
Chapter 6

Weibull Marshall-Olkin Lomax

Distribution with Applications to Bladder

and Head Cancer Data*

6.1 Introduction

This chapter is sketched into the following sections: In section 6.2, we introduce the WMOL

distribution and some special cases are presented. We derive two linear representations for the

WMOL density which hold for 0 < α < 1 and α > 1 in Sections 6.3. Some mathematical

and statistical properties of the WMOL distribution are presented in Section 6.4. Section 6.5

describes the method of maximum likelihood for estimation of the model parameters. A simu-

lation study is investigated in Section 6.6. In Section 6.7, we analyze two real data sets. Finally,

in Section 6.8, we offer some concluding remarks.

*Part of this chapter has been published in the form of a research paper with the following details: Kumar,

D., Kumar, M., Abd El-bar, M. T. and Lima, M. C. (2020). The Weibull Marshall-Olkin lomax distribution with

application to bladder and head cancer data. Journal of Applied Mathematics and Informatics, 39(56), 785-804.
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The proposal of new families has been worked out by many authors over recent years. Many

ways to generate new families have been developed as the methods of addition, linear combi-

nation, composition and, one of the newer, the T-X family of distributions. Using this latter

method, Korkmaz et al. (2019) proposed a new class called Weibull Marshall-Olkin-G (WMO-

G) family. Here, we come up with a distribution, based on the WMO-G family, using the

Lomax distribution as baseline, called Weibull Marshall-Olkin Lomax (WMOL) distribution.

This distribution can have different shape of hazard rate function, like unimodal, decreasing,

increasing, decreasing-increasing-decreasing and bathtub-shaped. Some properties of proposed

model are developed. We also find the maximum likelihood estimates of unknown parameters

of the WMOL distribution. For the confirmation of asymptotic behaviour of maximum like-

lihood estimates we provide simulation study and also used two real data sets to check the

applicability of model in real life.

Abdul-Moniem and Abdel-Hameed (2012) proposed exponentiated Lomax distribution by gen-

eralizing Lomax distributionto analyze failure time data. Also, they proved it may provide

better fits than exponential distribution and gave some mathematical properties of the expo-

nentiated Lomax distribution. The statistical literary works contains many extended structures

of the lomax distribution. For example, the Exponentiated Weibull-Lomax distribution (Has-

san and Abd-Allah (2018)), Kumaraswamy exponentiated Lomax distribution (Elbatal and Ka-

reem (2014)), exponentiated Lomax geometric distribution (Hassan and Abdelghafar (2017)),

Weibull-Lomax distribution (Tahir et al. (2015)), Kumaraswamy-generalized Lomax distribu-

tion (Shams (2013)), power Lomax distribution (Rady et al. (2016)),transmuted Weibull Lomax

distribution (Afify et al. (2015)), Marshall-Olkin power generalized Weibull distribution (Afify

et al. (2020a)), Weibull Marshall–Olkin Lindley distribution (Afify et al. (2020b)).

For a baseline G distribution with parameter vector η , Korkmaz et al. (2019) proposed a wider

class of continuous distributions called the Weibull Marshall-Olkin-G (WMO-G) family. They

defined this family based on the T-X generator by choosing r (t) =β tβ−1 e−tβ , t > 0, where

β > 0 is a shape parameter and W [G(z;η)] =− log
[

αḠ(z;η)
G(z;η)+αḠ(z;η)

]
.
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The cdf of the WMO-G family is

H (z;α,β ,η) = 1− exp

(
−
{
− log

[
αḠ(z;η)

1− ᾱḠ(z;η)

]}β
)
. (6.1)

The pdf corresponding to (6.1) is

h(z;α,β ,η) =
βg(z;η)

Ḡ(z;η)
[
1− ᾱḠ(z;η)

] {− log
[

αḠ(z;η)

1− ᾱḠ(z;η)

]}β−1

×exp

(
−
{
− log

[
αḠ(z;η)

1− ᾱḠ(z;η)

]}β
)
, (6.2)

where g(z;η) is the baseline PDF, ᾱ = 1−α , and α and β are two extra positive shape param-

eters.

The hazard rate function (HRF) of the WMO-G family takes the form

τ (z;α,β ,η) =
β w(z;η)[

1− ᾱḠ(z;η)
] {− log

[
αḠ(z;η)

1− ᾱḠ(z;η)

]}β−1

,

where w(z;η) = g(z;η)/Ḡ(z;η) is the baseline HRF.

For α = 1, we obtain the Weibull-X family (Alzaatreh et al. (2013); Cordeiro et al. (2015))

as a special case of the WMO-G family. For β = 1, we obtain the MO-G family (Marshall

and Olkin (1997)). For α = β = 1, we have the baseline distribution. Further details on the

WMO-G family can be explored in Korkmaz et al. (2019).

