
Chapter 1

Preliminaries and Basic Concepts

Basic concepts defined in this chapter will be helpful in succeeding chapters.

1.1 Order Statistics

Perhaps the earliest model for ordered random variables is order statistics. If sample observa-

tions are ascending in order according to their eminence then we call them ordered values. Let

the random variables {Zu}, u = 1,2, . . . ,n are written in ascending order of eminence like

Z1:n ≤ Z2:n ≤ . . . ≤ Zn:n ,

then, we represents uth-order statistics Zu:n . Usually in sampling theory, we assume that {Zu}

are identically distributed and statistically independent. But in case of order statics Zu:n are

necessarily dependent. Some commonly used order statistics are the extremes Z1:n and Zn:n,

the range W = Zn:n−Z1:n , deviation from sample mean of extremes, Zn:n− Z̄, and studentized

range,W/Sv from a random sample of N(µ,σ2), where Sv is estimate of σ with v degrees

of freedom. The extremes occures in study of droughts, floods, fatigue failure and fracture

toughness. Range is a common tool in quality control to estimate standard deviation. Extreme
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deviation is an essential tool in outliers detection process. While the studentized range is the

basis of many quick tests in small samples, and important in the analysis of variance to rank

treatment means.

1.2 Distribution of Order Statistics

Let Z1,Z2, . . . ,Zn, a sample of size n, randomly selected from a continuous population with

cumulative distribution function (cdf) H(z) and probability density function (pdf) h(z). Then

uth order statistics’ pdf is

hZu:n(z) =Cu:n Hu−1(z) [1−H(z)]n−u h(z); −∞ < z < ∞, (1.1)

where

Cu:n =
n!

(u−1)!(n−u)!
.

Special Cases

The pdf of first order statistics is

hZ1:n(z) = n [1−H(z)]n−1 h(z). (1.2)

The pdf of nth order statistics is

hZn:n(z) = n Hn−1(z)h(z). (1.3)
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and Zu:n follows the distribution function

Hu:n(z) = Pr [Zu:n ≤ z]

= Pr [at least u of Z1,Z2, . . . ,Zn ≤ z]

=
n

∑
r=u

Pr [exactly r of Z1,Z2, . . . ,Zn ≤ z]

=
n

∑
r=u

(
n
r

)
[H(z)]r [1−H(z)]n−r (1.4)

= Cu:n

∫ H(z)

o
tu−1(1− t)n−udt (1.5)

= IH(z) (u,n−u+1) , (1.6)

where

Iz(α,β ) =
1

B(α,β )

∫ z

0
tα−1 (1− t)β−1dt,

and

B(α,β ) =
∫ 1

0
tα−1 (1− t)β−1dt.

The result in RHS of (1.6) is obtained with the help of incomplete beta function and binomial

sums. Khan (1991) used negative binomial sums to obtain this result.

Hu:n(z) =
n−u

∑
r=0

(
r+u−1

u−1

)
[H(z)]u [1−H(z)]r

=
n

∑
r=u

(
r−1
u−1

)
[H(z)]u [1−H(z)]r−u . (1.7)

The pdf of Zu:n can be derived by differentiating (1.6) with respect to z for continuous case.

The pth moment of Zu:n can be calculated by

E (Zp
u:n) =

∫
∞

−∞

zphu:n(z)dz. (1.8)
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The uth and vth order statistics’ joint pdf is

hZu:n,Zv:n(z,y) = Cu,v:n Hu−1(z) [H(y)−H(z)]v−1−u

× [1−H(y)]n−v h(z)h(y); −∞ < z < y < ∞, (1.9)

for z < y, u,v = 1,2, . . ., u < v and

Cu,v:n =
n!

(u−1)! (v−u−1)! (n− v)!
.

The cdf of Zu:n, & Zv:n, 1≤ u < v≤ n is

Hu,v:n(z,y) = Pr (Zu:n ≤ z,Zv:n ≤ y)

= Pr
(

at leaset u of Z1,Z2, . . . ,Zn are at most z &

at least v of Z1,Z2, . . . ,Zn are at most y
)

=
n

∑
s=v

s

∑
r=u

Pr
(

exactly r of Z1,Z2, . . . ,Zn are at most z &

exactly s of Z1,Z2, . . . ,Zn are at most y
)

=
n

∑
s=v

s

∑
r=u

n!
r! (s− r)! (n− s)!

