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Abstract

Infectious diseases are one of the main grounds of death and disabilities in human beings globally. Lack of effective treat-
ment and immunization for many deadly infectious diseases and emerging drug resistance in pathogens underlines the need
to either develop new vaccines or sufficiently improve the effectiveness of currently available drugs and vaccines. In this
review, we discuss the application of advanced tools like bioinformatics, genomics, proteomics and associated techniques

for a rational vaccine design.
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Introduction

Emerging literature on the development of drug resistance
against pathogens compel us to establish and reinforce the
fact that immunization is one of the most effective way to
provide long-lasting protection against microbial diseases
(Jansen et al. 2018). Despite the availability of various vac-
cines in the market against different pathogens, there is
always a scope in improving already available or preparing
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new vaccines against pathogens. For example, “first genera-
tion vaccines” [use of inactivated or live attenuated patho-
gens e.g., Bacillus Calmette Guerin (BCG), plague, pertus-
sis, polio, rabies, and smallpox] were developed long ago
while “second generation” vaccines (cell components e.g.,
polysaccharides or protein antigens of the microorganisms
and referred as subunit vaccines) were developed in the last
decades. Parallel to these vaccine candidates, use of genetic
material (DNA and RNA), genetically modified cells and
non-virulent viruses packaged with antigenic DNA or RNA
are being explored for vaccine development. After learning
from first and second generation of vaccine and evolution
of advanced tools in vaccine science, there is enormous
scope to improve the development of “third generation”
with the help of bioinformatics, genomics, proteomics and
other associated techniques. Due to several limitations in
conventional approaches, it is essential to adapt well proven
and advanced techniques to accelerate vaccine development
program bypassing time and energy (Rappuoli 2004; Bag-
noli et al. 2011).

Current emphasis is focused on the identification of
genes/proteins of pathogens which plays important roles
in host-pathogen interaction, bacterial pathogenesis and its
survival in host body. The last decades have witnessed a
number of technological advances that have the potential
to be exploited in the expansion of new vaccines devel-
opment; therefore, the use of these techniques to develop
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vaccines against important human pathogens is the focus
of this article.

Genomics approaches

Being advantageous over conventional methods, genomics
approaches can be used in case of both cultivable as well as
non-cultivable microorganisms and are highly efficient to
identify all possible antigens expressed universally in differ-
ent pathogenic strains. Genome-based technologies are help-
ful to find genuine antigens as well as mimetic antigens that
can induce protective immunity against bacterial epitopes
(Seib et al. 2012). Gene-expression microarray resolves the
problem of complexity of overwhelming data generated by
many genomics techniques and offers a useful snapshot of
the main cellular events that contribute to the process of
microbial pathogenesis, and the identification of key poten-
tial vaccine candidate.

Comparative genomics and pan-genome analysis allow a
deep comprehensive study of intra and interspecies antigen
variability and distribution; and has been described in case
of many pathogens like Plasmodium, group B streptococ-
cus (GBS), Neisseria meningitidis serogroup B (MenB) and
Streptococcus pyogenes (Vernikos et al. 2015; Swapna and
Parkinson 2017; Carlton et al. 2008; Margarit et al. 2009;
McCarthy et al. 2018; Lin et al. 2018; Tettelin et al. 2002;
Maione et al. 2005). Intra-species analysis helps by sorting
common antigens present in all prevalent strains to act as a
universal vaccine candidate. The comprehensive methods
like multigenome analysis or pan-genome approach have
been demonstrated to identify potential vaccine candidates
against highly variable pathogens like S. pyogenes (Sharma
et al. 2013). The development of a GBS vaccine to fight
invasive neonatal disease is considered priority by global
health authorities (Lin et al. 2018). The genome sequences
of GBS serotype type III strain NEM316 and GBS sero-
type type V strain 2603 V/R have been exploited to identify
novel and universally accepted vaccine candidates (Glaser
et al. 2002; Tettelin et al. 2002, 2005; Maione et al. 2005).
Huge intra-species diversity suggests that single genome
sequence is not entirely representative and does not offer
a complete picture of the genetic variability of a species.
Therefore, comparative genomics allows identification of
potential antigens on the basis of sequence conservation in
different serotypes and strains of a given pathogen (Sharma
et al. 2013).

