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Abstract. In the present paper, a numerical method is proposed for the numeri-
cal solution of Rosenau-KdV equation with appropriate initial and boundary condi-
tions by using collocation method with septic B-spline functions on the uniform mesh
points. The method is shown to be unconditionally stable using von-Neumann tech-
nique. To check accuracy of the error norms L2 and L∞ are computed. Interaction
of two and three solitary waves are used to discuss the effect of the behavior of the
solitary waves during the interaction. Furthermore, evolution of solitons is illustrated
by undular bore initial condition. These results show that the technique introduced
here is suitable to investigate behaviors of shallow water waves.
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1 Introduction

In engineering and real world scene, a wave is a disturbance that travels through
space and time. Different types of waves occur in nature having different kind
of applications. Dynamics of shallow water waves that are observed along
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lake shores and beaches have been an active research area for the past few
decades [1, 2, 8, 9, 22]. Specifically, the Korteweg-de Vries (KdV) equation

Ut + aUUx + bUxxx = 0

is a generic model for the study of nonlinear shallow water waves [10]. But, it
has a number of shortcomings as it describes a unidirectional propagation of
waves; thus wave-wave, wave-wall interactions cannot be treated by the KdV
equation. Secondly, because it was derived under the assumption of weak an-
harmonicity, both the shape and the behavior of high-amplitude waves cannot
be predicted well by the KdV. Keeping in view these shortcomings, the Rosenau
equation

Ut + λUx + cUxxxxt + d
(
U2
)
x

= 0

was derived [17]. In addition to Rosenau equation, for the consideration of the
nonlinear wave, we further add the viscous term Uxxx. The resulting equation
is then called Rosenau-KdV equation

Ut + aUx + bUxxx + cUxxxxt + d
(
U2
)
x

= 0. (1.1)

A detailed information about the existence of Rosenau-KdV equation can be
collected from [16,17,25]. Study of these models has reported quite interesting
results, which are available in literature [3, 12,14,15,19].

Recently, many researchers have used different schemes such as homotopy per-
turbation method, reductive perturbation technique, tanh method and sine-
cosine method, the tanh-coth method, first integral method [5] to study the
solution profile of Rosenau-KdV equation. The generalized Rosenau-KdV equa-
tion is studied by using the sech-ansatze method [6]. Further, the topological
1-soliton solution of the generalized Rosenau-KdV equation is obtained [18].
Some finite difference schemes for the solution of Rosenau-KdV equation and
the generalized Rosenau-KdV equation can be seen in [7,24]. The conservation
laws of the Rosenau-KdV-RLW equation are computed with power law nonlin-
earity by the aid of multiplier approach in Lie symmetry analysis [13, 23]. A
numerical approach with a new formulation for a nonlinear wave proposed by
coupling the Rosenau-KdV equation and the Rosenau-RLW equation is pre-
sented.

This work is dedicated to the numerical simulations of the Rosenau-KdV equa-
tion so that it can be analyzed in detail. The content of this paper is organized
as follows. In the next section, we consider the governing Rosenau-KdV equa-
tion and introduce septic B-spline basis functions. Section 3 describes the
solvability of collocation finite element method in detail. In Section 4 and 5,
stability of the proposed method with convergence rate is discussed. The results
on validation of proposed method of solution are presented in Section 6 which
includes study of motion of single solitary wave, interaction of two solitary
waves, interaction of three solitary waves and evolution of solitons. We make a
detailed comparison with available data in order to confirm and illustrate our
theoretical analysis. Finally, we finish our paper by concluding remarks in the
last section.
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2 The governing equation and septic B-Spline basis
functions

In this section, Rosenau-KdV equation will be considered with the physical
boundary conditions U → 0 and x → ±∞, where a, b, c and d are arbitrary
parameters and the subscripts x and t denote the spatial and temporal differ-
entiations, respectively.

In order to be able to apply the numerical method, solution region of the
problem is restrained over an interval a ≤ x ≤ b. Space interval [a, b] is sep-
arated into uniformly sized finite elements of length h by the knots xm like
that a = x0 < x1 < ... < xN = b. Lengths of these finite elements are
h = (b− a)/N = (xm+1 − xm) for m = 1, 2, ..., N .

The equation (1.1) will be solved by choosing

U(a, t) = 0, U(b, t) = 0, Ux(a, t) = 0,

Ux(b, t) = 0, Uxx(a, t) = 0, Uxx(b, t) = 0, t > 0

homogeneous boundary conditions and

U(x, 0) = f(x) , a ≤ x ≤ b,

the initial condition.