6.2 Proposed Model

We propose Weibull Marshall-Olkin Lomax (WMOL) distribution with four parameters by set-

ting the Lomax cdf G(z;λ ,θ) = 1− (1+λ z)−θ in (6.1), we obtain

H(z) = 1− exp

{
−
(
−log

[
α(1+λ z)−θ

1− ᾱ(1+λ z)−θ

])β
}
. (6.3)
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The associated pdf to (6.3) is

h(z) =
βθλ

(1+λ z)[1− ᾱ(1+λ z)−θ ]

(
−log

[
α(1+λ z)−θ

1− ᾱ(1+λ z)−θ

])β−1

× exp

{
−
(
−log

[
α(1+λ z)−θ

1− ᾱ(1+λ z)−θ

])β
}
, (6.4)

where ᾱ = 1−α , θ > 0, β > 0 are shape and α > 0 , λ > 0 are scale parameters.

The HRF of Z is

τ (z) =
βθλ

(1+λ z)[1− ᾱ(1+λ z)−θ ]

(
−log

[
α(1+λ z)−θ

1− ᾱ(1+λ z)−θ

])β−1

.

where w(z;η) = g(z;η)/Ḡ(z;η) is the baseline HRF.

It is observed that the density function of the new model provides a wide range of shapes

based on its additional shape parameter, for example a monotonically decreasing density of

exponentiated Lomax (EL) will become monotonically decreasing, decreasing, symmetric, re-

versed J, right-skewed and left-skewed. The WMOL distribution have decreasing, increasing-

decreasing, increasing, constant and upside down bathtub shaped hazard function based on its

additional parameter and can be used to provide a good fit for the real data than well-known

distributions (see Figure 6.1).

Some mathematical properties of WMOL model can directly obtained from Lehmann type II

(LTII) exponentiated Lomax model properties because it can be expressed as the linear combi-

nation of LTIIEL and EL densities. Additionally, the new model contains some distributions as

special cases, these sub-models being listed in Table 6.1.

TABLE 6.1: Special cases of the WMOL distribution

Parametric values in Eq. (4) Sub-models
β = 1 Marshall-Olkin Lomax distribution(α,θ ,λ )
α = 1 Weibull Lomax distribution(β ,θ ,λ )
α = β = 1 Lomax distribution (θ)
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FIGURE 6.1: Plots of the WMOL density and hazard functions. (a) (θ = 1.5,β = 1,α =
3,λ = 5) (gray), (θ = 2,β = 5,α = 1,λ = 1) (green), (θ = 2,β = 5,α = 2,λ = 0.8) (black),
(θ = 3,β = 2,α = 1,λ = 0.7) (purple), (θ = 4,β = 0.5,α = 5,λ = 1) (red), (θ = 4,β =
1,α = 5,λ = 3) (blue) (b) (θ = 1,β = 1,α = 5,λ = 1) (black), (θ = 1.5,β = 1,α = 3,λ = 5)
(yellow), (θ = 1.5,β = 2,α = 1,λ = 0.7) (red), (θ = 2,β = 2,α = 2,λ = 2) (green), (θ =
2,β = 5,α = 2,λ = 0.8) (purple), (θ = 4,β = 0.5,α = 5,λ = 1) (dashes-red), (θ = 4,β =

1,α = 5,λ = 3) (blue).

6.3 Linear Representation

In this section, we provide two linear representations for the WMOL density depending on α .

By using the power series

ez =
∞

∑
i=0

zi

i!
,

the cdf in (6.3) can be expressed as

H(z) =
∞

∑
h=1

(−1)h

Γ(h+1)

(
−log

[
1−
(

1− α(1+λ z)−θ

1− ᾱ(1+λ z)−θ

)])hβ

. (6.5)

For a real number d and z ∈ (0,1), we have

[− log(1− z)]d = zd +
∞

∑
i=0

ψi(d)zi+d+1, (6.6)

where
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ψ0(d) =
1
2

d, ψ1(d) =
1

24
[d(3d +5)], ψ2(d) =

1
48

[d(d2 +5d +6)],

ψ3(d) =
1

5760
[d(15d3 +150d2 +485d +502)], . . . ,

are Stirling polynomials. The proof is given in Theorem 3A of Flajolet and Odlyzko (1990)

and in Theorem VI.2 of Flajolet and Sedgewick (2009). The previous results have been used

by Cordeiro et al. (2017a). We can write

[− log(1− z)]hβ =
∞

∑
i=0

ψi−1(hβ )zi+hβ , (6.7)

where ψ−1(hβ ) = 0 by convention and ψi(hβ ) for i≥ 0 can be obtained from (6.6). Then, the

cdf (6.5) can be expressed using (6.7) as

H(z) =
∞

∑
h=1

∞

∑
i=0

(−1)h

Γ(h+1)
ψi−1(hβ )

[
1− α(1+λ z)−θ

1− ᾱ(1+λ z)−θ

]i+hβ

.

