symmetry MBPY

Article
Durrmeyer-Type Generalization of Parametric
Bernstein Operators

2,3,4,%

Arun Kajla! 9, Mohammad Mursaleen and Tuncer Acar 3

1 School of Basic Sciences, Faculty of Mathematics, Central University of Haryana, Haryana-123029, India;

arunkajla@cuh.ac.in

Department of Medical Research, China Medical University Hospital, China Medical University,
Taichung 40402, Taiwan

Department of Mathematics, Aligarh Muslim University, Aligarh 202002, India

Department of Computer Science and Information Engineering, Asia University, Taichung 41354, Taiwan
Department of Mathematics, Faculty of Science, Selcuk University, Selcuklu, Konya 42003, Turkey;
tuncer.acar@selcuk.edu.tr

Correspondence: mursaleen. mm@amu.ac.in; Tel.: +91-941-149-1600

check for

Received: 13 June 2020; Accepted: 6 July 2020; Published: 8 July 2020 updates

Abstract: In this paper, we present a Durrmeyer type generalization of parametric Bernstein operators.
Firstly, we study the approximation behaviour of these operators including a local and global
approximation results and the rate of approximation for the Lipschitz type space. The Voronovskaja
type asymptotic formula and the rate of convergence of functions with derivatives of bounded
variation are established. Finally, the theoretical results are demonstrated by using MAPLE software.
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1. Introduction

A first fundamental result in approximation theory was Weierstrass approximation theorem [1]
which forms the solid foundation of Approximation Theory. The proof of the theorem was quite
long and difficult. So there were several proofs given by different famous mathematicians. One of
them was given by Bernstein [2] which was easy and elegant, which also motivated the researchers
to construct operators to deal with the approximation problems in different settings. Here, we give
a Durrmeyer type generalization of parametric Bernstein operators. Let C(}) be the space of all real
valued continuous functions S on the interval j = [0,1]. For S € C(j), Chen et al. [3] introduced a new
family of generalized Bernstein operators depending upon a non-negative real parameter 0 < 6 <1,
which is given as follows:

m

T (S5x) = L pns(0)S (57) %€, M
W(S)ere _[(m=2 _ m—2 _ _ m _ s—1(1 _ \ym—s—1
Pins(x) = [( s )(1 0)x + (s—2>(1 0)(1—x)+ <S)0x(l x)} ¥ (1—x) ,

m>2, pgeg (x)=1—x, pgel) (x) = x. For § = 1, it reduces to original Bernstein operators.

Several types of such operators have been studied so far, for example, Kajla and Acar [4] gave
the integral variant of the operators (1) and studied the approximation properties of these operators.
Genuine Bernstein-Durrmeyer type operators were defined and studied in [5]. Abel and Heilmann [6]
studied the complete asymptotic expansion of the Bernstein-Durrmeyer operators. Cardenas-Morales
and Gupta [7] considered a two-parameter family of summation-integral type operators involving
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Pélya—-Eggenberger distribution. In 2015, Abel et al. [8] presented the Durrmeyer type modification of
the Stancu operators and obtained some approximation theorems. Agrawal et al. [9] defined Stancu
type Kantorovich modification of g-Bernstein-Schurer operators and studied some approximation
theorems on uniform convergence as well as A-statistical convergence. Ansari et al. in [10] proposed
Jakimovski-Leviatan—-Durrmeyer type operators based on Appell polynomials and obtained some
approximation results, e.g.,Voronovskaja type asymptotic formula, rate of convergence and weighted
approximation of these operators. Acar et al. [11] presented a general class of linear positive
operators and established Voronovskaya type theorems. In 2019, Mursaleen et al. [12] considered
Stancu-Jakimovski-Leviatan—-Durrmeyer type operators and studied simultaneous approximation
and A-statistical approximation properties of these operators.

Acu and Kajla [13] established 6-Bernstein operators depend on parameters p1,p2 € NU {0}
as follows:

—P1P2 02
0 0 +s
67(”231 p2 (S X) } : Pm P102:H (x) §:0 pf(?z?s(x)‘s (VmP1> . 2)
s=|

If p1 = p2 = 0, these operators reduces to the operators T,Sf).

