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2.1 Introduction 

Theoretical chemistry uses mathematical methods which are related to the physics 

fundamental laws and study the chemical relevance. By the theoretical chemistry, we can 

calculate the many properties such as a stable geometrical arrangement of the nuclei, their 

relative energies, rate, polarizability, dipole moment etc. In earlier times theoretical chemistry 

was not a vast area but due to the increase of technology, theoretical chemistry has become a 

very broad area nowadays. It deals with many areas of chemistry such as atmospheric, 

physical, inorganic, organic, bioinorganic chemistry. Along with chemistry it is also used in 

physical, mathematical, biological, and computer science, etc. and provides an idea to solve 

electronic properties and provide connections between all these branches of science.  

Quantum chemistry deals, fundamentally, with the motion of electrons under the influence of 

the electromagnetic force exerted by nuclear charges. To understand the electronic structure, 

and rate of reaction quantum chemistry is used, which is based on the Schrödinger equation 

(time-independent and time-dependent). In the present thesis, ground-state chemical reactions 

have been studied, that‟s why it is sufficient to use the time-independent Schrödinger 

equation.
3,4

 However, one-electron system equations can be solved by it, but it is very 

complicated for the many-electron system. For which many approximations are taken. It is 

extensively used in the design of new drugs and materials. It can be also used to find out the 

molecular geometry, energies of molecules, transition states, chemical reactivity, IR, UV, and 

NMR spectra. It can also be used to study the interaction of a substrate with an enzyme and 

the physical properties of substances etc. The development of DFT gives a very big 

achievement in computational chemistry. DFT is based mainly on electron density. DFT 

method has been used for modeling electronic structure and mechanism in this thesis. 

Quantum mechanics is mainly divided into three parts 
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1. Hartree-Fock Theory 

2. Semi-emipirical methods 

3. Density Functional Theory 

2.2 Hartree-Fock Theory (HF) 

The most important and primary function of computational methods is to obtain the wave 

function of the system which gives all the information about the quantum mechanical 

behavior of the system. The main paradigm is to find out the energy of the molecular 

system.
5-8

 

The time-independent Schrödinger equation
9 

is shown in equation 2.1. 

                                                   ̂                                                                                (2.1) 

Where Ψ is wave function associated with the system, E is the energy eigenvalue of 

Hamiltonian operator contains kinetic energy and potential energy terms. 

Schrödinger's equation cannot be solved exactly for more than one electron. Therefore, there 

are several approximations for solving the Schrödinger equation for molecules with more 

than one electron system. First, an approximation is a Born-Oppenheimer approximation, it 

considers that the mass of nuclei is very large as compared to electron, thus we may consider 

that nuclei are stationary and it also neglects the relativistic effects, and they reduce the 

many-electron problem to one-electron problem. Then, the Schrödinger equation for the 

electronic motion is given by         

                                              ̂                                                                              (2.2) 

Where,  ̂      is the pure electronic Hamiltonian 
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                                                                                                                                              (2.3)                                                            

Where me is the mass of each electron and M is the number of nuclei. The α-th nucleus has 

mass Mα and charges Zαe where e is the electronic charge. Electronic coordinates are written 

as ri‟s. Unfortunately, the Born-Oppenheimer approximation is not sufficient to solve the 

Schrödinger equation for many-electron systems. The basic wave function method is known 

as Hartree-Fock method, which is based upon an independent molecular orbital model. In the 

HF method, each electron is described by an orbital; total wave function is given by the 

product of orbitals, where wave function is considered by the approximation. The wave 

function is solved by the time-independent Schrödinger equation and the relativistic motion is 

not taken into consideration. 

According to it Schrödinger equation of a molecule may be divided into electronic and 

nuclear energy. These quantum chemical models differ in the nature of approximations 

employed and spanned over a wide range both in terms of their capability and reliability. It is 

an ab initio type calculation, in which columbic electron-electron repulsion is taken into 

account, and it gives the average effect, it does not include explicit repulsions. This is a 

variational calculation; in which calculated average energy is always equal to or greater than 

the exact value. In many-electron system Schrödinger equation is broken down in the single 

electron approximation, and the wave function is the linear combination of atomic orbitals 

(Gaussian type Orbital (GTO)). The limitation of the approximation is that it does not take 

into account the corre Hartree-Fock uses single Slater type determinant.
10

 Single Slater 

determinant gives the accurate description of the system. HF considers the interaction of each 

electron with mean-field of electrons, instead of considering the individual electron-electron 

interaction separately. The energy calculated with HF is too high, and increase in energy due 

to this error is referred correlation energy i.e. it calculates the probability of finding an 
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electron around an atom by taking the distance from the nucleus which does not take into 

account the distance of an electron from other electrons. The HF energy after adding 

correlational energy will give the exact solution to the Schrödinger equation. By increasing 

the quality of basis sets, the calculated energy can approach the exact solution. HF theory 

only takes into account the average electron-electron interaction and neglects the electron 

correlation. Due to which it lacks a certain amount of electronic energy. This missing energy 

only represents a small percentage of total energy while it is essential to solve the chemical 

problems and to evaluate the relative energy.   

 

 

 

 

 

 

 

Figure 2.1. Two different arrangements of electrons in atom around the nucleus have same 

probability within HF theory, but not in correlated calculations. 