For a real non-integer d and |z|< 1, we have

(1− z)d =
∞

∑
k=0

(−1)k
(

d
k

)
zk.

Hence, we can write

H(z) =
∞

∑
h=1

∞

∑
i,k=0

(−1)h+kαk

Γ(h+1)
ψi−1(hβ )

(
i+hβ

k

)
(1+λ z)−θk

×
[
1− ᾱ(1+λ z)−θ

]−k
. (6.8)

For a positive integer ϑ and |z|< 1, a convergent power series can be expressed as

(1− z)−ϑ =
∞

∑
l=0

(−1)l
(
−ϑ

l

)
zl,
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For α ∈ (0,1), H(z) can be written as

H(z) =
∞

∑
k,l=0

υk,l Ḡ(z;θ ,λ )k+l, (6.9)

where

υk,l =
∞

∑
h=1

∞

∑
i,k=0

(−1)i+k+l αk φi−1(hβ )

Γ(h+1) (1−α)−l

(
hβ + i

k

)(
−k
l

)

and Ḡ(z;θ ,λ ) = 1−G(z;θ ,λ ), is the exponentiated Lomax survival function.

For a baseline G(z) and power parameter e, Πe(z) = 1−{1−G(z)}e Lehmann (1953) is known

as LTII cdf. Thus, the LTII density is given by πe(z) = eḠ(z)e−1 g(z), where g(z) = dG(z)/dz.

Let J = {(k, l);k, l = 0,1,2, . . . ;k+ l ≥ 1} be a set of non-negative integers. By differentiating

the last equation for H(z), the pdf of Z is

f (z) = ∑
(k,l)∈J

υk,l πk+l(z;θ ,λ ), (6.10)

where πk+l(z) = (k+ l) Ḡ(z;θ ,λ )k+l−1 g(z;a) is known as LTII exponentiated Lomax density

function with power parameter k+ l.

If α > 1, (6.8) can be written as

H(z) =
∞

∑
h=1

∞

∑
i,k=0

(−1)h+kαk

Γ(h+1)
φi−1(hβ )

(
i+hβ

k

)
[(1+λ z)−θ ]k

× α
−k
[
1− (1−α

−1)(1+λ z)−θ

]−k
.

Using series expansion, we have

H(z) =
∞

∑
k,l=0

νk,l Ḡ(z;θ ,λ )k+l,
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where,

νk,l =
∞

∑
h=1

∞

∑
i=0

(−1)i+k+l φi−1(hβ )

Γ(h+1) (1−α)−l

(
hβ + i

k

)(
−k
l

)

So, pdf of Z is

h(z) = ∑
(k,l)∈J

νk,l πk+l(z;θ ,λ ), (6.11)

From (6.10) and (6.11), we find that WMOL density function can be expressed as linear com-

bination of EL density function and LTII exponentiated Lomax densities for both cases.

Every LTII Lindley can be a linear combination of EL densities. By expanding Πe(z) = 1−

{1−G(z)}e (for e real), the power series converges everywhere

Πe(z) =
∞

∑
r=1

(−1)r+1
(

e
r

)
G(z)r.

Differentiating last equation, we get

πe(z) =
∞

∑
r=0

(−1)r
(

e
r+1

)
ρr+1(z), (6.12)

where ρr+1(z) = (r+1)G(z)r g(z) represents EL density with r+1 as power parameter. Sum

lasts at e, if e is a positive integer.

6.4 Properties of the WMOL Distribution

This section deals with statistical properties of WMOL distribution. We will use weights υk,l

and νk,l according to 0 < α < 1 and α > 1, respectively, to derive properties.
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6.4.1 Quantiles Function

Quantiles are fruitful in estimation and simulation. The root of the equation given below will

give the pth quantile for WMOL distribution.

ξp =
1
λ


α− ᾱ e−(−log(1−p))

1
β

e−(−log(1−p))
1
β


1
θ

−1

 , 0 < p < 1, λ , θ > 0. (6.13)

A random sample of size n can be generated with the help of uniform distribution and equation

(6.13) for WMOL distribution as follows

ξi =
1
λ


α− ᾱ e−(−log(1−ui))

1
β

e−(−log(1−ui))
1
β


1
θ

−1

 .
In particular, the first three quantiles, Q1,Q2 and Q3, can be derived for specific values of p.