The septic B-spline approximation functions φm(x) are defined as

φm(x)=
1

h7



(x− xm−4)7, [xm−4, xm−3],

(x− xm−4)7 − 8(x− xm−3)7, [xm−3, xm−2],

(x−xm−4)7−8(x−xm−3)7+28(x−xm−2)7, [xm−2, xm−1],

(x− xm−4)7 − 8(x− xm−3)7 + 28(x− xm−2)7

−56(x− xm−1)7, [xm−1, xm],

(xm+4 − x)7 − 8(xm+3 − x)7 + 28(xm+2 − x)7

−56(xm+1 − x)7, [xm, xm+1],

(xm+4−x)7−8(xm+3−x)7+28(xm+2−x)7, [xm+1, xm+2],

(xm+4 − x)7 − 8(xm+3 − x)7, [xm+2, xm+3],

(xm+4 − x)7, [xm+3, xm+4],

0, elsewhere,

(2.1)
at the knots xm over the interval [a, b] for m = −3 (1)N + 3 [11]. All spline
functions apart from φm−3(x), φm−2(x), φm−1(x), φm(x), φm+1(x), φm+2(x),
φm+3(x) are zero over the element [xm, xm+1]. Each septic B-spline covers
eight elements so that each element [xm, xm+1] is covered by eight splines [11].
The values of φm(x) and its derivatives may be tabulated as in Table 1.

Math. Model. Anal., 22(3):373–388, 2017.
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Table 1. Septic B-spline function and its derivatives at nodes xm.

x xm−4 xm−3 xm−2 xm−1 xm xm+1 xm+2 xm+3 xm+4

φm 0 1 120 1191 2416 1191 120 1 0
hφ′m 0 −7 −392 −1715 0 1715 392 7 0
h2φ′′m 0 42 1008 630 −3360 630 1008 42 0
h3φ′′′m 0 −210 −1680 3990 0 −3990 1680 210 0

h4φivm 0 840 0 −7560 13440 −7560 0 840 0
h5φvm 0 −2520 10080 −12600 0 12600 −10080 2520 0

h6φvim 0 5040 −30240 75600 −100800 75600 −30240 5040 0

The set of these approximation functions {φ−3(x), φ−2(x), φ−1 (x), . . ., φN+1 (x),
φN+2(x), φN+3(x)} forms a basis for approximate solution which will be de-
fined over [a, b]. A global approximation UN (x, t) is stated in terms of the
septic B-spline approximation functions as

UN (x, t) =

N+3∑
i=−3

φi(x)δi(t), (2.2)

where δi(t) are time dependent parameters determined from the boundary and
collocation conditions.

Substituting trial function (2.1) into equation (2.2), the nodal values of U , U ′,
U ′′, U ′′′, U iv, Uv and Uvi are obtained in terms of the element parameters δm
by

Um = δm−3+120δm−2+1191δm−1+2416δm + 1191δm+1 + 120δm+2 + δm+3,

U ′m =
7

h
(−δm−3 − 56δm−2 − 245δm−1 + 245δm+1 + 56δm+2 + δm+3),

U ′′m =
42

h2
(δm−3 + 24δm−2 + 15δm−1 − 80δm + 15δm+1 + 24δm+2 + δm+3),

U ′′′m =
210

h3
(−δm−3 − 8δm−2 + 19δm−1 − 19δm+1 + 8δm+2 + δm+3), (2.3)

U ivm =
840

h4
(δm−3 − 9δm−1 + 16δm − 9δm+1 + δm+3),

Uvm =
2520

h5
(−δm−3 + 4δm−2 − 5δm−1 + 5δm+1 − 4δm+2 + δm+3),

Uvim=
5040

h6
(δm−3−6δm−2+15δm−1 − 20δm + 15δm+1 − 6δm+2 + δm+3).

3 Collocation finite element method

Now, we identify the collocation points with the knots and using equation
(2.3) to evaluate Um, its necessary space derivatives and substitute into equa-



Numerical Study of Rosenau-KdV Equation 377

tion (1.1) to obtain the set of the coupled ordinary differential equations

δ̇m−3 + 120δ̇m−2 + 1191δ̇m−1 + 2416δ̇m + 1191δ̇m+1 + 120δ̇m+2 + δ̇m+3

+
7a

h
(−δm−3 − 56δm−2 − 245δm−1 + 245δm+1 + 56δm+2 + δm+3)

+
210b

h3
(−δm−3 − 8δm−2 + 19δm−1 − 19δm+1 + 8δm+2 + δm+3)

+
840c

h4
(δ̇m−3 − 9δ̇m−1 + 16δ̇m − 9δ̇m+1 + δ̇m+3)

+
7dZm
h

(−δm−3 − 56δm−2 − 245δm−1 + 245δm+1 + 56δm+2 + δm+3) = 0,

(3.1)

where . denotes derivative with respect to time. For the linearization technique,
we assume that the quantity U in the non-linear term UUx in equation (1.1) is
locally constant. In this case, the term U is taken as

Zm = δm−3+120δm−2 + 1191δm−1 + 2416δm+1191δm+1+120δm+2 + δm+3.