To improve the accuracy beyond the HF method, explicit electronic correlations to be 

include. To include the electron correlation, multi-determinant wave function is used which is 

beyond Hartree-Fock. Some of these are M ̈ller-Plesset perturbation methods (e.g. MP2 and 

MP4), configuration interaction method (e.g. CISD), multi-configurational self-consistent 

field (MCSCF), configurational interaction (CI), and coupled-cluster methods (e.g. CCSD 

(T)). These methods are multi determinants and optimize both their orbitals and coefficients. 

NEVPT2 (N-electron valence state perturbation theory) is the multireference method using 

perturbation theory, it improves the results significantly. Computed molecular geometry and 
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energies are more accurate that includes correlation. However, these theories require a large 

computational facility and are expensive. Thus, it can be applied to small systems, while for 

the large system we have to use alternative methods. An alternative to the wave function-

based method is density functional theory (DFT), which is used for understanding chemical 

problems.  

2.3 Semi-empirical Method 

Semi-empirical calculations are performed by taking the structure of the HF i.e. Hamiltonian 

and wave function, where some information is approximated or completely omitted. The core 

electrons are not included in the calculation. Parameterizations are used to predict the omitted 

parameters and are calculated either by experiments or by ab initio calculations. For example, 

H ̈ckel, Pariser-Parr-Pople (PPP), complete neglect of differential overlap (CNDO), modified 

intermediate neglect of differential overlap (MINDO), Intermediate neglect of differential 

overlap (INDO), and Austin Model 1 (AM1). These methods are faster than the ab initio 

calculations. The disadvantage of these methods is that these results depend upon the 

parameterization, if the computed molecule is similar to that is used to parameterize the 

method then the results are good otherwise not.  

2.4 Density Functional Theory (DFT)  

According to DFT, energy is calculated by the electron density, not by the wave function. 

Here, “electronic energy is functional of electron density which is a function of space and 

time”.
11-13

 DFT theory was developed by the theorem proposed by Hohenberg and Kohn. In 

this theory, the determinant is formed by the electron density. DFT is classified into many 

classes that include the electron exchange, not the correlation. Density functional theory is 
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based on electron density instead of the wave function. DFT is based on two Hohenberg-

Kohn theorem.
14,15

  

The first, Hohenberg-Kohn theorem, states that “any ground state property of a molecule is a 

functional of the ground-state electron density function”.  

                                                 [  ]   [  ]                                                                (2.4) 

This theorem assures that many molecular properties can be calculated from the electron 

density, and approximate functional will give at least approximate answers. The second 

Hohenberg-Kohn theorem is the DFT analog of the wave function variation theorem that has 

connection with the ab initio method. It states that “any trial electron density function will 

give energy higher than (or equal to, if it were exactly the true electron density function) the 

true ground state energy”. 

                                                [  ]    [  ]                                                                      (2.5) 

DFT methods give more accurate structures and vibrational energies for the transition metals 

than the Hartree-Fock methods and their results are similar to the post-HF method. DFT 

calculations are computationally less expensive and become the routine choice of method for 

transition metal compounds.
16-23

 The approximate functional employed by current DFT 

methods partition the electronic energy into several terms: 

                                                              
                                                                                

(2.6)
 

Where, 
   

 
= kinetic energy arising from the motion of electrons, 

                = potential energy of the nuclear-electron attraction and the repulsion between                                                     
     

                             
pairs of nuclei

  

                = Coulomb self-interaction of electron-electron  

                  = exchange-correlation energy term
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2.4.1 Exchange correlation functional (Exc) 

The Exc function not only defines the difference in kinetic energy of an interacting and non-

interacting system but also deals with the difference between classical and quantum 

mechanical electron repulsion. 

                                                                                                  (2.7) 

For the total energy calculation there is a requirement to make the approximation for the 

exchange-correlation energy, and the DFT method‟s accuracy depend upon how well the 

approximations have been made. Beyond, the pure electrostatic interactions exchange-

correlation potential describes Pauli‟s principle effects coulomb potential.  

Classification of density functional theory has been proposed and some of them are discussed 

here.   

(a)  Local density approximation (LDA) 

Local density approximation (LDA) is applicable on uniform electron gas i.e. electron density 

varies very slowly with the position.
24,25

 In LDA, functional depends on the electron density 

at each point in space. The term local is used because at any point only the conditions at that 

point are considered, while in nonlocal methods at each point a gradient, which considers the 

region a bit beyond the point is used. These calculations are performed for the study of band 

structure; its results are not good for the calculation of molecular structure where errors of 

both qualitative and quantitative results are incorporated. The exchange-correlation energy
15

 

is written as; 

                                              
   ∫  𝑟𝑛(𝑟)   

    
𝑛(𝑟)                                                      (2.8) 

Where,    
    

𝑛(𝑟) = exchange-correlation energy of uniform electron gas 
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Better results than LDA can be obtained by elaborating LDA, that alpha (α) and beta (β) 

electrons have different orbitals say,       , by which they have different electron 

densities    and   . This “unrestricted” LDA method is known as local spin density 

approximation. The advantage of LSDA is that it can handle systems like radicals, which are 

having one or more unpaired electrons, and the systems in which electrons are going to get 

unpaired. In LSD approximation, the exchange functional is given by                                                   

                                           
   [𝑛 ][𝑛 ]  ∫  𝑟 𝑛(𝑟)   