6.4.2 Moments and Generating Functions

Moments tell us about important features and characteristics of a distribution. Here, we derive

raw moments and moment generating function (MGF) of WMOL distribution.

Now, the nth raw moment of the WMOL can be written as

µ
′
n = E[Zn] =

∫
∞

0
znh(z)dz = ∑

(k,l)∈J

k+l

∑
r=0

(−1)r
(

k+ l
r+1

)
υk,lλθ(r+1)

×
∫

∞

0
zn[1− (1+λ z)−θ ](r+1)−1(1+λ z)−θ−1dz

=
1

λ n ∑
(k,l)∈J

k+l

∑
r=0

n

∑
m=0

(−1)r+m
(

k+ l
r+1

)(
n
m

)
υk,l(r+1)

× B
(

1− 1
θ
(n−m),r+1

)
, (6.14)

where, B(a, b) =
∫ 1

0 za−1(1− z)b−1dz.
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The nth central moments µn and cumulants kn of Z can be determined from (6.14) as

µn = E(Z−µ)n =
n

∑
k=0

(−1)k

 n

k

µ
′n
1 µ
′
n−k,

and

kn = µ
′
n−

n−1

∑
k=1

 n−1

k−1

knµ
′
n−k,

where k1 = µ ′1. Cumulants are useful to calculate moments, skewness and kurtosis. The MGF

of Z easily follows from (6.10) as

M(t) =
1

λ p ∑
(k,l)∈J

k+l

∑
r=0

n

∑
m=0

∞

∑
p=0

t p(−1)r+m

p!

(
k+ l
r+1

)(
p
m

)
υk,l(r+1)

× B
(

1− 1
θ
(p−m),r+1

)
.

6.4.3 Conditional Moments, Mean Residual Life and Mean Deviations

Conditional moments, E(Zn|Z > z), of WMOL distribution can be derived as

E(Zn|Z > z) =
1

S(z)
Jn(z)

where,

Jn(z) =
∫

∞

z
yn f (y)dy =

1
λ n ∑

(k,l)∈J

k+l

∑
r=0

n

∑
m=0

∞

∑
p=0

(−1)r+m
(

k+ l
r+1

)(
n
m

)

× υk,l(r+1)
(1−{r+1})p (1+λ z)n−m−θ(p+1)

p!
[ 1

θ
(m−n)+ p+1

] , (6.15)

where, S(z) = 1−H(z), defined in (6.3).
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Conditional moments are helpful in deriving mean residual life (MRL). MRL is expected resid-

ual life of an item with the condition that it has survived for time z. Using the conditional

moment, the MRL function can be expressed as

mZ(z) = E(Z− z|Z > z) =
1

S(z)
J1(z)− z.

where, J1(z) can be derived from (6.15) where n = 1.

Also, conditional moments can be used to derive the mean deviation about mean and median.

Let M and µ represents median and mean, then mean deviations can be expressed as

δµ =
∫

∞

0
|z−µ|h(z)dz = 2µH(µ)−2µ +2J1(µ)

δM =
∫

∞

0
|z−M|h(z)dz = 2J1(M)−µ

respectively. Where J1(µ) and J1(M) are derived from (6.15). Also, H(µ) and H(M) are

calculated from (6.3).

6.4.4 Bonferroni and Lorenz Curves

The Bonferroni and Lorenz curves evaluate disparity of the distribution of a random variable

and they are applicable in economics, reliability, medical and demography, among other areas.

For a probability p, these curves are given by

B(p) =
1

pµ ′1

∫ q

0
zh(z)dz and L(p) = pB(p),

respectively, where µ ′1 = E(Z) and q = F−1(p).
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Bonferroni and Lorenz curves for the WMOL distribution can be expressed as

B(p) =
1
p
− 1

λ pµ ′1
∑

(k,l)∈J

k+l

∑
r=0

n

∑
m=0

∞

∑
s=0

(−1)r+m
(

k+ l
r+1

)(
n
m

)
υk,l(r+1)

× (1−{r+1})s (1+λq)1−m−θ(s+1)

s!
[ 1

θ
(m−1)+ s+1

]
and L(p) = pB(p), respectively.

6.4.5 Residuals Life Function

Let Z follows the pdf h(z) given by (6.4). The conditional random variable R(t) = Z− t|Z > t,

t ≥ 0 describes the residual life. Using (6.3), the survival function of residual lifetime R(t) is

given by

SR(t)(z) =
S(z+ t)

S(t)
=

exp
{
−
(
−log

[
α(1+λ (z+t))−θ

1−ᾱ(1+λ (z+t))−θ

])β
}

exp
{
−
(
−log

[
α(1+λ t)−θ

1−ᾱ(1+λ t)−θ

])β
} , z > 0.