For S € C(j), we introduce a Durrmeyer type modification of the operators (2) as follows:

) —P1p2
U ,P1,P2(8 x m + 1 Z pm plpz,y pz,s / Pm, H+SP1 ( )dt (3)

The aim of this paper is to derive approximation properties for the operators (3) by working on
Korovkin’s results [14]. We also compute the rate of convergence involving modulus of smoothness
and Lipschitz type function.

2. Auxiliary Results

In this section, we derive some auxiliary results which will be used in proving our main results of
subsequent sections. First, we determine moments and central moments for the operators (3).

Lemma 1. Let ¢;(t) = t,i=0,1,2---. For the operators ur(zf,zvl,pzr we have

(i) Usony oo (e0:0) = 1;

.. 0 mx +1
(ii) ur(n)?wz(elf'x) = m}
2 2 2
L (6) X2 (m*—m =24 p1pp — p7(p2 — 20 4 2) +26)
(i) U pa (2:) = (1 +3)(m +2)
x(2+4m—p1pz+p%(pz—29+2)—ze)+ 2 '
(m+3)(m +2) (m+3)(m+2)’
. X
(iv) U,(f,z,l,pz(eg,;x) = i m L) mL2) [m?’ —3m?* — 4m + p1p2(3m — 2) +2p3 (02 — 60 + 6)
—3mp3 (24 pp —20) —12(6 — 1) + 6m6}
x? 2 3 2
+ (n+ 2)(m 1 3)(m 1+ 2) [9m + 90102 — 3m — 3mp1 02 — 307 (6 4 p2 — 66) — 6p7(2 + p2 — 26)
+ 3mp? (24 p2 —260) +30(6 — 1) — 6m9}
x (18m —7p1pa + p3 (p2 — 60 +6) + 6pF(2+po —20) —18(0 —1)) 6 _
(m+44)(m+3)(m+2) (m+4)(m+3)(m+2)
(U) u’sggluﬂz (E’4}X) = (m +5)(m _'_43)6(7” +3)(m +2) 54m — m* — 6m> + m* — 60102 — 14mp,02 + SP%pZ plPZ

3pt03 — 6m2p1(—p2 + p1(2 + p2)) + 8mp3 (6 + p2 — 60) + 6pt02(1 — 20) + 6mp3 (2 + pp — 20) + 72(—1 +0) +
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7201 (=14 6) — 120305 (—1 4 6) + 120302 (—1 + 0) + 24p2 (=1 + 6)% — 60m0 + 12m? (1 + p3) 6 + 12010260

3

T 5 m+4)mL3)(m+2)

30f13

{161113 — 124m — 36m> — 8p1p2 + 54mp1py + 320302 — 60703 + 120305 —

60105 + 6m>01(—p2 + p1(2 + p2)) — 12mp3 (6 + p2 — 60) — 120%05(1 — 26) — 42mp3(2 + p — 26) — 264(—1 +
0) — 12003(—1 + 6) — 144p3(—1 + 0) + 24p3p2(—1 + 0) — 1203p>(—1 + 0) — 48p2(—1 + 0)? + 156mf —
2

X
(m+ 5)(m + 4)(m + 3)(m +2)

12m2 (14 p2) 6 — 24p1020 — 12‘0?‘029} +

24m + 72m? + 60p102 — 40mp1p0 —

35p1p2 — 420702 — p1p2 + 30103 — 60303 + 3p1p3 + 4mp7 (6 + p2 — 66) + 6pip2(1 — 20) + 36mp(2 + p2 — 20) +
336(—1 + 0) + 70p3(—1 + 0) + 18003 (—1 + 0) + 86pF(—1 + 0) — 120%p>(—1 + ) + 24p?(—1 + 0)> — 96m6 +

1201020 + 12p‘;’p29}

L X (96m — 460102 + 35p%p2 + 10p3p2 + pFp2 — 144(—1+6) — 7003 (—1 +6) — 6003 (—1 +0) — 14p(—1+96))

(m+5)(m+4)(m+3)(m+2)
24

t eFmBrm T mGEm)’

Let @,Sf}gffpz = U,Szz,l,pz ((t —x)™;x),m = 1,2,4 be the central moments of U,(,fl,lrpz.