    
(𝑛 (𝑟) 𝑛 (𝑟))                               (2.9) 

Where,    
    

(𝑛 (𝑟) 𝑛 (𝑟)) is exchange-correlation energy of each particle of a uniform 

electron gas with spin densities 𝑛 (𝑟), and 𝑛 (𝑟). Ground state properties such as lattice 

constant, bulk, etc. are described in LDA, and the dielectric constant is 10-40 % 

overestimated in LDA as compared to the experiment. This overestimation is due to the 

neglect of a polarization-dependent exchange-correlation in LDA as compared to LSDA. It 

can be improved by including the gradient of density in functional. The generalized gradient 

approximation (GGA) is an example of this type of approach. 

(b)  Generalized-gradient approximation (GGA) 

The electron density in an atom or molecule varies greatly from place to place, so it is not 

surprising that the uniform electron gas model has serious shortcomings. It assumes non-

uniform electron gas. It takes the exchange and correlation energy. These depend not only on 

electron density but also depend on its gradient (first derivatives of density with respect to 

position). These functional are called gradient corrected, or said to use the generalized 

gradient approximation (GGA). They are also called nonlocal functional or “semi local”. 

GGA functional proposed for the correlation energy. The general formula for GGA 

functional is: 
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   [𝑛  𝑛 ]  ∫ 

 𝑟𝑛(𝑟)   
   (𝑛  𝑛   𝑛   𝑛  )                              (2.10) 

One popular functional was proposed by A.D. Becke (B or B88)
26
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   𝛽        
 

  
|  |

    
 

One popular GGA functional is Lee, Yang, and Parr (LYP),
27,28

 the LYP functional does not 

include parallel spin correlation when all the spins are aligned (e.g. the LYP correlation 

energy for 
3
He is zero). The LYP correlation functional is often combined with the B88 or 

OPTX exchange functional to produce the BLYP and OLYP acronyms. DFT calculations 

with functional incorporating gradient corrections, and the HF exchange term (hybrid 

functional), can be speeded up with only a little loss in accuracy by a so-called perturbation 

method.  

(c) Meta generalized-gradient approximation (MGGA) 

 It is an extension of GGA methods and it allows the exchange and correlation functional to 

depend on higher-order derivatives of the electron density. Inclusion of either the Laplacian 

or orbital kinetic energy density as a variable leads to the so-called meta-GGA functionals
29-31

 

Calculation of the orbital kinetic energy density is numerically more stable than a calculation 

of the Laplacian of the density. Results have more accuracy than the earlier approximations. 

The normal form of the meta-GGA functional is 

                       
    [𝑛  𝑛 ]  ∫  

 𝑟𝑛(𝑟)   
    (𝑛  𝑛   𝑛   𝑛     

     
        )                (2.11) 

The most popular GGA functionals are TPSSh, M06-L, etc.  
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(d)  Hybrid density functional methods 

Hybrid Density Functional methods are also known as the Adiabatic Connection Model 

(ACM).
32-34

 Correlation energy may similarly be taken as the LSDA formula plus a gradient 

correction term. There is an exact connection between the non-interacting density functional 

to the fully interacting many-body systems which allow for calculating the exact exchange-

correlation functional. It is the combination of Hartree-Fock exchange-correlation and density 

functional. This generally has a linear combination of HF exact exchange functional. 

                                                         ( −  )  
       

                                                    (2.12) 

Models that include exact exchange are often denoted as hybrid methods and Becker 3 

parameter functional (B3) methods are examples of such hybrid models, B3LYP is one of the 

most widely employed hybrid functional. It is a combination of the three parameters such as 

exchange-correlation, LSDA and gradient corrected term. It was developed by Becke in 

1993, modified by Stevens et al. in 1994 by the introduction of correlation-energy functional 

LYP 1988. It is used for calculating the atomization energies, ionization potentials, proton 

affinities, and total atomic energies of small molecules. For improving the exchange-

correlation functional a portion of HF theory is added to it, the resulting functional is called 

hybrid functional. It is given by 

          
      = (1 −   −   )  

         
       

    ( −   )  
        

          (2.13) 

Where,   
     is „pure DFT‟ LSDA non-gradient-corrected exchange functional,   

   is the 

KS-orbital-based HF exchange energy functional,   
    is the Becke exchange functional, 

  
    is the Vosko, Wilk, Nusair function,   

    is the LYP correlation functional. The 

parameters       and    are those that give the best fit of the calculated energy to molecular 

atomization energies. The general form of the functional is given below, 

             
   =    

        (  
  −   

    )         
           

                               (2.14) 
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Here,    
    and    

     are the GGA corrections that are widely used to LSDA exchange 

and correlation energies respectively.
35-36

 