The associated cdf is given by

HR(t)(z) =
exp
{
−
(
−log

[
α(1+λ t)−θ

1−ᾱ(1+λ t)−θ

])β
}
− exp

{
−
(
−log

[
α(1+λ (z+t))−θ

1−ᾱ(1+λ (z+t))−θ

])β
}

exp
{
−
(
−log

[
α(1+λ t)−θ

1−ᾱ(1+λ t)−θ

])β
} .

Then, the associated pdf is given by

hR(t)(z) = β θ λ

exp
{
−
(
−log

[
α(1+λ (z+t))−θ

1−ᾱ(1+λ (z+t))−θ

])β
}

exp
{
−
(
− log

[
α(1+λ t)−θ

1−ᾱ(1+λ t)−θ

])β
}

×

(
− log

[
α(1+λ (z+t))−θ

1−ᾱ(1+λ (z+t))−θ

])β−1

[1− ᾱ(1+λ (z+ t))−θ ][1+λ (z+ t)]
, z > 0.
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The associated hazard rate function is given by

τR(t)(z) =
βθλ

(
− log

[
α(1+λ (z+t))−θ

1−ᾱ(1+λ (z+t))−θ

])β−1

[1− ᾱ(1+λ (z+ t))−θ ][1+λ (z+ t)]
, z > 0.

The nth moments of residual life of Z, mn(t) = E[(Z − t)|Z > t] for n = 1,2, . . . , uniquely

determines H(z), we have

mn(t) = E(R(t)) = E[(Z− t)n|Z > t] =
1

S(t)

∫
∞

t
zndH(z)− t

=
1

S(t)

(
E(Zn)−

∫ t

0
zndH(z)

)
− t. (6.16)

On the other hand, the variance residual life is given by

V (t) = Var(R(t)) =Var[Z− t|Z > t] =
2

S(t)

∫
∞

t
zS(z)dz−2tm1(t)− [m1(t)]2

=
1

S(t)

(
E(Z2)−

∫ t

0
z2h(z)dz

)
− t2−2tm1(t)− [m1(t)]2.

The conditional random variable R̄(t) = t−Z|Z ≤ t, t ≥ 0 describes reverse residual life. Using

the cdf (6.3), the survival function of the reverse residual lifetime R̄(t) is given by

SR̄(t)
(z) =

1− exp
{
−
(
−log

[
α(1+λ (t−z))−θ

1−ᾱ(1+λ (t−z))−θ

])β
}

1− exp
{
−
(
−log

[
α(1+λ t)−θ

1−ᾱ(1+λ t)−θ

])β
} , 0≤ z≤ t.

The associated cdf is given by

HR̄(t)
(z) =

exp
{
−
(
−log

[
α(1+λ (t−z))−θ

1−ᾱ(1+λ (t−z))−θ

])β
}
− exp

{
−
(
−log

[
α(1+λ t)−θ

1−ᾱ(1+λ t)−θ

])β
}

1− exp
{
−
(
−log

[
α(1+λ t)−θ

1−ᾱ(1+λ t)−θ

])β
} .
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Therefore, the associated pdf is given by

hR̄(t)
(z) = β θ λ

exp
{
−
(
−log

[
α(1+λ (t−z))−θ

1−ᾱ(1+λ (t−z))−θ

])β
}

1− exp
{
−
(
−log

[
α(1+λ t)−θ

1−ᾱ(1+λ t)−θ

])β
}

×

(
−log

[
α(1+λ (t−z))−θ

1−ᾱ(1+λ (t−z))−θ

])β−1

[1− ᾱ(1+λ (t− z))−θ ][1+λ (t− z)]
.

The associated hazard rate is given by

τR̄(t)
(z) = β θ λ

exp
{
−
(
−log

[
α(1+λ (t−z))−θ

1−ᾱ(1+λ (t−z))−θ

])β
}

1− exp
{
−
(
−log

[
α(1+λ (t−z))−θ

1−ᾱ(1+λ (t−z))−θ

])β
}

×

(
−log

[
α(1+λ (t−z))−θ

1−ᾱ(1+λ (t−z))−θ

])β−1

[1− ᾱ(1+λ (t− z))−θ ][1+λ (t− z)]
.

In the similar manner, Navarro et al. (1998) prove that the nth moment of the reversed residual

life, say Mn(t) = E[(t−Z)n|Z ≤ t] for t > 0 and n = 1,2, . . . , uniquely determines H(z). We

obtain

Mn(t) =
1

H(t)

∫ t

0
(t− z)ndH(z).