Inter-species analysis guides us to identify and filter out
antigens that show high degree of similarity with genes
present in the human microbial flora avoiding undesirable
cross-reaction of vaccine-elicited antibodies against known
benign commensal species. An inter-species comparison
of predicted protein sets of S. agalactiae, S. pyogenes,
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and S. pneumoniae has shown that approximately 50 % of
proteins are homologous, signifying substantial overlap in
potentially relevant pathogenic mechanisms (Tettelin et al.
2002). This information may be exploited to develop a vac-
cine against multiple species of streptococci. Genomics
approaches can identify potential vaccine candidate genes
when the pathogen is grown in isolation. Functional aspect
of genome dynamics of microorganisms needs to be ana-
lysed when they interact with the host. Several functional
genomics approaches have been developed to compensate
this limitation.

To understand the mechanism of microbial pathogenesis,
it is essential to identify the set of genes responsible for the
initiation and maintenance of an infection. Initially, there
was a lack of suitable techniques for the testing of individual
mutants in animal models to understand the function of the
genes during infection. The first group of techniques includ-
ing In vivo expression technology (IVET) and differential
fluorescence induction (DFI) has been used to identify bacte-
rial genes by specifically inducing promoters in the infected
host (Mahan et al. 1993; Bumann and Valdivia 2007; Adams
and Jewett 2018; Roberfroid et al. 2016). In contrast, sig-
nature-tagged mutagenesis (STM) was designed to identify
genes which are essential for the bacteria to survive in vivo.
The technique is based on random mutagenesis of bacteria
to identify genes required for in vivo survival where every
mutant carries effective molecular signature which can be
identified through hybridization (Hensel et al. 1995). The
tags from a mixed population of bacterial mutants repre-
senting the inoculum and bacteria recovered from infected
hosts are detected by PCR, radiolabelling and hybridization
analysis. STM is advantageous over other approaches that
rely on in vitro grown bacteria and are likely to miss impor-
tant protective antigens which functions only in vivo (Hen-
sel et al. 1995; Mazurkiewicz et al. 2006; Saenz and Dehio
2005; Ponnusamy et al. 2015). The second group of tech-
niques, including gene expression microarrays, add further
advantage to directly measure the gene expression levels on
a true genome-wide scale. However, the application of these
techniques for analysis of bacterial pathogens during the
infection process is still in its early stages. Another method,
Reverse Transcriptase Polymerase Chain Reaction (RT-
PCR) has qualities that bridge with other methods allowing
accurate gene expression measurement on a sub-genomic
scale. However, it is difficult to study bacterial pathogenesis
during the infection process by these techniques.

An anti-genomic approach—combining genome with
serological antigen identification technologies have been
used to explore the antigenic repertoire of bacterial patho-
gens (Meinke et al. 2005; Etz et al. 2002; Fritzer et al. 2010;
Nafarieh et al. 2017). This integrated approach is useful for
antigen validation, as selected clones can be used directly
for the generation of specific immune sera without the
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demanding task of high throughput recombinant protein pro-
duction. These sera can be used in surface protein localiza-
tion studies and in vitro functional assays. The anti-genome
of a particular pathogen, defined by this method, typically
consists of approximately 100 antigens; most of them
are located on the cell surface or secreted into the exter-
nal environment. Small-insert genomic libraries are also
employed for the in vitro protein selection method termed
as ‘ribosome display’. It has been employed to identify and
characterize the proteins of immunological importance on
a genomic scale of the human pathogens (Weichhart et al.
2003; Xiao et al. 2011). In addition, ‘Lambda phage display’
has been used for domain mapping, antigen discovery and
protein interactions to identify potential antigens (Nicastro
et al. 2014).

Another antibody-based selection method, in vivo
induced antigen technology (IVIAT), has been used to iden-
tify antigens in pathogens that are only expressed during
human infection (Mahan et al. 1993; Hang et al. 2003; Lom-
bardo et al. 2007). For example, Escherichia coli expressed
genomic libraries of Vibrio cholerae were probed by colony
blotting, using convalescent human sera. A major challenge
in the development of efficient screening methods is the
direct selection for protective candidates. For direct selec-
tion of protective candidates, expression library immuniza-
tion technology (ELI) has been successfully applied in case
of Mycobacterium tuberculosis. This strategy is based on
immunization with plasmid DNA incorporating the whole
genome split into small fragments. However, ELI is limited
to the study of genes that can be expressed in eukaryotic
cells, and it also demands animal models which are suit-
able for screening purposes (Barry et al. 2004; Talaat and
Stemke-Hale 2005; Yang et al. 2017).

