I(φ)=−E

∂ 2l(θ1,θ2)

∂θ 2
1

∂ 2l(θ1,θ2)
∂θ1∂θ2

∂ 2l(θ1,θ2)
∂θ2∂θ1

∂ 2l(θ1,θ2)

∂θ 2
2

 is the Fisher information matrix and bC =
(

∂R
∂θ1

, ∂R
∂θ2

)′
.

The observed Fisher information can be utilized as a consistent estimator of the Fisher infor-
mation under modest regularity conditions. As a result, the observed variance of R̂ is equal
to

V̂ar(R̂)≃ [b′CI−1(φ)bC]φ=φ̂
.

The elements of partial derivatives in the Fisher information matrix I(φ) are given by

∂ 2l(θ1,θ2)

∂θ 2
1

=−m1

θ 2
1
−

m1

∑
i=1

Si

{
ln
(

ui
1+ui

)}2( ui
1+ui

)θ1

[
1−
(

ui
1+ui

)θ1
]2 ,

∂ 2l(θ1,θ2)

∂θ 2
2

=−m2

θ 2
2
−

m2

∑
j=1

Tj

{
ln
(

v j
1+v j

)}2( v j
1+v j

)θ2

{
1−
(

v j
1+v j

)θ1
}2 ,

∂ 2l(θ1,θ2)

∂θ1∂θ2
=

∂ 2l(θ1,θ2)

∂θ2∂θ1
= 0,
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and the elements of bC are given by

∂R
∂θ1

=
θ2

(θ1 +θ2)2 ,
∂R
∂θ2

=− θ1

(θ1 +θ2)2 .

Thus R̂−R√
V̂ar(R̂)

∼ N(0,1). Therefore, the 100(1−ξ )% ACI of R is given by R̂± zξ/2

√
V̂ar(R̂),

where zξ/2 is the upper (ξ/2)th quantile of N(0,1). Also, the coverage probability (CP) for R

is given by

CPR =

∣∣∣∣ R̂−R√
V̂ar(R̂)

∣∣∣∣≤ zξ/2

 .

4.4 Bayesian Estimation

In this part, we use the importance sampling (IS) approach to get the Bayes estimator of SSR
R under the generalised entropy loss function (GELF) using non-informative and gamma infor-
mative priors.

4.4.1 Loss function

A suitable loss function must be specified in Bayesian estimation. The SELF is the most often
used loss function in the literature. When over and under estimations of equal magnitude have
the same effects, the SELF is appropriate. When the real loss is not symmetric in terms of over
and under estimates, asymmetric loss functions are employed to illustrate the consequences of
various inaccuracies. For this, a general-purpose loss function, such as GELF, can be employed.
The GELF was proposed in the literature by Calabria and Pulcini (1996). This loss function is
an extension of the entropy loss function and is defined by

L(α, α̂) ∝

[(
α̂

α

)q

−q ln
(

α̂

α

)
−1
]

; q ̸= 0,

where, α̂ is the decision rule which estimate α . When q > 0, a positive error has more impli-
cations than a negative error, and when q < 0, a negative error has greater effects. The Bayes
estimator under GELF is calculated as follows:

α̂ = E
[
α
−q|data

]−1/q
. (4.10)
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Remark: The Bayes estimator in equation (4.10) is reduced to a Bayes estimator under pre-
cautionary loss function (PLF), SELF, and entropy loss function (ELF) for q =−2, −1, and 1,
respectively.