The mean reversed residual life is define as

M(t) = E(R̄(t)) = E(t− z|z≤ t) = t− 1
H(t)

∫ t

0
zh(z)dz,

The variance reversed residual life can be derived as

w(t) = Var(R̄(t)) =Var(t− z|z≤ t) = 2tM(t)− (M(t))2− 2
H(t)

∫ t

0
zH(z)dz

= 2tM(t)− (M(t))2− t2 +
1

H(t)

∫ t

0
z2h(z)dz.
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6.5 Maximum Likelihood Estimation

Let a random sample z1, . . . ,zn of size n be selected from WMOL distribution. Using (6.4),

log-likelihood function can be written as

` ∝ n log(β )+n log(θ)+n log(λ )−
n

∑
i=1

log(1+λ zi)−
n

∑
i=1

log[1− ᾱ(1+λ zi)
−θ ]

−
n

∑
i=1

{
− log

[
α(1+λ zi)

−θ

1− ᾱ(1+λ zi)−θ

]}β

+(β −1)
n

∑
i=1

log
{
− log

[
α(1+λ zi)

−θ

1− ᾱ(1+λ zi)−θ

]}
.

The MLEs of α , β , λ and θ , denoted by α̂MLE , β̂MLE , λ̂MLE and θ̂MLE , can be obtained numer-

ically by maximizing the log-likelihood function ` or by solving the nonlinear equations:

∂`

∂α
= −

n

∑
i=1

(1+λ zi)
−θ

1− ᾱ(1+λ zi)−θ
+

n

∑
i=1

[
β (− log(ξi))

β−1 +
(β −1)
log(ξi)

]
×

(
1
α
− (1+λ zi)

−θ

1− ᾱ(1+λ zi)−θ

)
= 0,

∂`

∂β
=

n
β
+

n

∑
i=1

log(− log(ξi))[1− (− log(ξi))
β ] = 0,

∂`

∂λ
=

n
λ
−

n

∑
i=1

[
β (− log(ξi))

β−1 +
(β −1)
log(ξi)

]
θzi

(1+λ zi)[1− ᾱ(1+λ zi)−θ ]

−
n

∑
i=1

zi

(1+λ zi)
−

n

∑
i=1

ξiθzi

(1+λ zi)
= 0,

and

∂`

∂θ
=

n
θ
−

n

∑
i=1

[
β (− log(ξi))

β−1 +
(β −1)
log(ξi)

]
log(1+λ zi)

[1− ᾱ(1+λ zi)−θ ]

−
n

∑
i=1

ξi log(1+λ zi) = 0,

where,

ξi = ξ (α,a;zi) =
α(1+λ zi)

−θ

1− ᾱ(1+λ zi)−θ
. (6.17)
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6.6 Simulation Study

This section deals with simulation study to verify asymptotic properties of MLE’s. We perform

a Monte Carlo simulation, with 1000 replications and using the R software. To do this, we

choose some scenarios:

• 1. (α,β ,λ ,θ) = (1,2,1,2), n = 50,100,150 and uncensored;

• 2. Some parameter value, n = 50,100,150 with 10% censorship;

• 3. Some parameter value, n = 50,100,150 with 20% censorship;

and we calculate the average estimates (AEs) of the MLEs and the mean squared errors (MSEs),

for each parameter point.

The results are present in Table 6.2 and indicates that the AEs become closer to the true param-

eter values and MSEs of MLEs of the model parameters approach to zero when n increases.

TABLE 6.2: Simulation study

0% censured 10% censured 20% censured
n Parameter AE MSE AE MSE AE MSE

α 1.0019 0.0143 1.1523 0.0429 1.1706 0.0503
50 β 2.0346 0.0500 1.9525 0.0562 1.9421 0.0541

λ 1.0103 0.0093 0.9013 0.0171 0.8904 0.0198
θ 2.0173 0.0209 1.8489 0.0400 1.8315 0.0467
α 1.0000 0.0065 1.1210 0.0231 1.1757 0.0413

100 β 2.0129 0.0226 1.9591 0.0278 1.9223 0.0308
λ 1.0050 0.0041 0.9164 0.0105 0.8818 0.0176
θ 2.0079 0.0093 0.9164 0.0105 1.8174 0.0419
α 1.0003 0.0048 1.0881 0.0141 1.2100 0.0513

150 β 2.0153 0.0155 1.9625 0.0161 1.9054 0.0265
λ 1.0039 0.0030 0.9374 0.0068 0.8597 0.0219
θ 2.0068 0.0068 1.9049 0.0156 1.7830 0.0524
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6.7 Real Data Application

By making use of two practical data sets, we illustrate the applicability of the WMOL distri-

bution among a set of classical and recent models containing beta exponentiated Lomax, trans-

muted Weibull Lomax, exponentiated Weibull Lomax, beta Marshall-Olkin Lomax, Gompertz

Lomax and Kumaraswamy generalized Lomax , based on a set of goodness-of-fit statistics.