Lemma 2. For the operators U,S?, Zjl,pz, we get

, 1-2
(i) O, (x) = ( ) ;

24m

(i) @02 (x) = 2 x(2m — p1(p2 — p1(2+ p2 — 20)) —2(2+6))
MP1P2 (2+m)(3+m) (24+m)(3+m)
n 22(=2m + p1(p2 — p1(2+p2 — 26)) +2(2+96))
(24 m)(3+ m) '

Lemma 3. For m € N, we have

(6)
Wy, 7, x(1 — x)
Uit g (1 = x)%53) < =P s = 8 (), ¥x €

where Wélg,)m is a positive constant depending on p1, p2 and 6.

Proof. This lemma is established by direct computation and the details are missing. [

Remark 1. For the operators U,(,f, 271472' we get

. (0)1
Wlll—rgo m ®m/P1/P2

. 0),2
n%lggom ®£n,)p1,p2(x) =2x(1—x),

. 0)4
lim Ot (x) = 122%(1 — x)2.

(x) = (1-2x),

Lemma 4. For S € C(j), we have
0
U0 (S30)]) < (S]]

Proof. From Lemma 1 and Equation (3), we obtain

ul® i< noy e v (0 ' 1)[S(t)|dt
| m,p1,p2H < (m+1) Z‘b pmfplpz,y(x) Z;)sz,s(x) 0 P s (D) S ()]
H= S=|

< |ISIIUE), o) (e0;x) = || S]-
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O

Theorem 1. Suppose that S € C(j). Show that ngréo Uf,fz,l,p2(8;x) = S(x), uniformly in j.

Proof. Since U,(,ﬁz,lm(l;x) =1, U,Szz,l,pz(t;x) — X, U,(,fiz,lfpz(tz; x) — x* as m — oo, uniformly in ;.
By Korovkin’s results, it follows that U,Sf 271472 (S; x) converges to S(x) uniformly on ;. [

3. Voronovskaja Type Theorems

Here, we establish the Voronovskaja, Griiss-Voronovskaja type theorems and related results.

Theorem 2. Suppose that S € C(}). If S’, S” exists at a point x € j then

m—o0

lim m (uﬁigl,pz (S;x) — S(x)) = (1—2%)8"(x) + x(1—x)S"(x), )
Further, if 8" € C(j) then (4) holds uniformly in j.

Proof. Applying the application of Taylor’s theorem, we have

§() = 8(x) + (t = 0)8'(x) + 5t~ 28" (x) + pa (1)t~ 22, 5)

where p1(t,x) — 0 as t — x and is a continuous function on j. Applying U,(,f, 271472 to (5), we get

Ul 0 (S5) = S(x) = 8 (x) Uy (£ = x);2) + s%>mmw—m>+mﬁmmwm—Ww

lim m( ul) o, (S;x) — S(x)) = (1-20)8"(x) +x(1 = x)8"(x) + lim mULL), o, (o1(t,%) (= )% ).

m—oo

Since p1(t,x) — 0 ast — x, for a given € > 0, there exists > 0 such that |p1(¢,x)| < € whenever

|t — x| < 6. For |t — x| > &, we have |p;(t,x)| < M( x)? , for some M > 0. Let xs(t) denote the
characteristic function of the interval (x — J,x + ). In V1ew of Remark 1, we have

Ui o (o1 (8, 2) (£ = 2% 2)] < Ui g (I (8 0)] (£ = )26 (8); %) + Uiy, o (lp1 (£, 0)] (£ = 1) (1 = x5(£)); %)
< e U (= 0%0) + U (- 1))
= co(t)+o(L).
m m
which implies that n%gn 11111,(n€,)p1,p2 (o1(t,x)(t — x)%,x) = 0, due to the arbitrariness of ¢ > 0.

This complete the first half of the theorem.

To show the uniformity postulation, by the definition of uniformly continuity of S in j, the § must
be independent of x and all the other estimates hold uniformly inx € j. [

In [15], Acar et al. obtained a Griiss type approximation result and a Griiss-Voronovskaja-type
result for linear and positive operators. Many authors have established in this direction so that we
refer the authors to [16-18] and references therein.