Bioinformatics and computational
approaches

The genome sequences are complete inventory of every pos-
sible vaccine candidate. Advanced bioinformatics tools can
be used to examine the genetic content as well as transcrip-
tion and translation profiles of any pathogen to unravel more
details of its pathogenicity. During last two decades after first
bacterial (Haemophilus influenzae) genome sequence was
published, 1000s of bacterial and viral genome sequences
have been completed (http://www.ebi.ac.uk/genomes/bacte
ria.html, http://www.genomesonline.org/cgi-bin/GOLD/bin/
sequencing_status_distribution.cgi, http://www.ncbi.nlm.
nih.gov/genomes/GenomesGroup.cgi?taxid=10239&opt=
Virus). The generated genomic information is used to screen
the inclusive set of potential proteins encoded by pathogens
for the search of vaccine candidates—an approach referred
to as reverse vaccinology (Bagnoli et al. 2011).

In silico whole-genome analysis tools accelerate the pro-
cess of vaccine candidate identification by integrated use
of genomics and proteomics study because one can also
predict (I) subcellular localization of vaccine candidate
proteins, (II) conserved vaccine candidates among different
strains and species, (III) topology of surface proteins, (IV)
immunogenicity of different epitopes in vaccine candidate
proteins, (V) allergic property of proteins and (VI) 3D struc-
ture of vaccine candidate proteins to analyse accessibility of
immunologically relevant epitopes with the help of already
available bioinformatics tools (Gourlay et al. 2017; Alvarez
et al. 2018). Successful use of the bioinformatics tools has
been evidently reported in case of many bacterial and viral
pathogens. For example, due to the heterogeneous distribu-
tion of group A streptococcus (GAS) (> 200 serotypes have
been reported) in world population and variation of amino
acid sequences in proteins across all serotypes, it is very
difficult to identify universal vaccine candidates. Therefore,
a comprehensive in silico study has been reported (Sharma
et al. 2013). The in silico approaches help to predict of func-
tionality of a particular gene which needs to be verified by
using proteomics and genomics tools (Table 1).

Proteomics approaches

To overcome the limitations of genomics approaches like
(1) mRNA expression levels does not represent the actual
amount of active protein in a cell, (2) gene sequence gives
incomplete information about post-translational modifi-
cations, and (3) genome information does not describe
dynamic cellular processes; proteomics has been used in
different ways to identify novel vaccine candidates against
several human pathogens (Scoffone et al. 2020; Sousa et al.
2020; Sharma et al. 2013; Rodriguez-Ortega et al. 2006;
Nilsson et al. 2018; Zielke et al. 2016; Couto et al. 2016;
Lo et al. 2017). The present focus on using proteomics is
to identify surface proteins in pathogens that can be tar-
geted as potential vaccine candidates. Authors have ana-
lysed and identified microbial surface proteins by using
two-dimensional gel electrophoresis (2-DE) coupled with
mass spectrometry (MS) and matrix-assisted laser desorp-
tion/ionization time-of-flight mass spectrometry (MALDI-
TOF-MS). However, proteins of hydrophobic nature can not
be identified efficiently by this method. Subsequently, a two-
dimensional liquid chromatography coupled with tandem
mass-spectrometry (2D-LC-MS/MS) was introduced and
found to be particularly useful to identify proteins that are
either highly hydrophobic or basic, inadequately expressed,
with high molecular weight, and extreme isoelectric points
(Bagnoli et al. 2011; Gygi et al. 1999; Chen et al. 2006).
Improved protocol was adopted to identify surface proteins
(surfome) with minimized contamination of cytoplasmic
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Table 1 Some important available bioinformatics tools used for data mining and prediction of potential vaccine candidates

Category of tool Bioinformatics tool

Description

Web address

Reference

General tools BLAST

PSORTb

SignalP

EXPASY

PDB

PVS

AlgPred

CTL PRED

Basic Local Alignment
Search Tool (BLAST)

For predicting the location of
proteins in Gram—negative
bacteria (cytoplasm, cyto-
plasmic membrane, peri-
plasm, and outer membrane
or extracellular space)