(e) Density functional theory including dispersion corrections 

At the fifth level of Jacob‟s ladder classification, the full information of the KS orbitals is 

employed, i.e. not only the occupied but also the virtual orbitals are included. The formalism 

here becomes similar to those used in the random phase approximation, but a little work has 

appeared on such methods. Inclusion of the virtual orbitals is expected to significantly 

improve, for example, dispersion (such as Vander Waals) interactions, which is a significant 

problem for several functionals. The optimized effective potential (OEP) method can be 

considered in this category.
4
 

By using DFT, many properties such as spectroscopic including IR, UV, and NMR spectra 

can be studied, along with these properties such as dipole moments, bond orders, charges, 

ionization energies, electron affinity, electronegativity, harder and softer properties can be 

studied. DFT functionals are not capable of describing the weak forces of attraction like 

Vander Waal forces and non-covalent interactions. B3LYP functional is named as B3LYP-

D/D2/D3 functional after the addition of dispersion correction term.
37-39

 Some functionals 

like M06
40

 suite and B97D
41 

are present in which dispersion correction term is already 

included in their functional form. To predict the performance of a functional in DFT, one 

must have to try on a variety of molecules and properties to assess its performance. DFT is 

mainly the ground state theory; researchers are working to extend it to the excited state.  

For this, an alternative approach is used i.e. time-dependent Schrodinger equation to calculate 

the absorption of energy from light by calculating effect of the time-dependent electric field 

on the molecule. 
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Figure 2.2. Classification of XC functionals by Jacob‟s ladder. 

It is an alternative development of time-dependent quantum mechanics, in which density is 

the fundamental variable instead of many-body wave function. Time-dependent density is 

calculated by solving the non-interacting Schrodinger equation.
46

 

Theorem of TDDFT confirms the one-to-one correspondence between electronic density 

n(r,t) and the external (time-dependent) potential, Vext (r,t), for many-body systems evolving 

from a fixed initial state.
46

 First time, TDDFT calculation was performed by Ando to predict 

the inter sub-band transition in heterostructure of semiconductor.
47

 Zangwill and Soven
48

 

performed the first calculations for finite systems.  

For, the more accurate TDDFT results, Casida and Salahub stated that these two criteria 

should follow: (i) Excited energy should be smaller as compared to molecular ionization 

potential. (ii) Excitations should not be in orbitals having positive KS eigenvalues. For many 
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absorptions results, organosulphur compounds B3LYP, TDDFT and INDO/S results were 

compared by the Fabian.
49

 It was found that the performance of TDDFT is good.  

2.5 Basis Sets 

“Basis set is a group of mathematical functions used to describe the shape of the orbitals in a 

molecule”.
50

 Molecular orbitals are the linear combination of basis function and angular 

function. It gives a mathematical description of atomic orbitals. There are two types of atomic 

orbitals; one is Slater type and the other is Gaussian type orbital. It was Slater who proposed 

atomic orbitals first time, which correspond to a set of functions in which distance from the 

nuclei decays exponentially (𝑒   ).
51

 The expression for the Slater type orbital is 

                                              (𝑟    )  𝑁    (   )𝑟
   𝑒                                               (2.15) 

Slater-type orbitals are used for the atoms having many electrons whose analytical solution is 

difficult and computational studies are expensive. Alternative for the slater type orbital is the 

linear combination of Gaussian type orbitals (GTO). In Gaussian type orbitals the distance 

from nuclei decay as 𝑒   
 
. 

                                           (𝑟    )  𝑁    (   )𝑟
      𝑒   

 
                                  (2.16)            

The exact solution of the Schrodinger equation for the hydrogen atom is the Slater type 

orbital. GTO requires more primitive than the STO to describe the wave function. However, 

the numeric integral over GTO can be computed analytically much faster than the STO that‟s 

why a given accuracy can be obtained quickly using the GTO.   
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Figure 2.3. Slater type orbital (STO) and Gaussian type orbital (GTO). 

The normalized Gaussian type orbital in Cartesian coordinates is given by 

            (      𝑖 𝑗 𝑘)  (
  

 
)
   

*
(  )           

(  ) (  ) (  ) 
+
   

      𝑒  ( 
       )                       (2.17) 

Where,  

Exponent α, and i, j, and k = non-negative integer and these define the nature of orbital in a 

Cartesian type.  

If all the three indices (i, j, and k) are zero, then the GTO has spherical symmetry is called an 

s-type GTO. When only one index (i, j, k) have value one, then it has axial symmetry about a 

single Cartesian axis is called p-type GTO. When the sum of i, j, and k is one, then it is called 

p-type GTOs have three functions named as px, py, and pz orbitals and when the sum of 

indices is equal to two, then it is d-type GTO. A complication arises for basic functions with 

d orbitals or higher symmetry orbitals. Five d real orbitals are xy, xz, yz, x
2
-y

2
, and dz

2
, where 

z
2
 is 2z

2
-x

2
-y

2
. For the fast integral, evaluation is to use the six Cartesian orbitals, which are 

xy, xz, yz, x
2
, y

2
, and z

2
. These six orbitals are equivalent to 5 pure d orbitals and one 

additional spherically symmetric function x
2
+y

2
+z

2
. Calculations using the 6d orbitals have 

lower energy than the calculations performed with 5d orbitals because of the additional 

Slater type 1s orbital Gaussian type 1s orbital 
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function. Some ab intio programs have the option to use 5d (pure-d) or 6d (Cartesian). 

Similarly, with f orbital 7f (pure-f) and 10f (Cartesian). 