The next result is the Griiss—Voronovskaja type theorem for U,(ne, )pl,pz.

Theorem 3. Let S, € C%(j) . Then, for each x € |,

lim m {ufn o (SR);x) = U)o (S;x) U ) (h;x)} — S/ () (x)2x(1 — x).

m—>00
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Proof. The following relation holds

1
Usipyy (S7:3) = Uiy (852) Uiy g (1) = Uiy g (S3 %) =S (x)(x) = (SB) (0)O}11 0, (x) = 5 (SH) (x)OL1Lp (3)

—h(x ){umm,z(s x) —S(x) - 8'(x)O Wfplpz( )— ES"( )@5”9:7%”2( )}

1
— U 0 (S5 x>{ Usipy gy (15:0) = 1(x) = 1 (0)O}11 0, () = 51" (X)OL L, (x )}

T 3O 0 (x) { SO (x) 428" (O (x) — W' (e) U,y (55) b+ OU4L gy (1) { SN () — W () US4 (83}

Now, by using Theorem 1, Theorem 2 and Remark 1, we get

lim m{uf(fl)'?l Pz(Sh ) Uf('ﬁl)'Jl,Pz(S;x)uigfrzlrpz(h;x)}

m—o0

. 1 ,
= lim mS' (W (x)O T, (x) + Tim Sl (x) {S(x) = UfL), s (S32) } O17 ()
+ lim mh(x) {S(x) —U,S%LPZ(S;x)}(@,gf)éllpz(x) S (x)H (x)2x(1 — x).

O

Lipschitz-type space with two parameters a1 > 0,a > 0 is defined in [19] as below:

o
L@%M“”:{Secm:ww—stSM £ = x| Vwepxemu},

(t+ a1x% + apx)2

where0 < o < 1.

Theorem 4. Suppose that S € sz(al’“Z) (o). Prove that

(®) 02, )"
(Ul 2(S32) = S(x)| < M v samed INRALEI ORI

Proof. Using the application of Holder’s inequality and Lemma 2, we may write

m—p102

0
ur(n,le,pz(S;x) _S(x)‘ < m+1 Z pm 01025, y przs / ‘S ‘pmlﬁrﬁpl(t)dt
—P1P2 g
< (m+1) Z Pirorpan () X%)p;@zs </ [S(E) = SN Py (t)dt)
u=0 s=i
m—p102 g
< { (m+1) Z pm 0102, ;4 prz< / [S(t) x)|° Pm}l+sp1(t)dt}
=0
T2 g 2. (o 1 5e
(1) Y P ) L P 5) [ P (D
u=0 5=0 i
—p1p2 ) g
= ( (m+1) Z P proan( Zf’pzs / IS(8) X)|7 pmptspr (¢ )df>
p=0
m—p102 P2 ol 2 5
) (t—x)
< . N
< M ( m+1) ;; pm 01021 )sg(:)ppz,b (x)/o (t+ 122 + apx) Pm,pu+spq (t)dt
< M <(m+1)mzpfp2 (©) pz / (f—x)2 (t)dt) i
= g Pri—pypan pPz s Pim,p+s01
(a1x2 4+ apx) 2 §4=0 =0
M (0) 2..1%
= ———————Uppp((t—x)%x)2
(a1x2 + apx) 2 P
M )2

= O ()5
(a1x2 )t m,01,02
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Theorem 5. For S € C!(j) and x € j, we have

0
u’ST)PlPZSX ’—‘

S'(x)] +2y/ @l (%) @ (8’, @;Sf)p'f,pzm) : (6)
Proof. Let S € C'(j). Forany t, x € j, we have
S(t) = S(x) = S'(x)(t—x) + /xt (S'(u) — S'(x)) du.
Using U\Y), ,(+;x) on both sides of the above relation, we have
ULE), oa(S(8) = S(x); g, x) = 8 (UL, (¢ = :) + U, ( [ (W —S’(x))du;x>

Applying |S(t) — S(x)| < w(S,9) (‘t;—x‘ + 1) ,0 >0, we have

<o) (L5 +1t-x1),

/xt (8" (u) — 8'(x)) du

it follows that
1
Uit 02 (S3%) = S@)| < IS'()] (Uit~ x>|+w<s’,a>{gufn",zl,m((tfx) >+u£n>plpz<|fx\;x>}.