4.4.2 Prior and Posterior Distributions

We suppose the unknown parameters θ1 and θ2 are a-priori independent and have the following
gamma distributions with their corresponding pdfs:

η1(θ1) ∝ θ
a1−1
1 exp(−b1θ1); θ1 > 0,a1,b1 > 0,

and η2(θ2) ∝ θ
a2−1
2 exp(−b2θ2); θ2 > 0,a2,b2 > 0,

where, ai,bi; i = 1,2 are the hyper-parameters so chosen to reflect prior information about the
parameters θ1 and θ2, respectively. As a result, the joint prior distribution of θ1 and θ2 can be
expressed as

η(θ1,θ2) ∝ θ
a1−1
1 θ

a2−1
2 exp{−(b1θ1 +b2θ2)}. (4.11)

The selection of independent gamma priors is not unreasonable. The gamma distribution fam-
ily is highly flexible, and it includes a variety of distributions. It is also worth noting that
non-informative priors are special instances of independent gamma priors. Several researchers
have utilised gamma priors in various contexts, including Guo and Gui (2018) Kumar (2018),
Krishna et al. (2019), and many more. The posterior distribution of θ1 and θ2 is now obtained
by incorporating joint prior distribution (4.11) to the likelihood function (4.5),

π(θ1,θ2|˜
u,

˜
v) =

L(θ1,θ2;data)η(θ1,θ2)
∞∫
0

∞∫
0

L(θ1,θ2;
˜
u,

˜
v)g(θ1,θ2)dθ1dθ2

⇒ π(θ1,θ2|˜
u,

˜
v) ∝ θ

m1+a1−1
1 θ

m2+a2−1
2 exp

{
−θ1

[
b1 −

m1

∑
i=1

ln
(

ui

1+ui

)]}

× exp

{
−θ2

[
b2 −

m2

∑
j=1

ln
(

v j

1+ v j

)]} m1

∏
i=1

[
1−
(

ui

1+ui

)θ1
]Si

×
m2

∏
j=1

[
1−
(

v j

1+ v j

)θ2
]Tj

. (4.12)

From the posterior distribution given in equation (4.12), we observe that the Bayes estimator
for SSR R cannot obtain in closed form. Therefore, an approximation method, importance
sampling technique is used to derive Bayes estimate of R.
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4.4.3 Importance Sampling Technique

Here, the IS technique is used to construct the Bayes estimator and HPD credible interval of
SSR R. The posterior distribution of θ1 and θ2 given in equation (4.12) can be rewritten as

π(θ1,θ2|˜
u,

˜
v) ∝ θ

m1+a1−1
1 exp

{
−θ1

[
b1 −

m1

∑
i=1

ln
(

ui

1+ui

)]}

×θ
m2+a2−1
2 exp

{
−θ2

[
b2 −

m2

∑
j=1

ln
(

v j

1+ v j

)]}

× exp

{
m1

∑
i=1

Si ln

[
1−
(

ui

1+ui

)θ1
]
+

m2

∑
j=1

Tj

[
1−
(

v j

1+ v j

)θ2
]}

π(θ1,θ2|˜
u,

˜
v) ∝ fGA (θ1;m1 +a1,B1) fGA (θ2;m2 +a2,B2)W (θ1,θ2) = π1(θ1,θ2|data) (say),

where, B1 =

[
b1 −

m1
∑

i=1
ln
(

ui
1+ui

)]
, B2 =

[
b2 −

m2
∑
j=1

ln
(

v j
1+v j

)]
,

W (θ1,θ2) = exp

{
m1

∑
i=1

Si ln

[
1−
(

ui

1+ui

)θ1
]
+

m2

∑
j=1

Tj

[
1−
(

v j

1+ v j

)θ2
]}

and fGA(.;a,b) is a gamma distribution having shape and scale parameters a and b, respectively.
Now the posterior expectation of φ(θ1,θ2) is given by

E[φ(θ1,θ2)|˜
u,

˜
v] =

∞∫
0

∞∫
0

φ(θ1,θ2)π1(θ1,θ2|˜
u,

˜
v)dθ1dθ2

∞∫
0

∞∫
0

π1(θ1,θ2|˜
u,

˜
v)dθ1dθ2

(4.13)

The posterior mean E[φ(θ1,θ2)|˜
u,

˜
v] given in equation (4.13) is the ratio of two integrals and

the closed form solution of this mean is not available. The IS approach is utilised to provide an
approximate solution, and the following steps are taken into account for computation:

Step 1: Generate θ
(1)
1 from fGA (θ1;m1 +a1,B1).