[H(z)]r [H(y)−H(z)]s−r [1−H(y)]n−s .(1.10)

The cdf of Zu:n and Zv:n can be written as

Hu,v:n(z, y) = Cu,v:n

∫ H(z)

0

∫ H(y)

x
xu−1(t− x)v−u−1(1− t)n−vdxdt

= IH(z),H(y)(u,v−u,n− v+1); −∞ < z < y < ∞. (1.11)

which is incomplete bivariate beta function.

For z≤ y

Hu,v:n(z,y) = Hv:n(y). (1.12)
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The pth and qth order product moment of Zu:n and Zv:n is given by

E (Zp
u:nZq

v:n) =
∫

∞

−∞

∫ y

−∞

zpyqhu,v:n(z,y)dzdy. (1.13)

In general the pdf of Zi1:n,Zi2:n, . . . ,Zik:n, for 1 ≤ i1 < i2 < .. . < ik ≤ n and −∞ < Zi1 < Zi2 <

.. . < Zik < ∞, is given by

hi1,i2,...,ik:n(zi1,zi2, . . . ,zik) = n!

(
k

∏
j=1

h(zi j)

)
k

∏
j=0

[(
H(zi j+1)−H(zi j)

)i j+1−i j−1

(i j+1− i j−1)!

]
, (1.14)

where, z0 =−∞,zk+1 = ∞, i0 = 0, ik+1 = n+1.

Also the accuracy of calculation can be checked by the following relation David and Nagaraja

(2003),

n

∑
u=1

E (Zp
u:n) = nE (Zp) ; p = 1,2, . . . (1.15)

n

∑
u=1

n

∑
v=1

E (Zp
u:nZq

v:n) = nE
(
Zp+q)+n(n−1)E (Zp)E (Zq) ; p,q = 1,2, . . . (1.16)

and

n

∑
u=1

n

∑
v=1

Cov(Zu:n,Zv:n) = nVar(Z), (1.17)

where, E(Zp) = E(Zp
1:1).

1.3 Moments and Recurrence Relations

In the last six decades or so, we see a spur in the efforts of order statistics, which are ap-

plied successfully to almost every possible sphere of human activity. Also, the order statistics’

moments are fruitful in broad practical and theoretical situations like best linear unbiased esti-

mators (BLUEs) of scale and location parameters for instance of censored or complete samples,
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entropy estimation, quality control, goodness of fit tests, characterization of probability distri-

butions, reliability etc. It’s miles visible that reliability of an object will be high if duration of

failure of gadgets is high, which increases the cost of product in terms of time and money. In

this situation experimenter is not able to predict failure of products by analyzing them for a

short period. So he requires few early failures for prediction and this can be achieved through

order statistics’ moments. The early applications order statistics were concerned with empiri-

cal economic studies and coordination among various projects and efficient utilization of future

emergencies.

Since the turn of this century, lot of attention paid to order statistics and their moments. Pearson

(1902) and Galton (1902) explored the distribution of the difference of successive order statis-

tics. For more information, see Arnold et al. (2008), Arnold and Balakrishnan (2012), Sarhān

and Greenberg (1962), and David and Nagaraja (2003).

Recurrence relations and identities have achieved prominence for three primary reasons:

i. Shorten the time and labour and also lessen the number of direct computation.

ii. They give relationship between higher and lower order moments and hence higher order

moments can easily assessed.

iii. Dispense some easy checks to check exactness of order statistics’ moments.

For logistic distribution, Tarter (1966) and Shah (1966, 1970) found order statistics’ moments.

For the gamma distribution, Joshi (1979b) and Krishnaiah and Rizvi (1967) derived recurrence

relations for order statistics’ moments. Joshi (1982) also discovered several mixed aspects of

order statistics recurrence relations for exponential and truncated exponential distributions. For

the power function distribution, Malik (1967) developed recurrence relations for order statis-

tics’ moments.

Some recurrence relations of generalized Lindley, power Lindley, power gereralize Weibull, Ex-

tended exponential, Lindley and complementary exponential-geometric distributions for single

and product order statistics’ moments are established by Kumar and Goyal (2019a,b), Kumar
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and Dey (2017a,b),Kumar et al. (2017), Sultan and Al-Thubyani (2016), Balakrishnan et al.