ML method is used to estimate model parameters and compared with the help of K-S statistic,

p-value, Cramer-von Mises (W ∗) and Anderson Darling (A∗). Generally larger p-value and

smaller values of these statistics indicates a better fit to data.

TABLE 6.3: Some competitive models to the WMOL distribution.

Distribution Author(s)
Beta exponentiated Lomax (BEL) Mead (2016)
Transmuted Weibull Lomax (TWL) Afify et al. (2015)
exponentiated Weibull-Lomax (EWL) Hassan and Abd-Allah (2018)
Beta Marshall-Olkin Lomax (BMOL) Tablada and Cordeiro (2019)
Gompertz-Lomax (GL) Oguntunde et al. (2017)
Kumaraswamy generalized Lomax (KGL) Shams (2013)

Description of the data is as follows: The bladder cancer patient’s data: The first data set is

remission time (in months) of a group of 128 bladder cancer patients taken from Lee and Wang

(2003).

0.08, 2.09, 3.48, 4.87, 6.94, 8.66, 13.11, 23.63, 0.20, 2.23,

3.52, 4.98, 6.97, 9.02, 13.29, 0.40, 2.26, 3.57, 5.06, 7.09,

9.22, 13.80, 25.74, 0.50, 2.46, 3.64, 5.09, 7.26, 9.47, 14.24,

25.82, 0.51, 2.54, 3.70, 5.17, 7.28, 9.74, 14.76, 26.31, 0.81,

2.62, 3.82, 5.32, 7.32, 10.06, 14.77, 32.15, 2.64, 3.88, 5.32,

7.39, 10.34, 14.83, 34.26, 0.90, 2.69, 4.18, 5.34, 7.59, 10.66,

15.96, 36.66, 1.05, 2.69, 4.23, 5.41, 7.62, 10.75, 16.62, 43.01,

1.19, 2.75, 4.26, 5.41, 7.63, 17.12, 46.12, 1.26, 2.83, 4.33,

5.49, 7.66, 11.25, 2.07, 17.14, 79.05, 1.35, 2.87, 5.62, 7.87,

11.64, 17.36, 1.40, 3.02, 4.34, 5.71, 7.93, 11.79, 18.10, 1.46,
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4.40, 5.85, 8.26, 11.98, 19.13, 1.76, 3.25, 4.50, 6.25, 8.37,

12.02, 2.02, 3.31, 4.51, 6.54, 8.53, 12.03, 20.28, 2.02, 3.36,

6.76, 12.07, 21.73, 3.36, 6.93, 8.65, 12.63, 22.69.

Survival times of patients treated using RT: The second real data represents the survival time of

head cancer patients, who treated using radiotherapy (RT). The data were initially reported by

Efron (1988). These data consists of 58 observations:

6.53, 7, 10.42, 14.48, 16.1, 22.7, 34, 41.55, 42, 45.28, 49.4,

53.62, 63, 64, 83, 84, 91, 108, 112, 129, 133, 133, 139, 140,

140, 146, 149, 154, 157, 160, 160, 165, 146, 149, 154, 157, 160,

160, 165, 173, 176, 218, 225, 241, 248, 273, 277, 297, 405, 417,

420, 440, 523, 583, 594, 1101, 1146, 1417.

Table 6.4 gives some descriptive statistics for both data sets and using it we note that the two

data sets have positive skewness and kurtosis.

On the other side, comparing the WMOL distribution with other classical and recent distribu-

tions is done as follows. For the two data sets, ML method is used to estimate the parameters of

models and by these estimates, we provide the statistics K-S, p-value, W ∗ and A∗. The obtained

results are reported in Tables 6.5-6.8. From these tables, the smallest values of the K-S, W ∗,A∗,

and the largest p-value is obtained for the WMOL distribution. Hence, we infer that WMOL

distribution provides the best fit among the compared distributions.

TABLE 6.4: Descriptive statistics of both data sets (MD:= Mean deviation, Kr:= kurtosis, SK:=
skewness, SE:= Shannon entropy).

Data Mean Median SD SK Kr MD-mean MD-median SE
First data 9.36561 6.395 10.5081 3.2737 15.338 6.72060 6.12812 2.083
Second data 226.174 151.5 273.943 2.6999 7.5399 172.048 145.068 1.649

Figure 6.2 shows the TTT plot (see Aarset (1987)) for both data sets. Note that the TTT plot

for the first data set indicates a bathtub hazard rate function, while the second one indicates

increasing-decreasing-increasing-decreasing hazard.
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FIGURE 6.2: TTT plot for both data sets.