Step 2: Generate θ
(1)
2 from fGA (θ2;m2 +a2,B2).

Step 3: Generate δ (1) =
θ
(1)
1

θ
(1)
1 +θ

(1)
2

using equation (4.4).

Step 4: Repeat the above steps 1-3, M times to obtain the importance sample (δ (1), . . . ,δ (M)).
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Now, using the IS technique under GELF, the approximate Bayes estimator of SSR is given by

R̂B =


M
∑
j=1

{
δ (θ

( j)
1 ,θ

( j)
2 )
}−q

W (θ
( j)
1 ,θ

( j)
2 )

M
∑
j=1

W (θ
( j)
1 ,θ

( j)
2 )


−1/q

. (4.14)

4.4.4 HPD Credible Interval

Using the produced importance sample, the HPD credible interval of SSR R can be constructed.
Let δ(1) < δ(2) < · · ·< δ(M) be the ordered values of δ (1), δ (2), . . . ,δ (M). Now, using the algo-
rithm proposed by Chen and Shao (1999), the 100(1− ξ )%, where, 0 < ξ < 1, HPD credible
interval of SSR is given by

(
δ( j), δ( j+[(1−ξ )M])

)
, where j is chosen such that

δ( j+[(1−ξ )M])−δ( j) = min
1≤i≤ξ M

(
δ(i+[(1−ξ )M])−δ( j)

)
, j = 1,2, . . . ,M,

where, [x] is the integral part of x.

4.5 Numerical Computations

A Monte Carlo simulation study is provided in this section to assess the efficacy of the es-
timation methods developed in this chapter. The mean squared errors (MSEs) and average
estimates (AEs) of the ML and Bayes estimators of RSS R are calculated. The Bayes estimate
of SSR is computed in case of non-informative prior (Prior A) and informative gamma prior
(Prior B) under GELF. Also, the average length (ALs) of 95% ACI and HPD credible intervals
with their corresponding coverage probabilities (CP) of SSR R are obtained. For computation
purpose, two independent progressively Type II censored samples

˜
u and

˜
v of sample sizes n1

and n2, effective sample sizes m1 and m2 are produced from IP(θ1) and IP(θ2) with prefixed
censoring schemes Si; i = 1,2, . . . ,m1 and Tj; j = 1,2, . . . ,m2, respectively, using the algo-
rithm provided by Balakrishnan and Sandhu (1995). The several combinations of sample sizes
(n1,n2), effective sample sizes (m1,m2), and prefixed censoring schemes (

˜
S,

˜
T ) are considered.

For simulation purpose, we assign n = n1 = n2, m = m1 = m2 and CS = (
˜
S =

˜
T ), and these

combinations are reported in Table 4.1. In Table 4.1, schemes [4], [8] and [12] are the cases for
complete sample data.
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We consider two sets of true values for the parameters (θ1, θ2) = (1.5, 0.5) and (θ1, θ2) =

(0.5, 1.5) so that SSR R becomes, R = 0.75 and R = 0.25, respectively. In Bayesian compu-
tations, for informative priors the choices of hyper-parameters are chosen such that the prior
means are exactly equal to true values of the parameters. For informative priors {(a1,b1) =

(3,2), (a2,b2) = (2,4)} and {(a1,b1) = (2,4), (a2,b2) = (3,2)} are considered for above con-
sidered two sets of true values of the parameters, respectively. In case of non-informative
priors, we consider ai = bi = 0.0001; i = 1,2. Also, we consider three different choices of
q = −2, −1, 1 for GELF. We take M = 10,000 for importance sampling technique and con-
sider 20% of M as burn-in-period. The entire process is repeated 1,000 times. All computations
in this article are done with the statistical software R (see R Core Team (2021)). All the sim-
ulated results are presented in Tables 4.2, 4.3, 4.4 and 4.5. From these simulation Tables,
following conclusion are made:

In view of Tables 4.2 and 4.4, this experiment has brought up some interesting observations. In
almost all cases, the output of ML and Bayes estimates of SSR in terms of MSEs are very ade-
quate even for small sample sizes. MSEs are found to decrease as n and m increase. It confirms
the consistent behavior of estimators of SSR. Also, the performance of Bayes estimators with
Prior B is better than ML estimator even with Prior A in terms of MSEs, as Bayes estimators
with Prior B includes prior information about the parameters.