(2015), respectively. For extended exponential distribution, Kumar et al. (2017) entrenched

order statistics’ single and product moments and BLUEs of scale parameter besed on type-II

right censored and complete samples. For Log-logistic distribution, Ahsanullah and Alzaatreh

(2018) obtained order statistics’ moments and estimate of parameters.

Several researchers have worked in the field of order statistics have appeared in the literature,

see Kamps (1991), and Mohie El-Din et al. (1991), Childs et al. (2000), Sultan et al. (2000),

Mahmoud et al. (2005), Sultan and Al-Thubyani (2016), Genç (2012), Kumar (2015), Bal-

akrishnan et al. (2015), Kumar and Dey (2017b), Kumar and Goyal (2019a,b), Kumar et al.

(2020b), Balakrishnan and Cohen (1991), Sanmel and Thomas (1997), Balakrishnan et al.

(1996), Sultan et al. (2000), Mahmoud et al. (2005), Jabeen et al. (2013), Sultan and Al-

Thubyani (2016), Kumar et al. (2017), Kumar and Dey (2017a,b), Ahsanullah and Alzaatreh

(2018), Kumar and Goyal (2019a,b), Kumar et al. (2020a,b), Lieblein (1955), Balakrishnan and

Joshi (1981), Saleh et al. (1975), Joshi (1978, 1979a) and many others.

1.4 BLUEs of the Location and Scale Parameters

Let Z1:n ≤ Z2:n ≤ ·· · ≤ Zn:n be the order statistics from the continuous population with pdf

of the location-scale parameter be h(z). Let δ and ϕ are the location and scale parameters,

respectively. To compute the BLUEs of the location and scale parameters δ and ϕ , we uti-

lize the single and product moments. There are many applications of the scale-parameter and

location-scale parameter distributions, see Arnold et al. (2008), Meyer (1987) and Wasserman

(2003). Let Z1:n ≤ Z2:n ≤ ·· · ≤ Zn−c:n, c = 0(1)([n/2]− 1), denote Type-II right censored

sample of h(z). Let us denote Yu:n = (Zu:n− δ )/ϕ , E(Yu:n) = δ
(1)
u;n , 1 ≤ u ≤ (n− c), and

Cov(Yu:n, Yv:n) = ϕu,v:n = δ
(1,1)
u,v:n − δ

(1)
u:n δ

(1)
v:n , 1 ≤ u < v ≤ (n− c). We shall use the following
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notations

Z = (Z1:n,Z2:n, . . . ,Z(n−c):n)
T ,

δ = (δ1:n,δ2:n, . . . ,δ(n−c):n)
T ,

1 = (1, 1, . . . , 1)T︸ ︷︷ ︸
n−c

,

and

Ψ = ((ϕu,v)); 1≤ u, v≤ n− c,

where, δu:n = E(Yu:n), ϕuu = Var(Yu:n) and ϕuv = Cov(Yu:n,Yv:n); u,v = 1,2, . . .(n− c). Then

the BLUEs of δ and ϕ are given by Arnold et al. (2008)

δ
∗ =

n−c

∑
u=1

auZu:n and ϕ
∗ =

n−c

∑
u=1

ϕuZu:n, (1.18)

where,

au =

{
δ TΨ−1δ1TΨ−1−δ TΨ−11δ TΨ−1

(δ TΨ−1δ )(1TΨ−11)− (δ TΨ−11)2

}
, (1.19)

bu =

{
1TΨ−11δ TΨ−1−1TΨ−1δ1TΨ−1

(δ TΨ−1δ )(1TΨ−11)− (δ TΨ−11)2

}
. (1.20)

Furthermore, the variances and covariance of these BLUEs are given by Arnold et al. (2008)

Var(δ ∗) = ϕ
2
{

δ TΨ−1δ

(δ TΨ−1δ )(1TΨ−11)− (δ TΨ−11)2

}
, (1.21)

Var(ϕ∗) = ϕ
2
{

1TΨ−11
(δ TΨ−1δ )(1TΨ−11)− (δ TΨ−11)2

}
, (1.22)

and

Cov(δ ∗, ϕ
∗) = ϕ

2
{

−δ TΨ−11
(δ TΨ−1δ )(1TΨ−11)− (δ TΨ−11)2

}
. (1.23)
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The values of au and bu can be obtained for different values of sample sizes for example n =

7, 10, and different censoring cases c = 0(1)([n/2]− 1), and for some selected values for

parameters. The coefficient of the BLUEs au and bu given by (1.19) and (1.20) respectively, the

conditions,

n−c

∑
i=1

ai = 1

and

n−c

∑
i=1

bi = 0,

which are used to check the computations accuracy.