Applying Cauchy-Schwarz inequality, we get

Ul (Si%) =S| < 1@ U, pu (¢ = 23]

+w(S',9) { \/Umplpz ((t—=x)%x +1}\/Ump1pz((t*x) x).

Now, taking § = @,S?j;f,pz (x), weget(6). O

4. Local Approximation

In this section, we study the local approximation property for our operators with the help of
K-functional.
The K-functional is given by:

K(S,0) =inf{||S — 1|| + 6| ||| : h € W?} (6 > 0),

where W2 = {i : #"" € C(j)} and uniform norm on C(;) is denoted by ||.||. By [20] there will be a
positive constant M > 0 such that

Ka(S,8) < Mwn(S,V3), @)
where the second order modulus of continuity for S € C(j) is defined as

wy(S,Vé) = sup sup |S(x+2h)—28(x+h)+S(x)|
0<h<+/8 X,x+2he]
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We define the usual modulus of continuity for S € C(;) as

w(S,0)= sup sup |S(x+1)—S(x)l.

0<h<d x,x+he;

Theorem 6. For the operators U,(,ﬁ )pwz' there exists a constant M > 0 such that

1—2x
m-+ 2

|ulf) o, (8;x) = S(x) |[< Ma, <s, (m+2)"V2 /60 (x)> tw (s,

).

where S € C(}), 0 €, (5,(119},”2( ) = ¢?(x) + (msz) and x € j.

Proof. We define the auxiliary operators as follows:

—(0
ufn)m (S;x) = U (Six)+S(x) -8 (

mx +1
m+2 )

Then, we can easily check that

U(9)

oy () =1 and Uy o (5%) = x.

m,p1,02

By the application of Taylor’s theorem and taking t € jand i € W?, we get
t
h(t) = h(x) + (t— x)i (x) +/ (f — w)R" (u)du.
X

776)

The operator Uy, ,,

is applied in the above equation on both sides, we obtain
0 t
T (f5x) = h(x) + T, (/ (- u)h”(u)du)

t
— (x) + USed o ( / (t—u)h”(u)du,x) - / e (’fnxj; )h”(u)du.

Hence
("L?) mx +1
. " mt "
Tl (153~ 1(2) | < ) pz(]/ =l ) | [
mx +1
{ ’”Plpz ;x)+(m+2 *x) }Hh//||
1—2x\?
:{ ((t—x) x)+(m+2> }|\h”||. (8)

From Lemma 3, we have

2
) 2. 1-—2x < 2 ) 1—-2x
Unn,p,,0, (£ — )% ) + <m+2> > (m+2)‘5mplpz( )+ m2

2 ) 1
— (m+2)5m9192( )+ (m+2)2

3
< méﬁﬁl,pz (x). )
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Thus, by (8) we have

—(0 3 )
[ Wi 15) = H0) 1< (s S (1, (10)

where x € ;. Furthermore, by Lemma 4, we have

T (s;x) | <3)1S]), (11)

m,01,02

forallS € C(j) and x € ;.

Now, for S € C(j) and = € W2, using (10) and (11) we obtain that

(0 mx +1
Ul ($5) = S(2) | < [T s (S0) = S0+ 8 ("5EL) = (o)

—(0 —(6
< [T, 5o (S — )| + [T, o (3 x) — ()| + [(x) — S(x)]
mx +1
+‘S<m+2>—8(x)
3 0 1—2x
<4||S -1l + (m+2)5,(,1,27w2(x)||h"|| +w (s, i )

Using the property of infimum on the right hand side over all # € W2, we have

1
| Ui pr (S5%) — S(x) | < 4K, <s, Ma,&f,)pl,pz(x)> tw <3,

1—2x
m—+ 2

).

1—2x
m-+2

Now by examining the relation (7), we get

| U?S%lfpz (S;x) = S(x) [€ Mws <8/ (m +2)_1/2 55’%1@2 (x)> +w (S/

).