In view of Tables 4.3 and 4.5 show that the average lengths of ACIs and HPD credible intervals
are shrinking with increase in number of failures. According to Table 4.3 asymptotic intervals
has smaller average length and than HPD credible intervals with Prior A and Prior B both. The
coverage probability for HPD credible with Prior A and Prior B attains their prescribed confi-
dence coefficient in almost all cases but ACI does not. Also, from Table 4.5 as the true value
of SSR increases, the coverage probability for ACI estimator attain their prescribed confidence
coefficient.

TABLE 4.1: Progressive censoring schemes used in simulation study.

n m CS Schemes n m CS Schemes

20 15 [1] (5*1,0*14) 30 24 [7] (0*23,6*1)
15 [2] (1*2,0*5,1,0*5,1*2) 24 [8] (0*30)
15 [3] (0*14,5*1) 40 35 [9] (5*1,0*34)
20 [4] (0*20) 35 [10] (1*1,0*8,1*1,0*6,1*1,0*8,1*1,0*8,1*1)

30 24 [5] (6*1,0*23) 35 [11] (0*34,5*1)
24 [6] (2*1,0*10,2*1,0*11,2*1) 40 [12] (0*40)
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4.6 Real Data Analysis

The applicability of the considered model and methodology presented in this chapter is ad-
dressed in this section. We examine two distinct pairs of real data sets for this purpose.

4.6.1 Real Data Set I

This pair of real data sets are taken from Bain and Englehardt (1991). These data are the failure
times (in hours) of the air conditioning system of two different aeroplanes. The failure times of
the air conditioning system of two aeroplanes, respectively, are as follows:

Plane 720 (U): 1.2, 2.1, 2.6, 2.7, 2.9, 2.9, 4.8, 5.7, 5.9, 7.0, 7.4, 15.3, 32.6, 38.6, 50.2

Plane 7911 (V): 3.3, 4.7, 5.5, 5.6, 10.4, 17.6, 18.2, 22.0, 23.9, 24.6, 32.0.

Guo and Gui (2018) studied these data sets for SSR for IP lifetime model in a complete sample
case. They showed that these data sets good fit the IP lifetime model. Before further proceeding,
we perform Kolmogorov-Smirnov (KS) and Anderson-Darling (AD) goodness of fit tests to
check whether the given data sets follow IPD or not using ML estimation. The ML estimates
of the unknown parameters, KS, and AD test statistics with their corresponding p-values for
these data sets are reported in Table 4.6. From Table 4.6, it is clear that p-values are greater
than 0.05, corresponding to both KS and AD goodness of fit tests for these data sets. Therefore,
we can assume that these data sets follow the IP lifetime model at a 5% level of significance.
Now, using the four distinct progressive censoring techniques, the following four progressively

TABLE 4.6: Fitting of real data set I for IP lifetime model.

Data Set I MLE

KS Test AD Test
KS p-value AD p-value

Plane 720 (U) 4.7844 0.1880 0.6638 0.4547 0.7907
Plane 7911 (V) 9.6022 0.2558 0.3996 0.7421 0.5212

censored samples are generated from the above complete sample data sets:

Scheme 1 : (n1 = 15, m1 = 10), S1 = [5∗1,0∗9], and (n2 = 11, m2 = 8), T1 = [3∗1,0∗7].