1.5 Method of Maximum Likelihood Estimation

Methods name clearly indicates the way of obtaining estimator at which likelihood function

attains its maximum. Let Z be a random variable with density h(z;∆), where ∆= (δ1,δ2, . . . ,δk)

is a k-dimensional parameter vector. Therefore the M.L.E. of ∆ usually denoted by ∆̂mle =

(δ̂mle1, δ̂mle2, . . . , δ̂mlek) is obtained by solving the following system of equations

∂ log [`(∆|z)]
∂δi

= 0 s.t.−→ ∂ 2log [`(∆|z)]
∂δ 2

i
< 0; i = 1,2, . . . ,k, (1.24)

where, log [`(∆|z)] = ∑
n
u=1 log [h(zu,∆)] and z = (z1,z2, . . . ,zn), denotes respectively the log-

likelihood function and a random sample of size n. In general, M.L.E.s are not unbiased but

consistent estimators. M.L.E.s are also satisfies invariance property i.e. if ∆̂mle is the M.L.E. of

∆, then the M.L.E. of one-to-one transformation g(∆) is g(∆̂mle).
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1.6 Method of Moments

Let Z1,Z2, . . . ,Zn be a random sample from a population with pdf or pmf H(z,∆), where ∆ =

(δ1,δ2, . . . ,δk). Then the moment estimator of δ i.e. ∆̂mm = (δ̂1, δ̂2, . . . , δ̂k) is obtained by

solving the following system of k equation.

n

∑
u=1

zr
u
n
=
∫

∞

−∞

zrh(z)dz for continuous

n

∑
u=1

zr
u
n
= ∑

x
zrh(z), r = 1,2, . . . ,k, for discrete (1.25)

where, ∑
n
u=1

zr
u
n is the rth sample moment and

∫
∞

−∞
zrh(z)dz or ∑x zrh(z) is the rth population

moment.

1.7 Methods of Generating Distribution

The amount of data available for analysis is growing increasingly faster, requiring new proba-

bilistic distributions to better describe each phenomenon or experiment studied. Distributions

with more complexity and greater parameters can be with the help of computer softwares.

The literature in the field describes several generalizations and extensions of symmetric, asym-

metric, discrete and continuous distributions. The relevance of these new models is that, ac-

cording to situation, each one of them can better fit the mass of data. We presents several classes

of distributions described in literature, their nomenclature and the title of the work where they

have been presented.

1. Exponentiated Generalized: For constant α > 0 Mudholkar et al. (1995) defined expo-

nentiated generalized as

G(z) = Hα(z)
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2. Beta1 Generalized: Eugene et al. (2002) presents beta1 generalized model as

G(z) =
1

B(α,β )

∫ H(z)

0
tα−1(1− t)β−1dt; α,β > 0 and 0 < t < 1.

3. Beta2 Generalized: Tahir and Nadarajah (2013) presents beta2 generalized model as

G(z) =
1

B(α,β )

∫ H(z)

0
tα−1(1+ t)−(α+β )dt; α,β > 0 and t > 0.

4. Mc1 Generalized: McDonald (1984) presents Mc1 generalized model as

G(z) =
1

B(α,β )

∫ Hγ (z)

0
tα−1(1− t)β−1dt; α,β ,γ > 0 and 0 < t < 1.

5. Mc2 Generalized: Tahir and Nadarajah (2013) presents Mc2 generalized model as

G(z) =
1

B(α,β )

∫ Hγ (z)

0
tα−1(1+ t)−(α+β )dt; α,β ,γ > 0 and t > 0.

6. Kumaraswamy G1: Cordeiro and de Castro (2011) defined Kumaraswamy G1 model as

G(z) = 1− (1−Hα(z))β

7. Kumaraswamy Type 2: For α > 0 and β > 0 Tahir and Nadarajah (2013) defined Ku-

maraswamy type 2 model as

G(z) = 1−
[
1− (1−H(z))α

]β
8. Marshall-Olkin: Marshall and Olkin (1997) presented Masrshall-Olkin model as

G(z) =
H(z)

H(z)+α(1−H(z))
; α > 0.
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9. Marshall-Olkin G1: Jayakumar and Mathew (2008) presented Masrshall-Olkin G1 model

as

G(z) = 1−
[

α (1−H(z))
H(z)+α(1−H(z))

]β

; α,β > 0.