5. Global Approximation

The following result provides the global approximation using the modulus of continuity of
Ditzian-Totik and the related K-functional.

Suppose that S € C(j) and ¢(x) is defined as \/x(1 — x),x € j. The second order modulus of
continuity which is given by Ditzian-Totik

wl(S,V8) = sup  sup |S(x+he(x))—2S(x)+S(x—he(x)) ],
0<h<\/3 xthe(x)€)

and related K-functional is defined as,
Ry p(x)(S,6) = inf{||S — 1| + 6] |91 || + &*||[1"|| : . € W (@)}, (6 > 0),

where W2(¢) = {h € C(j) : i € ACjoe), 9?1 € C(j)} and i’ € ACj,cj means that i is derivable and
1’ is absolutely continuous on every closed interval [a,b] C (0,1). By ([21],Theorem 1.3.1) we can say
that 3 M > 0, such that

Ry o) (S,8) < Mw} (S, V). (12)
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The first order Ditzian-Totik modulus is defined as

S <x+ ZtP(x)) -8 (X_Z (x))

where ¢ : } — R is an admissible step-weight function.

wy(S,6) = sup  sup
INEES O

Now we state our next main theorem.

Theorem 7. Let S € C(j) and 0 < 0 < 1. Then, for x € },
1Ufip, 08 = SI| < ML (S, (m+2)72) + @ (8, (m+2) ") +w (S (m+2)7"),

1-=2 0,1/2
where ¢?(x) = x(1 — x) and P(x) = { 2x —316 i E {1/2{1}

Proof. The auxiliary operators is considered as

—(6
U (Six) = U po(Six) +S(x) - S (

mx +1
m+ 2

Let i € W2(¢) then by expanding /1 using Taylor’s theorem and as given in the proof of Theorem 6, we get

mx+1

t m mx+1
T, 053) = 000 1< Ut (| [ 16— 01 ) [ o @t )
X x m—l—
Setting u = Bx + (1 — B)t, B € J, and also applying the concavity of 5,(,?, 2)1472' we have

S ) 0 (Bx+ (1= B)) 8 (0B + 8 (DA —B) o) (x)

Thus, using (14) in the inequality (13)

= ’ may |z
- m+
| Wiy g (5) = H(x) | < Uiy, (\/ di) a1+ | [ | 1185, o

mm 02 (1) ¥ Om,p1,0 (1)

1 1-2x)?
< || (=70 + (3 ) | (15)
m,p1,02
Now, using the inequality (9), we get
3
| umm pz(h;x) - h(x) | < (m +2) Hém,pupzh//H

3 D2/ 1 "
< - h h .
S ) (||qo 1+ gz ||)

Applying (11) and (15), we have for S € C(),

| U 0 (S5%) = S(x) | <| Ui, (S =T, x) | + | Ubpy, oo (B52) = hi(x) | + | h(x) — S(x) |
mx +1
+‘S(m+2)75(x)’
3 mx +1
< S =1+ g 1911+ g 4|5 (B ) = St
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For all i € W?(¢) using the property of infimum on the right hand side, we have

mx +1

U)o (Six) — S(x) |< 4Kay (s, ml+2> + ‘s ( ikt > _ S, (16)
Also,
’S (”;"jzl) — S| = 's (x+ 1";3) ~S(x)
< 's (x—l— (}ﬂf;)) s (x— (1”;2;)) ’ + ‘s (x— (;12;“)) —S(x)'
gw_l;(s,(erz)*l) +w(8;(m+2)*1>. (17)

Hence, combining (12), (16) and (17), the desired relation is immediate. [

6. Rate of Approximation

In this section, we study the rate of convergence of functions with derivatives of bounded
variation.

The class of all absolutely continuous functions S is denoted by DBV/,), defined and having a
derivative S’ on j, analogous to a bounded variation function on ;.

The representation of functions § € DBV, is

S(x) = /()xh(t)dt+8(0)

where 1 is a bounded variation function on j.