Choosing a standard GTO basis set means that the wave function is defined by a finite 

number of functions. This created the approximation in calculations. To describe the wave 

function exactly infinite numbers of GTO functions are needed. Differences in results due to 

the quality of the basis set vs. another are known as basis set effects. To avoid the basis set 

effects, some high-accuracy work is done with a numeric basis set. Cubic spline set is an 

example of such a basis set. The choice of basis set affects the CPU time required to perform 

the calculation. The amount of CPU time for Hartree-Fock calculations scales N
4
. For 

example, we have to twice the calculation then it will take the time 2
4
 (16) times longer.  

2.5.1 Classification of basis sets 

Minimal basis set:  

When the minimum number of basis functions are used to represent each orbital in an atom, 

is known as a minimal basis set, for example, STO-G, STO-6G, etc.
52-54

  

e.g. One s function for H (1s); and 5 basis function for N (1s, 2s, 2px, 2py, 2pz). 

Double/triple zeta basis set:  

Doubling all the basis functions gives rise to the double zeta function. e.g: two s functions for 

H (1s and 1s′), and 10 basis functions for N (1s, 1s′, 2s, 2s′, 2px, 2py, 2pz, 2px′, 2py′ and 2pz′)   

 Split valence basis set: 

As the separate basis functions are used singly for core and multiple for valence orbital it 

gives split valence basis set
55

 and these can be Valence Double/Triple/Quadruple Zeta 

function. When the double basis function is used for valence orbital and then it is the valence 
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double zeta (VDZ) when the triple basis function is used then it gives valence triple zeta 

(VTZ) basis set.  

N = (1s, 2s, 2s′, 2px, 2py, 2pz, 2px′, 2py′ and 2pz′) Valence double zeta 

N = (1s, 2s, 2s′, 3s‟, 2px, 2py, 2pz, 2px′, 2py′ and 2pz′, 3px‟‟, 3py‟‟, 3pz‟‟) Valence triple zeta 

Split valence basis set is represented as k-nlmG in Pople notation. 

Where,  

k = number of primitive Gaussians (PGTOs) 

nlm = number of Gaussian functions for the valence orbitals that are split into the PGTOs for 

a specific basis set 

Two values (nl) indicate double split valence while three values (nlm) indicate a triple split 

valence basis. e.g. 6-31G, 6-311G 

 

 

 

 

 

Figure 2.4. Basis set notation. 

Polarization/diffusion basis set: 

6-31G 
Number of PGTOs used for 

representing core orbital 

No. of Gaussian functions that comprise 

the first STO double zeta 

No. of Gaussian functions that 

summed in the second STO 
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When polarization (angular momentum) function included then it is known as the 

polarization basis set.
56

 It is denoted by an asterisk (*, **). A single asterisk (*) denotes that 

the d polarization function has been added to each atom except hydrogen and helium atoms. 

Two asterisks (**), indicates that a polarization p basis function is also added to hydrogen 

and helium atom. Polarization functions are represented after G with a separate designation 

for heavy and hydrogen atoms. The 6-31G* basis is identical to 6-31G (d), and 6-31G** is 

identical to 6-31G (d, p). In general, to polarize a basis function with angular momentum (l), 

mix it with the functions of angular momentum (l+1), e.g. polarized basis set adds d functions 

to a carbon atom and f function to transition metals.
14

 These are functions of higher angular 

momentum and help to describe anisotropic charge distributions around the nuclei. Polarized 

functions are important for accurate description of bonding between atoms because the 

presence of other atoms distorts the environment of electrons and removes its spherical 

symmetry. These give more accurate computed geometries and vibrational frequencies. The 

basis set 3-21* shows the exceptionality that the d functions are added to 2
nd

 row atoms. To 

indicate this difference, this basis set is given the notation 3-21(*).  

 Diffuse functions are added when there is electron density found far from the nuclei.
57

 It is 

denoted by a plus sign (+). Single „+‟ denotes that diffuse function is added to all atoms 

except hydrogen and helium. While the Double („++‟) indicates that diffuse function is also 

added to atoms along with hydrogen and helium. Diffuse functions are represented before the 

G, for example, 6-31++G. Diffuse functions are used for anions and for describing 

interactions at long distances, such as Vander Waals interactions. These basis functions are 

essential for the description of weak interactions such as hydrogen bonding and molecules 

having lone pairs. Diffuse functions change the relative energies of the various geometries 

associated with these systems.  
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Many basis sets are identified by the author's surname such as Huzinaga, Dunning, and 

Duijneveldt basis set, and along with surname, the number of primitive is also used such as 

D95 is the basis set created by Dunning with nine s primitives and 5p primitives. Semi-

empirical methods are formulated to neglect the core electrons while the ab initio method 

represents. The elements in the lower part of the periodic table have a large number of core 

electrons, and core electrons are not involved in chemical transformation, but it is necessary 

to use a large number of basis functions to expand it, otherwise, the valence orbitals will not 

be described properly. There is the lower part of periodic table relativistic effects are also 

important. Further, to reduce the heavy computation necessity for the heavy elements. This is 

done by modeling the core electrons by a suitable function and treating the valence electrons 

explicitly.  