10. Marshall-Olkin G1: Tahir and Nadarajah (2013) presented a different type of Masrshall-

Olkin G1 model as

G(z) =
[

H(z)
H(z)+α(1−H(z))

]θ

; α,θ > 0.

11. Gamma-Generated: Zografos and Balakrishnan (2009) defined Gamma-Generated model

as

G(z) =
θ γ

Γ(γ)

∫ −ln(1−H(z))

0
tγ−1e−θ tdt.

12. Gamma-Generated: Cordeiro et al. (2017b) also defined a different form of Gamma-

Generated model as

G(z) = 1− θ γ

Γ(γ)

∫ −ln(H(z))

0
tγ−1e−θ tdt.

13. Extended Weibull Distribution: Silva et al. (2013) defined extended Weibull distribu-

tion as

G(z) = 1−C(γe−βH(z))

C(γ)
,

where z > 0,γ > 0 and C(γ) = ∑
∞
n=1 anγn.

14. Kumaraswamy-G Poisson: Ramos (2014) defined Kumaraswamy-G Poisson model as

G(z) =
1− exp(−θH(z))

1− exp(−θ)
.
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15. Kumaraswamy-G Exponentiated: Ramos (2014) defined Kumaraswamy-G exponen-

tiated model as

G(z) =
[
1− (1−Hγ(z))α

]β ; α,β ,γ > 0.

16. Beta Weibull Poisson Family: Paixao (2014) defined Beta Weibull Poisson family

model as

G(z) =
exp(θexp(−γHβ (z)))− exp(θ)

1− exp(θ)
.

17. Beta Kummer Generalized: Pescim et al. (2012) defined Beta Kummer generalized

model as

G(z) =
∫ H(z)

0
Ktα−1(1− t)β−1e−γtdt; α,β > 0,−∞ < γ < ∞.

18. Weibull Gneralized Poisson Distribution: Paixao (2014) defined Beta Weibull gneral-

ized Poisson distribution model as

G(z) =
exp
(
−θ

β
R(−βe−β )

)
− exp

(
−θ

β
R(ξ (z))

)
exp
(
−θ

β
R(−βe−β )

)
−1

,

where, R(z) = ∑
∞
m=1

(−1)m−1mm−2

(m−1)! zm and ξ (z) =−βexp(−β − γzα).

19. G-Negative Binomial Family: Paixao (2014) defined G-Negative Binomial family model

as

G(z) =
(1−θ)−m− [1−θ(1−H(z))]−m

(1−θ)−m−1
.

20. Zeta-G: Paixao (2014) defined Zeta-G model as

G(z) =
ξ (t)−Lit [1−H(z)]

ξ (t)
,



14

where, Lit(x) = ∑
∞
m=1

xm

mt and ξ (t) = ∑
∞
m=1

1
mt .

21. Power Series Distributions Family: Consul and Famoye (2006) defined Power Series

distributions family model as

G(z) =
z

∑
m=0

B(m)(α)

m!B(γ)
(γ−α)m.

22. Basic Lagrangian: Consul and Famoye (2006) defined Basic Lagrangian model as

G(z) =
z

∑
m=1

1
m!

[(B(0))m]m−1 .

23. Lagrangian Delta: Consul and Famoye (2006) defined Lagrangian delta model as

G(z) =
z

∑
m=n

n
(m−n)!m

[(B(0))m]m−n .

24. Weibull Marshall-Olkin-G (WMO-G) Family: Korkmaz et al. (2019) proposed the

Weibull Marshall-Olkin-G (WMO-G) family as

H (z;α,β ,η) = 1− exp

(
−
{
− log

[
αḠ(z;η)

1− ᾱḠ(z;η)

]}β
)
.

1.8 Some Continuous Distributions

1. Type-II Exponentiated Log-logistic Distribution

Recently, Rao et al. (2012) proposed Type-II exponentiated log-logistic (TIIELL) distri-

bution with pdf

h(z;τ,ϕ,η) =
τη

(
z
ϕ

)η−1

ϕ

[
1+
(

z
ϕ

)η]τ+1 , z > 0, (τ,ϕ)> 0,η > 1
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and associated cdf is

H(z;τ,ϕ,η) = 1−
[

1+
(

z
ϕ

)η]−τ

, z > 0, (τ,ϕ)> 0,η > 1

where ϕ is the scale parameter, and η and τ are the shape parameters of the distribution.