Predicts the presence and
location of signal peptidase
I (SPasel) cleavage sites
within the N—terminal 70
amino acids of secreted
proteins

Analysis of protein sequences
and structures

Archive contains structures of
proteins, nucleic acids and
complex assemblies

Web server for protein
sequence variability analy-
sis tuned to facilitate con-
served epitope discovery

Prediction of allergenic
proteins

Predicts CTL epitopes that
are crucial in vaccine
design

http://www.ncbi.nlm.nih.gov/
BLAST/

http://www.psort.org/psortb/

http://www.cbs.dtu.dk/servi
ces/SignalP/

http://www.expasy.org/

http://www.pdb.org/pdb/
home/home.do

http://imed.med.ucm.es/PVS/

http://www.imtech.res.in/
raghava/algpred/

http://www.imtech.res.in/
raghava/ctlpred/

Gardy et al. (2003)

Petersen et al. (2011)

Bernstein et al. (1977)

Garcia—Boronat et al. (2008)

Saha and Raghava (2006)

Bhasin and Raghava (2004)
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Table 1 (continued)

Category of tool

Bioinformatics tool

Description

Web address

Reference

T-cell epitope prediction

EPIMHC

PEPVAC

RANKPEP

SYFPEITHI

BCIPEP

IEDB

NetCTL 1.2 Server

MHCPred

NetMHC 3.0

DiscoTope 1.2 Server

SVMHC

EpiJen

MHCBN

PREDEPP

EpiMatrix

A curated database of MHC
ligands

This program fully covers
multi—epitope vaccines
based on genome wide pre-
dictions of MHC-I epitopes

Predicts peptide binders
to MHC—I and MHC-11
molecules

A database containing thou-
sands of peptide sequences
known to bind class I and IT
MHC molecules

This database has a collection
of the peptides having a
role in humoral immunity

This program contains data
related to antibody and T—
cell epitopes

Predicts CTL epitopes in
protein sequences

MHC I and MHC II binding
prediction

Predicts binding of peptides
to a number of different
HLA alleles

Predicts discontinuous
B—cell epitopes from
three—dimensional protein
structures

MHC-I and MHC-II binding
prediction

MHC I binding prediction

A database of MHC binding
and non—binding peptides

MHC-I epitope prediction
software

EpiVax’s commercial epitope
prediction platform

http://bio.dfci.harvard.edu/
epimhc/

http://immunax.dfci.harvard.
edu/PEPVAC/

http://bio.dfci.harvard.edu/
Tools/rankpep.html

http://www.syfpeithi.de/

http://www.imtech.res.in/
raghava/bcipep/index.html

http://www.immuneepitope.
org/

http://www.cbs.dtu.dk/servi
ces/NetCTL/

http://www.ddg-pharmfac.
net/mhcpred/MHCPred/

http://www.cbs.dtu.dk/servi
ces/NetMHC/

http://www.cbs.dtu.dk/servi
ces/DiscoTope/

https://abi.inf.uni-tuebingen.
de/Services/SVMHC

http://www.ddg-pharmfac.
net/epijen/EpiJen/

http://www.imtech.res.in/
raghava/mhcbn/

http://margalit.huji.ac.il/

http://www.epivax.com/
immunogenicity—scree
ning/epimatrix/

Reche and Reinherz (2005)

Reche and Reinherz (2005)

Reche et al. (2004)

Rammensee et al. (1999)

Saha et al. (2005)

Vita et al. (2010)

Larsen et al. (2007)

Guan et al. (2003)

Lundegaard et al. (2008)

Haste Andersen et al. (2006)

Donnes and Kohlbacher (2006)

Doytchinova et al. (2006)

Bhasin et al. (2003)

Schueler—Furman et al. (2000)
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Table 1 (continued)

Category of tool Bioinformatics tool

Description

Web address

Reference

B-cell epitope tools BepiPred 2.0

Bcepred

BEST

COBEpro

CBTOPE

DiscoTope 2.0

EpiPred

Pepitope

Epitopia

Prediction of linear B—cell
epitopes

Prediction of linear B—cell
epitopes using physico-
chemical properties

Prediction of linear B—cell
epitopes using

Prediction of linear B—cell
epitopes

Prediction of discontinuous
B—cell epitopes

Prediction of discontinuous
B—cell epitopes

Prediction of discontinuous
B—cell epitopes

Prediction of linear and dis-
continuous B—cell epitopes
using Pepsurf or Mapitope
algorithm