U : 1.2,4.8,5.7,5.9,7.0,7.4,15.3,32.6,38.6,50.2

V : 3.3,10.4,17.6,18.2,22.0,23.9,24.6,32.0
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Scheme 2 : (n1 = 15, m1 = 10), S2 = [1 ∗ 1,0 ∗ 1,1 ∗ 1,1 ∗ 0,1 ∗ 1,0 ∗ 2,1 ∗ 1], and (n2 =

11, m2 = 8) T2 = [1∗1,0∗3,1∗1,0∗2,1∗1].

U : 1.2,2.6,2.7,2.9,4.8,5.9,7.0,15.3,32.6,38.6

V : 3.3,5.5,5.6,10.4,17.6,22.0,23.9,24.6

Scheme 3 : (n1 = 15, m1 = 10), S3 = [0∗9,5∗1], and (n2 = 11, m2 = 8), T3 = [0∗7,3∗1].

U : 1.2,2.1,2.6,2.7,2.9,2.9,4.8,5.7,5.9,7.0

V : 3.3,4.7,5.5,5.6,10.4,17.6,18.2,22.0

Scheme 4 : (n1 = 15, m1 = 15), S4 = [0∗15], and (n2 = 11, m2 = 11), T4 = [0∗11].

U : 1.2,2.1,2.6,2.7,2.9,2.9,4.8,5.7,5.9,7.0,7.4,15.3,32.6,38.6,50.2

V : 3.3,4.7,5.5,5.6,10.4,17.6,18.2,22.0,23.9,24.6,32.0

Furthermore, for the applicability of considered methodology, we analyzed data set I under
consideration of the proposed study. The ML, Bayes estimates, and 95% of asymptotic con-
fidence/HPD credible intervals of SSR R are obtained. We further confirm the presence and
uniqueness of the MLEs by plotting the log-likelihood function of the parameters θ1 and θ2 for
four distinct progressively censored samples. These plots for four different censoring schemes
are given in Figure 4.2. These plots show that the likelihood surfaces have curvature in both θ1

and θ2 directions, indicating that the MLEs θ̂1 and θ̂2 exist and are unique.

The Bayes estimates of SSR are computed using the importance sampling approach under
GELF in the situation of non-informative priors because we do not have prior information. For
the importance sampling approach, M = 10,000 samples are generated, with the burn-in period
accounting for 20% of M. For GELF, we look at three distinct q =−1,1,−2 values. Figure 4.3
shows the trace plots and histograms with posterior density plots based on importance samples
for all four progressively censored data sets in Bayesian computations. From Figure 4.3, we
observe that the trace plots represent fine mixing of the chains and converge to their stationary
distributions. Also, histograms with corresponding density plots are almost symmetrical about
their means in all cases. This shows good performance of the importance sampling technique
and therefore, we can conclude that the Bayes estimates are good. In the case of real data set I
estimation results are reported in Tables 4.7 for all four censoring schemes.
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For censoring scheme (S1,T1). For censoring scheme (S2,T2).

For censoring scheme (S3,T3). For censoring scheme (S4,T4).

FIGURE 4.2: Plots of log-likelihood function of θ1 and θ2 for different censoring schemes in
case of real data set I.

4.6.2 Real Data Set II

Here, we consider breakdown times (in minutes) of an insulating fluid between electrodes at
different voltages 34 kV and 36 kV, respectively. These data sets are reported in (Nelson, 1982,
p. 105). The breakdown times at two different electrodes, respectively, are as follows:

34 kV (U): 0.19, 0.78, 0.96, 1.31, 2.78, 3.16, 4.15, 4.67, 4.85, 6.50, 7.35, 8.01, 8.27, 12.06,
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TABLE 4.7: The ML, Bayes estimates and 95% ACIs and HPD credible intervals of SSR in
case of real data set I.