If τ = 1 , then TIIELL distribution becomes log-logistic distribution, and if η = 1, then

TIIELL distribution becomes Pareto type-II distribution.

2. Log-logistic Distribution

Let Z, a random variable, is said to follow log-logistic distribution with parameters ϕ,η

denoted by Z ∼ LL(ϕ,η) if its pdf is

h(z;ϕ,η) =
η

(
z
ϕ

)η−1

ϕ

[
1+
(

z
ϕ

)η]2 , z > 0, ϕ > 0,η > 1. (1.26)

and associated cdf is

H(z;ϕ,η) = 1−
[

1+
(

z
ϕ

)η]−1

, z > 0, ϕ > 0,η > 1

Log-logistic distribution is closed under scaling, i.e., if Z ∼ LL(ϕ,η), then for some

p > 0, pZ ∼ (pϕ;η). If Z ∼ LL(ϕ,η) then the transformation

Y = log(Z)∼ logistic distribution[L(log(ϕ),1/η)].

3. Modified Power Function Distribution

Recently, Okorie et al. (2017) introduced a two parameter modified power function (MPF)

distribution with pdf

h(z;α,β ) =
α β (1− z)β−1

[1− (1−α) (1− z)β ]2
, 0 < z < 1, α, β > 0,
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and associated cdf is

H(z;α,β ) = 1− α (1− z)β

[1− (1−α) (1− z)β ]
0 < z < 1, α, β > 0.

If α = 1, then MPF distribution becomes power function distribution.

4. Power Function Distribution

Let Z, a random variable, is said to follow power function distribution with shape param-

eter β denoted by Z ∼ power(β ) if its pdf is

h(z;β ) = β (1− z)β−1, z ∈ (0,1), β > 0. (1.27)

and associated cdf is

H(z;β ) = 1− (1− z)β , z ∈ (0,1), β > 0. (1.28)

The density of power function is monotone increasing in nature with global maximum

occurring at z = λ . Power distribution is closed under scaling, i.e., if Z ∼ power(λ ,β ),

then for some p < 0, pZ ∼ power(λ/p;β ). It is also closed under maximum, i.e., if

Z ∼ power(λ ,β ) and Z1 ∼ power(λ ,β1), then max(Z,Z1) ∼ power(λ ,β +β1). Power

function distribution with β = 1 reduces to U(0,λ ) distribution. power(1;β ) is a special

case of Kumaraswamy distribution whose density is given by θβ zβ−1(1− zβ )θ−1, 0 <

z < 1. If Y ∼ exp(θ), then the transformation Z = (λeY )−1 ∼ power(λ ,β ). Inverse of

power function random variable follows Pareto distribution.

5. Extended Power Lindley Distribution

Recently the three parameter extended power Lindley distribution was proposed by Alka-

rni (2015) for the flexibility of purpose. A random variable Z said to follow extended

power Lindley (EPL) distribution if it has following pdf

h(z;τ,ξ ,κ) =
τξ 2

ξ +κ
(1+κzτ) zτ−1 e−ξ zτ

, z > 0; τ > 0,ξ > 0,κ > 0
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and associated cdf is

H(z;τ,ξ ,κ) = 1−
(

1+
κξ

ξ +κ
zτ

)
e−ξ zτ

, z > 0; τ > 0,ξ > 0,κ > 0.

For κ = 1 and κ = 1, τ = 1, the EPL distribution reduces to power Lindley (PL) and

Lindley distributions respectively.

6. Power Lindley Distribution

Let Z, a random variable, is said to follow power Lindley distribution with parameters

ξ ,τ if its pdf is

h(z;ξ ,τ) =
τξ 2

(1+ξ )
(1+ zτ)zτ−1exp(−ξ zτ), z > 0,ξ ,τ > 0. (1.29)

and associated cdf is

H(z;τ,ξ ) = 1−
(

1+
ξ

ξ +1
zτ

)
e−ξ zτ

, z > 0; ξ ,τ > 0.

7. Lindley Distribution

Let Z, a random variable is said to follow Lindley distribution with parameter ξ if its pdf

is

h(z;ξ ) =
ξ 2

(1+ξ )
(1+ z)exp(−ξ z), z > 0,ξ > 0. (1.30)

and associated cdf is

H(z;ξ ) = 1−
(

1+
ξ

ξ +1
z
)

e−ξ z, z > 0; ξ > 0.