(6)

The operators Uy, o, o, (S; x) also admit the integral representation
1
0 0
Uiop e (S:%) = [ N (5, DS (01t (18)

where the kernel /\/',,(fle,p2 (x,t) is given by

m—p102
0
N11(1,2)1,p2 (x, t) = (m + 1 Z pm 0102, y Z ppz S Pm Htsp1 (t)

Lemma 5. For a fixed x € (0,1) and sufficiently large m, we have

(6)
. y W0, x(1—x
(i) A,Sf},l,pz(x,y) = /0 N"(Bf)h,f?z(x’ t)dt < (m‘:l_pzz) (( — y)g ,0<y<x,
. 0 L Worp x(1— x)
(i) 1— /\5,13014,2 (x,z) = /z NTSZ,()Jl,Pz (x,t)dt < (m—il—zz) 2’ ,x<z<l,

© ...
where Wy, 1, is given in Lemma 3.

Proof. (i) From Lemma 3, we get

Y 2
Y (x—t
Mibos(5) = [ Nl (e, )t < /O (x_y) Nt o (%, £)dt
0

(0)
() a2 v W x(1-x)
- um,Pl;PZ((t x) ,x)(x y) S (m+2) (x_y)Z'

The (ii) can be proved in the same way hence the details are skipped. [
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Theorem 8. Suppose that S € DBV (}). Then for every x € (0,1) and sufficiently large m, we have

(1-20) |S'(x+) + S (x=)| . | Whipa¥(1 =) |S'(x+) — §'(x—))|

|U ,01,02 (S;x) —S()]

S CEY) 2 (m +2) 2
(6) x
el DF Vo
R o o (Sx)
(ﬂ’l +2 s=1 x— (x/s) ﬂx—(x/ﬁ)
@) [y x+(1-x)/5) (1 x) O

"”’2 2 v (8 + Jﬁ Vo (S,

where \/*(SL) denotes the total variation of S, on [c,d] and S.. is defined by

S'(t)—8'(x—), 0<t<x
SiL(t) = 0, t=x (19)
S'(t) =8 (x+) x<t<l

Proof. This theorem can be proved in the same way as in ([4], Theorem 7). Hence, the proof of this
theorem is skipped. O

7. Numerical Examples

In the following examples, we demonstrate the theoretical results by graphs.

Example 1. Let m = 10,p1 = p2 = 1l and § = 0.5,0.6,0.7,0.8,1.0. The convergence of the operators

(05) /o, (0.6) (0.7) 08) / o. (10) ; o. ) _ .2 XX—35 .
u10,1,1<5'x) Uygq 1(S;x), U1011(‘S x), Ulo,l,l(S,x) and u10,1,1(8' x) to the function S(x) = x“ex¥5 is
illustrated in Figure 1.

0.3
0.2

0.1

-0.14

-0.21

_0.3,

-0.41

_0.5,

— 77(0.5) _/06) _____ 7407
Uio 1.1 S(x) Uio.1.1 Ui 1.1
08) .10
Uio 11 Ui

Figure 1. Approximation Process.

Example 2. Let m = 50,01 = pp = 1and 6 = 0.5,0.6,0.7,0.8,1.0. The convergence of the operators
U9 (s.x), U (S:x), UL (S; %), U (s 4 U0 (s " on S(x) = x3erT i

50.11(S5 %), Usg 11 (S5 x), Usyy 1 (S5 x), Usy'y 1 (S x) and Ugy'y (S x) to the function S(x) = x’ex+T0 is
illustrated in Figure 2.



Symmetry 2020, 12, 1141 12 of 13

0.15

0.10

0.051

-0.05

— 7/05) _— 5406) ____ ;7/0.7) (0.8)
US(), 1,1 USO, 1,1 USO, 1,1 USO, 1,1
i

Figure 2. Approximation Process.
8. Conclusions

We have introduced generalized Bernstein-Durrmeyer type operators depending on non-negative
integers. We developed many approximation properties such as local and global approximation,
the rate of approximation for the Lipschitz type space, Voronovskaja type asymptotic formula and the
rate of convergence of functions with derivatives of bounded variation. The constructed operators
have better flexibility and rate of convergence which are depending on the selection of the p1, o and 6.
Graphical representations of our operators for different selections of p1, p» and 6 are also given.
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