Prediction of linear and dis-
continuous B—cell epitopes

http://www.cbs.dtu.dk/servi
ces/BepiPred/

http://crdd.osdd.net/raghava/
beepred/

http://biomine.cs.vcu.edu/
datasets/BEST/

http://scratch.proteomics.ics.
uci.edu/

http://crdd.osdd.net/raghava/
cbtope/submit.php

http://www.cbs.dtu.dk/servi
ces/DiscoTope/

http://opig.stats.ox.ac.uk/
webapps/sabdabsabpred/
EpiPred.php

http://pepitope.tau.ac.il/

http://epitopia.tau.ac.il/

Jespersen et al. (2017)

Saha and Raghava (2004)

Gao et al. (2012)

Sweredoski and Baldi (2009)

Ansari and Raghava (2010)

Kringelum et al. (2012)

Krawczyk et al. (2014)

Mayrose et al. (2007)

Rubinstein et al. (2009)

proteins by careful surface digestion of live bacteria with
different proteases and mass spectrometry analysis (Rodri-
guez-Ortega et al. 2006). The same techniques mentioned
above have been applied for the analysis of bacterial culture
supernatants to identify and analyse bacterial ‘secretome’
(He et al. 2015; Ravipaty and Reilly 2010). Proteomic stud-
ies have been used to study the role of the environment in
regulating the pathophysiology of several microorganisms
as well as investigate host—microbial interactions (Chen
et al. 2016; Agudo et al. 2004; Hardwidge et al. 2004). The
application of proteomics provides major opportunities to
elucidate disease mechanisms and identify new and glob-
ally useful vaccine candidates against microbial infections.
A comparative proteomic approach allows the selection of
vaccine candidates based on differential expression in viru-
lent versus non-virulent strains, invasive versus less invasive
conditions or colonizing versus invasive strains (Shaw et al.
2002).

For large-scale quantitative protein expression, ‘Shot-
gun proteomics’ or multidimensional protein identification
technology (MudPIT) were devised to identify the proteins
expressed in lower abundance which is not possible by 2-D
gel electrophoresis (Wu and Yates 2003). However, this
method was not found suitable for comparative analysis
unless Isotope-coded affinity tags (ICATs) were developed
for the detection of proteins expressed in abundance as well
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as at low levels (Gygi et al. 1999; Guina et al. 2003). A
further advantage of the ICAT method is that it is based
on post-isolation stable isotope labelling of proteins and is
therefore not limited to incompatibility of cells and tissues
with metabolic labelling. Because ICAT label binding is
limited to cysteine residue only, quantification of cysteine
deficient proteins (10-20% in case of bacteria) may not be
done. To overcome these troubles, cysteine independent
iTRAQ technique was introduced, which uses a set of four
isobaric tags comprised of an amine-specific (peptide N-ter-
minus and lysine residues) reactive group, a neutral linker
group (28-31 Da mass), and a reporter region (114—117 Da
mass) (Snelling et al. 2007). These labels can therefore be
used to simultaneously track up to four samples in a single
experiment (Choe et al. 2005). Since the tags have the same
complete mass, each peak detected in MS represents a single
peptide from the combined four samples. MS/MS of each
peptide releases the reporter allowing simultaneous quantita-
tion and identification of the peptide. Another method stable
isotope labelling with amino acids in cell culture (SILAC)
was designed for the quantification of proteins and has been
employed on many pathogens to identify vaccine candi-
dates (Ong et al. 2002; Kani 2017; Jang and Kim 2018).
This method is similar to those described above, except
that cells subjected to different biological conditions are
grown in culture in the presence of an essential amino acid
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with a stable isotopic nucleus (e.g., deuterium). Therefore,
one sample could be incubated with an unlabelled amino
acid and the test sample incubated with a deuterated form.
Because the amino acid is essential, the organism requires
it for survival, and through several replication cycles all that
particular amino acid will be present in the cells proteins in
either unlabelled (control) or deuterated (test) form, allowing
true quantitation (Ong et al. 2002).