Schemes

ACI q=-1 q=1 q=-2

R̂ CI R̂B HPD R̂B HPD R̂B HPD

Scheme 1 0.3379 (0.1785,0.4973) 0.3470 (0.1381,0.5962) 0.3185 (0.1387,0.5980) 0.3600 (0.1310,0.5944)
Scheme 2 0.3451 (0.1946,0.4956) 0.3532 (0.1329,0.5913) 0.3287 (0.1369,0.5947) 0.3650 (0.1330,0.5904)
Scheme 3 0.3204 (0.1813,0.4596) 0.3295 (0.1180,0.5609) 0.3059 (0.1218,0.5629) 0.3409 (0.1194,0.5606)
Scheme 4 0.3326 (0.1899,0.4752) 0.3405 (0.1640,0.5500) 0.3177 (0.1578,0.5439) 0.3523 (0.1599,0.5461)

For censoring scheme (S1,T1). For censoring scheme (S2,T2).

For censoring scheme (S3,T3). For censoring scheme (S4,T4).

FIGURE 4.3: Trace plots and histogram with density plots of R for different censoring schemes
in case of real data set I.

31.75, 32.52, 33.91, 36.71, 72.89.

36 kV (V): 0.35, 0.59, 0.96, 0.99, 1.69, 1.97, 2.07, 2.58, 2.71, 2.90, 3.67, 3.99, 5.35, 13.77,
25.50.

A similar procedure is followed in this sub-section as discussed in the case of real data sets I
for fitting the real data sets. We perform KS and AD goodness of fit tests to check whether
the given data sets follow the IP lifetime model or not. The ML estimates of the unknown
parameters, KS, and AD test statistics with their corresponding p-values for these data sets are
reported in Table 4.8. From Table 4.8, it is clear that these data sets follow the IP lifetime model
at a 5% level of significance. Now, four progressively censored samples are generated from the
above complete sample data sets based on following censoring schemes:

Scheme 1 : (n1 = 19, m1 = 15), S1 = [4∗1,0∗14], and (n2 = 15, m2 = 10), T1 = [5∗1,0∗
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TABLE 4.8: Fitting of real data set II for IP lifetime model.

Data Set MLE

KS Test AD Test
KS p-value AD p-value

34 kV (U) 2.8327 0.2267 0.2433 1.5718 0.1605
36 kV (V) 2.2371 0.1937 0.5623 0.5227 0.7209

9].

U : 0.19,3.16,4.15,4.67,4.85,6.50,7.35,8.01,8.27,12.06,31.75,32.52,33.91,36.71,72.89

V : 0.35,2.07,2.58,2.71,2.90,3.67,3.99,5.35,13.77,25.50

Scheme 2 : (n1 = 19, m1 = 15), S2 = [1∗1,0∗3,1∗1,0∗4,1∗1,0∗4,1∗1], and
(n2 = 15, m2 = 10) T2 = [1∗1,0∗1,1∗1,0∗1,1∗1,0∗1,1∗1,0∗2,1∗1].

U : 0.19,0.96,1.31,2.78,3.16,4.67,4.85,6.50,7.35,8.01,12.06,31.75,32.52,33.91,36.71

V : 0.35,0.96,0.99,1.97,2.07,2.71,2.90,3.99,5.35,13.77

Scheme 3 : (n1 = 19, m1 = 15), S3 = [0∗14,4∗1], and (n2 = 15, m2 = 10), T3 = [0∗9,5∗
1].

U : 0.19,0.78,0.96,1.31,2.78,3.16,4.15,4.67,4.85,6.50,7.35,8.01,8.27,12.06,31.75

V : 0.35,0.59,0.96,0.99,1.69,1.97,2.07,2.58,2.71,2.90

Scheme 4 : (n1 = 19, m1 = 19), S4 = [0∗19], and (n2 = 15, m2 = 15), T4 = [0∗15].

U : 0.19, 0.78, 0.96, 1.31, 2.78, 3.16, 4.15, 4.67, 4.85, 6.50, 7.35, 8.01, 8.27, 12.06, 31.75,
32.52, 33.91, 36.71, 72.89

V : 0.35,0.59,0.96,0.99,1.69,1.97,2.07,2.58,2.71,2.90,3.67,3.99,5.35,13.77,25.50

Similarly as we have discussed in case of real data set I, we analyze data set II for the applicabil-
ity of considered methodology. The ML, Bayes estimates, and 95% of ACIs and HPD credible
intervals of SSR R are obtained. To confirm the existence and uniqueness of the MLEs, we
display the log-likelihood function of the parameters θ1 and θ2 for four distinct progressively
censored samples. Figure 4.4 shows these graphs for four distinct censoring schemes. In the
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For censoring scheme (S1,T1). For censoring scheme (S2,T2).