TABLE 6.5: The MLEs of the parameters of some models fitted to the bladder cancer patient’s
data.

Distribution Estimates
BEL(a,b,λ ,θ ,β ) 0.71556 5.18863 0.08855 0.80847 2.10461
TWL(α ,β ,λ ,a,b) 0.19165 9.60751 0.68149 12.7477 1.48715
EWL(a,α ,β ,θ ,λ ) 57.9147 1.20253 1.27849 0.07811 11.0033
BMOL(a,b,c,α) 1.06537 1.43179 46.2985 1.74832 -
GL(θ ,γ ,α ,β ) 1.22647 1.04043 0.87032 0.10565 -
KGL(a,b,α ,λ ) 1.51371 23.9726 0.22322 11.1227 -
WMOL(α ,β ,λ ,θ ) 15.6523 1.13049 0.55624 1.90448 -

The empirical and fitted densities are demonstrated in figure 6.3 for this data set. We are

comparing only two models WMOL and BEL because of the smallest values of the statistics

and goodness of fit measures and according to figure WMOL distribution fits better.

The empirical and fitted densities are demonstrated in figure 6.4 for this data set. We are

comparing only two models WMOL and BEL because of the smallest values of the statistics

and goodness of fit measures and according to figure WMOL distribution fits better.
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FIGURE 6.3: Fitted and empirical densities for the first data set

FIGURE 6.4: Fitted and empirical densities for the second data set
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TABLE 6.6: The values of K-S, p- value, W ∗ and A∗ statistics for some models fitted to the
bladder cancer patient’s data.

Distribution K-S p-value (W ∗) (A∗)
BEL(a,b,λ ,θ ,β ) 0.03911 0.88959 0.02330 0.1594
TWL(α ,β ,λ ,a,b) 0.03827 0.87194 0.02160 0.1494
EWL(a,α ,β ,θ ,λ ) 0.03990 0.88694 0.02566 0.1755
BMOL(a,b,c,α) 0.02965 0.86980 0.01456 0.0921
GL(θ ,γ ,α ,β ) 0.09264 0.22180 0.20280 1.3288
KGL(a,b,α ,λ ) 0.16266 0.14182 0.02380 0.1635
WMOL(α ,β ,λ ,θ ) 0.02922 0.99990 0.01410 0.0903

TABLE 6.7: The MLEs of the parameters of some models fitted to the survival times of patients
treated using RT data.

Distribution Estimates
BEL(a,b,λ ,θ ,β ) 0.73642 15.2639 0.00504 0.29914 1.86758
TWL(α ,β ,λ ,a,b) 0.64257 2.57857 -1.0000 0.09276 1.02731
EWL(a,α ,β ,θ ,λ ) 3.40069 0.90215 3.07405 0.13213 4.63291
BMOL(a,b,c,α) 4.25699 10.5517 23.9284 0.47569 -
GL(θ ,γ ,α ,β ) 14.7599 1.009×10−6 0.45312 0.00078 -
WMOL(α ,β ,λ ,θ ) 74.9829 0.61133 0.00545 6.88208 -

TABLE 6.8: The values of K-S, p- value,(W ∗) and (A∗) statistics for some models fitted to
survival times of patients treated using RT data.

Distribution K-S p-value (W ∗) (A∗)
BEL(a,b,λ ,θ ,β ) 0.13473 0.24303 0.18937 0.9141
TWL(α ,β ,λ ,a,b) 0.13581 0.23501 0.21332 1.0387
EWL(a,α ,β ,θ ,λ ) 0.14371 0.18208 0.22394 1.0982
BMOL(a,b,c,α) 0.16727 0.07786 0.25599 1.2571
GL(θ ,γ ,α ,β ) 0.14522 0.17306 0.25671 1.2410
WMOL(α ,β ,λ ,θ ) 0.11319 0.44717 0.12648 0.6496

6.8 Conclusion

Here, we come up with a new lifetime model christended the Weibull Marshall-Olkin Lomax

(WMOL) distribution, which has two shape and two scale parameters. It can be reduced to

Weibull-Lomax, Marshall-Olkin Lomax and Lomax distributions. The failure rate function

of WMOL model can have decreasing, increasing, upside down bathtub and bathtub curve

according to its shape parameters. Therefore, WMOL model can be used quite effectively as an
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alternative to some extended form of Lomax and Weibull distributions and works better than the

cited models. Maximum likelihood method is used to estimate the parameters of model and to

check the efficiency of estimators we did a simulation study. We hope that the new distribution

can be widely used in many different fields.
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