Quantitative comparison of protein expression in a vari-
ety of normal, developmental and disease states to under-
stand highly regulated and critically timed cellular pro-
cesses occurring inside pathogenic bacteria can further be
characterized by monitoring the fate of post-translationally
modified (PTM) proteins that have a role in pathogenesis and
ultimately assist in identifying a suitable vaccine candidate
(Macek et al. 2019). The combination of proteomics and
serological analysis developed a new technology naming
serological proteome analysis (SERPA) that has been useful
in the identification of potential vaccine candidates (Klade
2002). These technologies provide valuable insights into the
molecular basis of microbial pathogenesis to identify poten-
tial vaccine candidates that otherwise might not have been
identified using more conventional methods.

Antibody-profiling technologies, such as protein microar-
rays have been used to estimate antibody responses to hun-
dreds of recombinant antigens and allow the screening of
high-density protein arrays for enzyme—substrate, DNA—pro-
tein, and protein-protein interactions (Bensi et al. 2012;
Emili and Cagney 2000). Furthermore, long-lasting humoral
responses against different pathogens can be analysed for
diagnostics, understanding pathogenic mechanisms and for
the development of vaccines against bacteria, protozoa and
viruses (Zhou et al. 2015; Kempsell et al. 2015; Felgner
et al. 2009; Vigil et al. 2011; Crompton et al. 2010; Duke-
Cohan et al. 2009; Fernandez et al. 2011). Despite several
advantages, some of the limitations with protein microarray
are (1) non-recognition of misfolded or multimeric proteins
(2) requirement of additional procedures for identification
of PTMs or non-protein antigens (3) requirement of expen-
sive fluorescent microarray scanner and sophisticated sta-
tistical methods (4) requirement of expensive robotics for
printing arrays. Antibody microarray was found to be the
most versatile multiplexed immunoassay technology that
was used for the exploratory detection and study of protein
abundance, function pathways, and potential vaccine /drug
targets. Applications of antibody microarray in basic biology
and clinical studies have been recently detailed out providing
insights into the current trends and future of protein analysis
(Chen et al. 2018).

Apart from application of omics-based tools and reverse
vaccinology, development of nucleic acid based vaccines
have gained attention in last three decades. It combines the
positive aspects of live-attenuated vaccines, viral vectors and

subunit vaccines. Nucleic acid based vaccines include viral
vectors, plasmid DNA (pDNA) and RNA. These vaccines
have their own advantages such as (1) induction of both B
and T-cell responses; (2) specificity; (3) high stability; (4)
economical; (5) no anti-vector immunity. Published research
reports show faster progress in nucleic acid based vaccine
development against viruses in comparison to bacterial
pathogens. Few reports came up showing potential of these
vaccines against bacterial pathogens (Maruggi et al. 2017;
Budachetri et al. 2020; Silveira et al. 2017).

Current status of vaccine research
against major pathogens

The catastrophic pandemic outbreak of the century by
Covid-19 killing 1000s and infected millions in the world
warrants global proactive and integrated research and vac-
cine development program. Other pathogens which causes,
AIDS, malaria, tuberculosis, meningitis, dengue are also the
major concerns for vaccine research. Most research groups
are focused on intra-species conserved surface proteins of
bacterial pathogens (GAS, Streptococcus pneumoniae, M.
tuberculosis), multi-valent vaccine (Dengue virus and GAS),
killed or attenuated whole organisms (Poliovirus, M. tuber-
culosis, Dengue virus and Helicobacter pylori), and capsu-
lar polysaccharide (GBS, Meningococcus and other Gram-
positive bacterial pathogens) for vaccine development. The
biggest challenge for vaccine development is against highly
variable and fast evolving human pathogen like coronavi-
ruses, HIV, Influenza, Ebola and Nipah viruses.

We have witnessed the efficiency of powerful genomics,
proteomics and bioinformatics approaches for identification
of vaccine candidates in last two decades. However, despite
the fast and efficient target identification, scientists are still
facing the slow and laborious validation steps, use of ani-
mal models for the testing of the vaccine candidates and
clinical trials. On the other hand, safety and affordability
are the two important factors that must be taken under con-
sideration for the development of modern vaccines. In our
opinion, new vaccines should have the highest effectiveness
in developed and developing countries. The successful use
of multi-genome analysis, screening and use of reverse vac-
cinology approach to develop a universal vaccine against
highly variable pathogen like GAS and GBS may open new
vistas for the potential development of universal vaccines for
other human pathogens.
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