Effective core potential 

By replacing core electrons and their basis functions in the wave function with a potential 

term in Hamiltonian. This is called core potential, effective core potentials (ECP), or the 

relativistic effective core potentials (RECP) in the chemical community, while in the physics 

community it is known as pseudopotential.
 58-60

 Core potentials must be used along with a 

valence basis set that was created to accompany them. To reduce the computation time, 

relativistic mass defect and spin coupling term are significant near the nuclei of heavy atoms. 

To generate the pseudopotential, and LSD atomic calculation was performed using the 

method of Troullier and Martins. For example, LanL1MB and LanL2DZ (Los Alamos 

National Laboratory 2 Double-Zeta). 

A limitation with the pseudopotential method is that it does not describe the properties which 

depend directly on core electrons such as X-ray photoelectron spectroscopy and the electron 

density near to nucleus i.e. NMR shielding and coupling constants. One common thing of 



   Chapter 2 

57 
 

pseudopotential is that the parameters depend on the employed method, i.e. potential derived 

e.g. Local spin density approximation (LSDA) functional is different from that derived from 

a generalized gradient functional such as (PBE) Perdew-Burke-Ernzerh. In practice, the 

difference is small and pseudopotential optimized for one functional is used with other 

functional without re-optimization.  

2.5.2 Basis set superposition errors 

Most of the basis set‟s molecular applications are centered on the nuclei. A complete basis set 

cannot be used in practice, 𝑀     
  increases computational effort limits for practical 

calculations to hundreds or a few thousand basis functions at best. The absolute errors in 

energy from basis set are quite large, may be several au or kJ/mol. There is usually interest in 

relative energies; to make errors as constant as possible. Thus, it is important to select a 

“balanced” basis set. Same basis set must be used for comparing energies, for example, for 

comparing energies of two isomers, 6-31G basis set is used for one, and DH basis set for 

other isomer is meaningless, although both basis sets are of double zeta quality.  

For comparing energies at different geometries, nuclear-fixed basis set introduces an error. 

This is because the quality of basis set is not same at all geometries, since electron density 

around one nucleus may be described by functions centered at another nucleus. This is 

especially troublesome when calculating small effects, such as energies of Vander Waals 

complexes and hydrogen-bonds.  

It is also observed that CP (Car and Parrinello) corrections for methods including electron 

correlation are larger and more sensitive to the size of the basis set than at the HF level. The 

HF wave function converges much faster concerning the size of the basis set than correlated 

wave functions.  
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Chemical Hamiltonian Approach (CHA), methods are not commonly used yet. For 

intramolecular cases, it is difficult to define a unique procedure for estimating the BSSE 

(basis set superposition error). Performance of functional is not same for two sets of results. 

A minor part of this difference is due to the difference in basis sets, and remaining difference 

is due to the difference in data sets. 

2.6 Magnetic Exchange  

The net spin state of metal ion that interacts with the nearby spin and gives a particular type 

of electronic exchange (ferromagnetic or antiferromagnetic) interaction is mentioned as 

Heisenberg magnetic exchange (J). Hoffmann and Kahn's model's
61

 are the active electron 

approximation, in which only unpaired electrons are considered, core electrons are neglected. 

In these models, spin-orbit interactions are considered, the minimal basis set under semi-

empirical methods to evaluate the integrals. As a result, these models give a poor estimate of 

J value compared to experiments, though these models are widely used to interpret the 

magnetic properties. Magnetic exchange interactions are calculated in two different spin state 

centers in metal or in between the metal center and radical. These are calculated by 

employing the following spin Hamiltonian, 

                                                   ̂  −                                                                        (2.18) 

Where, S1 and S2 denote the total spin of the individual center, and J is the magnetic 

exchange coupling constant. 

The magnetic exchange is calculated by energy of the high spin (intermediate spin and low 

spin) state and their corresponding broken symmetry.
62

 Ruiz et al. provide a very good 

methodology for the estimation of J values.
63-64

 Positive and negative J value, indicates 

ferromagnetic and antiferromagnetic interaction.   
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2.7 Natural Bond Orbital (NBO) Analysis 

The natural bond orbital analysis uses the many bonds wave functions in terms of localized 

electron pairs.
65

 NBO is the name of a whole set of analysis techniques. It determines the 

natural atomic orbitals (NAO), natural bond orbitals (NBO), natural localized molecular 

orbitals (NLMO) and uses these to analyze natural population analysis (NPA), NBO 

energetic analysis of wave function properties, natural resonance theory (NRO) and natural 

chemical shielding (NCS) analysis. 

One of these is the natural population analysis (NPA) for obtaining occupancies and charges. 

NBO uses the natural orbitals instead of molecular orbitals directly. Natural orbital is the 

eigenfunctions of the first-order reduced density matrix. The eigenfunctions of the second-

order density matrix are called Natural Germinals. For single-determinant RHF wave 

function, in which natural orbitals have the occupation number exactly either 0 or 2. While 

for the multi-determinant wave function and UHF, the occupation number is fractional in 

between 0 and 2. The natural orbital provides the fastest convergence. Natural atomic orbital 

(NAO) and Natural Bond Orbital (NBO) analysis was developed by Weinhold and coworkers 

and these use the one-electron density matrix for defining the atomic orbitals in the molecular 

environment and derive the molecular bond by electron density between them. These are 

localized for achieving well-defined division of the electrons, the orbitals should be 

orthogonalized. 