It is also useful in medicine, engineering and biology. Ghitany et al. (2008) used it for

modeling in mortality studies. The parameter, ξ > 0 can result in either a unimodal or

monotone decreasing distribution.
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8. Generalized Topp-Leone Distribution

Recently, Shekhawat and Sharma (2020) proposed a generalization of the Topp-Leone

distribution called generalized Topp-Leone (GTL) distribution. A random variable Z

said to follow generalized Topp-Leone (GTL) distribution if it has following pdf

h(z;κ,ξ ) = 2κξ zκξ−1 (1− zκ)(2− zκ)
ξ−1

, 0 < z < 1, κ, ξ > 0.

and associated cdf is

H(z;κ,ξ ) = (zκ (2− zκ))
ξ
, 0 < z < 1, κ, ξ > 0.

9. Topp-Leone Distribution

The single parameter (ξ ) Topp-Leone distribution is defined by the pdf

h(z;ξ ) = 2ξ zξ−1 (1− z)(2− z)ξ−1 , 0 < z < 1, ξ > 0.

and associated cdf is

H(z;ξ ) = (z(2− z))ξ , 0 < z < 1, ξ > 0.

This distribution has J-shaped frequency curve for ξ < 1. Topp-Leone distribution is also

effective for the generation of new flexible families of distributions.

10. Weibull Marshall-Olkin Lomax (WMOL) Distribution

Let Z, a random variable is said to follow Weibull Marshall-Olkin Lomax (WMOL) dis-

tribution if its pdf is

h(z;β ,θ ,λ ,α) =
βθλ

(1+λ z)[1− ᾱ(1+λ z)−θ ]

(
−log

[
α(1+λ z)−θ

1− ᾱ(1+λ z)−θ

])β−1

× exp

{
−
(
−log

[
α(1+λ z)−θ

1− ᾱ(1+λ z)−θ

])β
}
, z≥ 0, θ ,λ ,β ,α > 0.
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The associated cdf is

H(z;β ,θ ,λ ,α) = 1− exp

{
−
(
−log

[
α(1+λ z)−θ

1− ᾱ(1+λ z)−θ

])β
}
, z≥ 0, θ ,λ ,β ,α > 0.

where, θ > 0 and β > 0 are two shape parameters and α > 0 , λ > 0 are the scale

parameters.

Additionally, the new model contains some distributions as special cases, these sub-

models being listed in Table 1.

TABLE 1.1: Special cases of the WMOL distribution

Parametric values in WMOL distribution Sub-models
β = 1 Marshall-Olkin Lomax distribution(α,θ ,λ )
α = 1 Weibull Lomax distribution(β ,θ ,λ )
α = β = 1 Lomax distribution (θ)

11. Marshall-Olkin Lomax Distribution

The pdf corresponding to MOL distribution is

h(z;θ ,λ ,α) =
θλ

(1+λ z)[1− ᾱ(1+λ z)−θ ]

× exp
{
−
(
−log

[
α (1+λ z)−θ

1− ᾱ (1+λ z)−θ

])}
, z≥ 0, θ ,λ ,α > 0.

and associated cdf is

H(z;θ ,λ ,α) = 1− exp
{
−
(
−log

[
α (1+λ z)−θ

1− ᾱ (1+λ z)−θ

])}
, z≥ 0, θ ,λ ,α > 0.

12. Weibull Lomax Distribution

The pdf corresponding to WL distribution is

h(z;θ ,λ ,β ) =
βθλ

(1+λ z)
(θ log(1+λ z))β−1

× exp
{
−(θ log(1+λ z))β

}
, z≥ 0, θ ,λ ,β > 0. (1.31)
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and associated cdf is

H(z;θ ,λ ,β ) = 1− exp
{
−
(
−log

[
(1+λ z)−θ

])β
}
, z≥ 0, θ ,λ ,β > 0.

13. Lomax Distribution

The pdf corresponding to Lomax distribution is

h(z;θ ,λ ) =
θλ

(1+λ z)θ+1 , z≥ 0, θ ,λ > 0. (1.32)

and associated cdf is

H(z;θ ,λ ) = 1− exp
{
−
(
− log

[
(1+λ z)−θ

] )}
, z≥ 0, θ ,λ > 0.
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