For censoring scheme (S3,T3). For censoring scheme (S4,T4).

FIGURE 4.4: Plots of log-likelihood function of θ1 and θ2 for different censoring schemes in
case of real data set II.

case of real data set II, these graphs demonstrate that the likelihood surfaces exhibit curvature
in both θ1 and θ2 directions, suggesting that the ML estimates θ̂1 and θ̂2 exist and are unique.

The Bayes estimate of SSR are obtained in case of non-informative priors as we do not have
prior information, using the IS procedure under GELF. For the IS technique, M = 10,000 obser-
vations are generated and first 20% observations are considered as burn-in-period. Again here,
we consider three different values of q =−2, −1, 1 for GELF. In Bayesian computations, the
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trace plots and histograms with posterior density plots based on importance samples are plotted
for all four progressively censored data sets and are given in Figure 4.5. From this Figure we
observe that the trace plots represent fine mixing of the chains and converge to their stationary
distributions. Also, histograms with corresponding density plots are almost symmetrical about
their means in all cases. This shows good performance of the IS technique and therefore, we
can conclude that the Bayes estimates are good. In case of real data set II estimation results are
reported in Tables 4.9 for all four pairs of progressively censored samples.

TABLE 4.9: The ML, Bayes estimates and 95% asymptotic confidence/HPD credible intervals
of SSR in case of real data set II.

Schemes

MLE q=-1 q=1 q=-2

R̂ ACI R̂B HPD R̂B HPD R̂B HPD

Scheme 1 0.5923 (0.3667,0.8179) 0.5890 (0.3839,0.8050) 0.5737 (0.3863,0.8059) 0.5960 (0.3869,0.8069)
Scheme 2 0.5515 (0.3507,0.7523) 0.5775 (0.3832,0.8050) 0.5644 (0.3830,0.8021) 0.5830 (0.3849,0.8061)
Scheme 3 0.5205 (0.3314,0.7095) 0.5903 (0.3933,0.8113) 0.5775 (0.3967,0.8135) 0.5971 (0.3973,0.8138)
Scheme 4 0.5188 (0.3303,0.7074) 0.5922 (0.4073,0.7674) 0.5797 (0.4083,0.7696) 0.5971 (0.4029,0.7692)

For censoring scheme (S1,T1). For censoring scheme (S2,T2).

For censoring scheme (S3,T3). For censoring scheme (S4,T4).

FIGURE 4.5: Trace plots and histogram with density plots of R for different censoring schemes
in case of real data set II.

4.7 Concluding Remarks

In this chapter, we discussed the problem of estimation of SSR R = P(V < U) for the IP life-
time model using progressively censored data. We derived ML estimate and 95% of asymptotic
confidence interval with corresponding coverage probability of SSR. We computed Bayes es-
timates in case of both informative and non-informative priors under generalized entropy loss
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function using importance sampling technique. Also, 95% HPD credible interval of SSR was
constructed. The performance of ML and Bayes estimators of SSR were examined by compu-
tational analysis using a Monte Carlo simulation. The computational results suggested that the
Bayes estimator is more precise than the ML estimator and these can be used for all practical
purposes when the prior information is available. Two pairs of real data sets were also discussed
for practical applicability of considered methodology developed in this chapter. The method-
ology and estimation results studied in this article will be beneficial to reliability practitioners
in real life situations. In this chapter, iterative and approximation methods were used for ML
and Bayesian computations, respectively. In future work exact estimation procedures can be
developed. Also, we can obtain optimum censoring plans to achieve the optimum accuracy of
the estimators. More work is needed along with these directions as future scope.
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