NBO analysis is based on a method of transformation of a given wave function into localized 

form, corresponding to one-center (lone pair) and two-center (bond) elements of Lewis 

structure.  

The order of transformations of the input atomic orbital basis set.
66-68

  

              AOs → NAOs → NHOs → NBOs → NLMOs 
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Based on the magnitude of occupation number the natural atomic orbital may be divided into 

a “natural minimal basis” (having occupation number significantly different from zero) and 

“Rydberg” (having occupation number close to zero) orbitals. Analysis of basis function 

allows classifying the transformed orbitals as bonding, antibonding, core, and Rydberg 

orbitals. There is also a procedure for the resonant system which predicts the π bonding in 

such systems. 

Second-order perturbative estimates the donor-acceptor (bond-antibond) interaction on NBO 

basis. For this analysis, all the possible interactions between “filled” Lewis-type NBOs 

(donor, L) and “unfilled” (acceptor, NL) non-Lewis type NBOs are examined. These 

interactions lead to loss of occupancy from idealized Lewis structure localized NBO to empty 

non-Lewis orbital; this is known as “delocalization” correction to zeroth-order natural Lewis 

structure. Donor-acceptor stabilization E(2) from donor NBO (i) to acceptor NBO (j) is given 

by    

                                               ( )      ( )  
   (   )

(     )
                                                      (2.19) 

Where, 𝑞  is the donor orbital occupancy (2 for closed-shell, 1 for open-shell)    and    are 

diagonal elements (orbital energies), and F(i,j) is the off-diagonal NBO Fock matrix element. 

This is a popular technique that is available in many software packages and is easy to 

understand. It is a convenient method to classify the type of orbital. 

2.8 Solvation 

In quantum chemistry, basis calculations are performed in gas-phase, assuming that the 

interaction between the model complex and surrounding medium is negligible. However, 

most natural and laboratory reactions do not occur in a vacuum, the reaction occurs in the 

solution that means interaction between solute and solvent particles exist. The solute 
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properties such as structure, stability, spectra, and reactivity depend on the solvent, 

particularly a polar one. Computational chemistry also evaluates the environment, of solvent. 

Methods for evaluating solvent effects are mainly two types: One describes the individual 

solvent molecules and the other treats the solvent as a continuous medium.
69-71

 Combinations 

of these two are also possible, for example considering explicit first shell and remaining as a 

continuum model. Solvent effects are mainly of two types one is long-range (non-specific) 

and the other is short-range (specific) effect. Solvent polarization and orientation of dipole 

are long-range effects whereas hydrogen bonds, Vander Waals interaction, solvent-solute 

dynamics, charge transfer effects and hydrophobic effects are short-range solvation effects. 

Methods, in which solvent molecules are explicitly described, required a sampling of phase 

space. These methods are computationally expensive, thus there is strong interest to develop 

methods, in which solvent is modeled in gentle fashion. 

Langevin dynamics method takes into account the average solute-solvent dynamics. By 

considering the solvent as a homogenous medium having a dielectric constant, the solvation 

non-specific effects can be modeled.  

Continuum Solvation Models 

Continuum models
72

 consider the solvent as a uniform polarizable medium with a dielectric 

constant(𝜀). The dielectric constant is the characteristic property of a solvent. For a given 

medium value of the dielectric constant is fixed. While in dynamic phenomena it is taken as 

dependent on frequency.
73

 Solvent having the same dielectric constant value are treated 

equally. For example acetone (𝜀 = 20.7) and propan-1-ol (𝜀 = 20.1), or benzene (𝜀 = 2.28) 

and carbon tetrachloride (𝜀 = 2.24) are nearly equal. But, in reality, the hydrogen bonding 

capability of propan-1-ol is different from acetone while the dynamics of spherical carbon 

tetrachloride is different from that of planar benzene. 
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The self-consistent reaction field (SCRF)
74-76

 is a solvation model which is based on 

Onsager‟s reaction field theory.
77

 In this model, solvent containing the solute molecule turns 

a cavity into a polarized form. The main drawback of this model is that the solvent effect will 

not be observed for the system having zero dipole moment.  

The polarized continuum method (PCM) is the most popular self-consistent reaction field 

(SCRF) method, developed by Tomasi and coworkers. In the PCM method, a spherical cavity 

around each atom is used, and numerical integration over the solute charge density is used. 

Several variations use the nonspherical cavity. This method is widely used because of its 

good results in a cost-effective manner and applies to the arbitrary solute. However, it is 

sensitive towards the basis set used.  

The conductor-like screening model (COSMO) is a continuum method based on solvent-

accessible surface and it is fast. It can be used with a variety of semi-empirical, ab initio, and 

DFT methods. Cavity construction differs in different COSMO implementations and it is 

constructed as an assembly of atom-centered spheres with radii having 20% greater than the 

Vander Waal interaction. In real calculations, the cavity surface is approximated by 

segments, e.g., hexagons, pentagons, or triangles. By determining the charge distribution of 

the molecule, and the solvent charge, the interaction energy between solute and solvent can 

be calculated.  

2.9 Reaction Mechanism 

Transformation of one species to another takes place in elementary steps and this is called 

reaction mechanism.
78

 Reaction mechanism is the description; step to step that occurs during 

the reaction at every stage of the reaction. It also describes the reactive intermediates, and the 

transition states.  Reactive intermediate is a stable geometry and exists at the minimum of the 

energy occurring during the reaction and has a lifetime in order of 10
-13

 and 10
-14

 sec and 
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these are often radicals or ions.
79

 Transition states are the unstable molecular entities involved 

during the reaction and these have an unstable number of bonds and unstable geometry. 

These correspond to the maxima on the reaction coordinates.  

The rate of a reaction depends upon the concentration of the reactant. The bimolecular 

reaction between a moles of A and b moles of B is given below; 

                                                              𝑝𝑟𝑜 𝑢𝑐𝑡𝑠                                                   (2.20) 

The rate expression for the above reaction can be given by; 

                                                  𝑟  𝑘[ ] [ ]                                                                   (2.21) 

Where, k is rate constant, it is independent of the concentration of reactant, it depends only 

on the reaction temperature, and by the Arrhenius equation rate constant k is given by 

                                                 𝑘   𝑒                                                                          (2.22) 

Where,    is the activation energy and A is called the pre-exponential factor.
 

As the higher value of k, indicates faster will be the reaction, lower the value of k slower be 

reaction and for the intermediate value of k moderate will be the reaction rate. It is necessary 

to know the factors affecting reaction rate for understanding the reaction mechanism. 

2.9.1 Transition state theory 

Eyring, Polanyi, and Evans in 1935 developed the Transition state theory (TST). It is also 

known as absolute reaction rate theory (ARRT) and activated complex theory (ACT) and this 

is used to calculate the reaction rate of a chemical reaction and describe how a reaction can 

occurs.   

TST is based on many mathematical assumptions. It assumes that Maxwell-Boltzmann 

statistics predict that how many molecular collisions have energy equal to or greater than the 

activation energy i.e. the molecules at transition structure are in equilibrium with the reactant, 
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it is known as quasi-equilibrium. It also assumes that at the transition state molecules react 

irreversibly. Consider a reaction 

                                                                                                                                                         (2.23) 

                                                  
[  ]

[ ]
                                                                              (2.24) 

                                               [  ]    [ ]                                                                      (2.25) 

K
#
 is the equilibrium constant between the reactant and the transition state. 

 

 

 

 

 

 

 

 

Figure 2.5. The chart showing the PES of an elementary single-step bimoleculer reaction. 

From the classical mechanics, the energy of vibration is given by    𝑁  whereas from 

quantum mechanics it is given by ℎ . Thus, 

                                                     ℎ  
  

  
                                                                          (2.26) 

                                                          𝑘   ℎ             Where,   𝑘 𝑁                         (2.27) 

The vibrational frequency   is the rate at which the activated complex molecules move across 

the energy barrier. Thus, the rate constant k2 can be identified by  .  

The reaction rate is given by, 
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                                               −
 [ ]

  
 𝑘𝑘 [  ]                                                                 (2.28) 

                                               −
 [ ]

  
 𝑘 (

   

 
) [  ]                                                          (2.29) 

Where k, is the transmission coefficient, which is a measure of the probability that a 

molecule, passes over the barrier, will keep on going ahead and do not return. It can be 

omitted from rate expression as its value is taken as unity. 

                                                    −
 [ ]

  
 (

   

 
)  [ ]                                                     (2.30) 

Rate constant 𝑘  can be expressed as  

                                                         𝑘  (
   

 
)                                                             (2.31) 

The equilibrium constant    can be expressed in terms of (  ) , called the standard Gibbs 

free energy of activation. Since, for the activated complex, we can write 

                                                   (  )  −  𝑙𝑛                                                            (2.32) 

                                                          𝑒 ( 
 )
 
                                                              (2.33)                      

Rate constant can be given by 

                                                    𝑘     (
   

 
) 𝑒 ( 

 )
 
                                                  (2.34) 

Where,  

Boltzmann constant (KB) = 1.38x10
-23

J/K 

Planck`s constant (h) = 6.63x10
-34

 Js 

Gas constant (R) = 8.314 J K
-1

 mol
-1 

Temperature (T) = in Kelvin  

(  )  = difference in Gibbs free energy between reactant and the transition state theory is 

characterized by one imaginary frequency 

∆G
# 

= calculated at the saddle point of Born-Oppenheimer free energy surface   
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2.10 Gaussian 

The most widely used program in computational chemistry is Gaussian. It was released by 

John Pople in 1970. This name is given because Pople‟s use the Gaussian orbitals to speed up 

the calculations of molecular structure. It is a suite of programs with ab initio, density 

functional theory, semi-empirical, molecular mechanics, and various hybrid methods for 

predicting many properties of the atom, molecule, and reactive systems including molecular 

energies, structures, transition states, vibrational frequencies, IR, Raman spectra, 

thermochemical properties, reaction pathways, molecular orbitals, atomic charges, multipole 

moments, NMR shielding, magnetic susceptibilities, vibrational circular dichroism 

intensities, electron affinities, ionization potentials, polarizabilities and hyperpolarizabilities, 

electrostatic potentials and electron densities.    
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