If time parameters δi’s and its time derivatives δ̇i’s in equation (3.1) are dis-
cretized by the Crank-Nicolson formula and usual finite difference approxima-
tion, respectively,

δi =
δn+1
i + δni

2
, δ̇i =

δn+1
i − δni
∆t

,

a recurrence relationship between two time levels n and n + 1 is obtained in
terms of two unknown parameters δn+1

i , δni for i = m − 3, m − 2, ..., m + 2,
m+ 3:

γ1δ
n+1
m−3 + γ2δ

n+1
m−2 + γ3δ

n+1
m−1 + γ4δ

n+1
m + γ5δ

n+1
m+1 + γ6δ

n+1
m+2 + γ7δ

n+1
m+3

= γ7δ
n
m−3+γ6δ

n
m−2+γ5δ

n
m−1 + γ4δ

n
m + γ3δ

n
m+1 + γ2δ

n
m+2 + γ1δ

n
m+3, (3.2)

where

γ1 = [1− E(a+ dZm)−M +K],

γ2 = [120− 56E(a+ dZm)− 8M ],

γ3 = [1191− 245E(a+ dZm) + 19M − 9K],

γ4 = [2416 + 16K],

γ5 = [1191 + 245E(a+ dZm)− 19M − 9K],

γ6 = [120 + 56E(a+ dZm) + 8M ],

γ7 = [1 + E(a+ dZm) +M +K],

m = 0, 1, . . . , N, E =
7

2h
∆t, M =

105b

h3
∆t, K =

840c

h4
∆t.

The system (3.2) consists of (N + 1) linear equations including (N + 7) un-
known parameters (δ−3, δ−2, δ−1, . . ., δN+1, δN+2, δN+3)T . To obtain a unique
solution for this system, we need six additional constraints. These are obtained
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from the boundary conditions and can be used to eliminate δ−3, δ−2, δ−1 and
δN+1, δN+2, δN+3 from the system (3.2) which then becomes a matrix equation
for the N + 1 unknowns d = (δ0, δ1, . . . , δN )T of the form

Adn+1 = Bdn.

The matrices A and B are septa-diagonal (N + 1) × (N + 1) matrices and
this matrix equation can be easily solved. Two or three inner iterations are
applied to the term δn∗ = δn+ 1

2 (δn−δn−1) at each time step to cope with the
non-linearity caused by Zm. Before the commencement of the solution process,
initial parameters d0 must be determined by using the initial condition and the
following derivatives at the boundaries:

UN (x, 0) = U(xm, 0), m = 0, 1, 2, ..., N,

(UN )x(a, 0) = 0, (UN )x(b, 0) = 0,

(UN )xx(a, 0) = 0, (UN )xx(b, 0) = 0,

(UN )xxx(a, 0) = 0, (UN )xxx(b, 0) = 0.

So we have the following matrix form for the initial vector d0 :

Wd0 = C,

where W is the matrix, d0 = (δ0, δ1, δ2, ..., δN−2, δN−1, δN )T and

C = [U(x0, 0), U(x1, 0), ..., U(xN−1, 0), U(xN , 0)]T .

4 Stability analysis

The stability analysis is based on the von Neumann theory. The growth factor
ξ of the error in a typical mode of amplitude

δnm = ξneimkh, (4.1)

where k is the mode number and h the element size, is determined from a
linearization of the numerical scheme. Substituting the Fourier mode (4.1)
into (3.2) gives the following equality

γ1ξ
n+1ei(m−3)kh+γ2ξ

n+1ei(m−2)kh+γ3ξ
n+1ei(m−1)kh+γ4ξ

n+1eimkh

+ γ5ξ
n+1ei(m+1)kh + γ6ξ

n+1ei(m+2)kh + γ7ξ
n+1ei(m+3)kh

= γ7ξ
nei(m−3)kh + γ6ξ

nei(m−2)kh + γ5ξ
nei(m−1)kh + γ4ξ

neimkh

+ γ3ξ
nei(m+1)kh + γ2ξ

nei(m+2)kh + γ1ξ
nei(m+3)kh. (4.2)

Now, if Euler’s formula eikh = cos (kh)+ i sin (kh) is used in equation (4.2) and
this equation is simplified, we get the following growth factor:

ξ = (ω − iω̄)/(ω + iω̄),
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in which

ω = (2416+16µ)+(2382−18µ) cos(kh)+240 cos(2kh)+2(1+µ) cos(3kh),

ω̄ = 2(β − λ) sin(kh) + (112β + 16λ) sin(2kh) + (490β − 38λ) sin(3kh),

where

β = E(a+ dZm), λ = M, µ = K, m = 0, 1, . . . , N − 1.

The modulus of |ξ| is 1, therefore the linearized scheme is unconditionally
stable.

5 Error analysis

Splines and polynomials play a very important role in numerical approximations
and mathematical analysis [20, 21]. A detailed analysis about the polynomial
approximation and least squares piecewise polynomials approximations can be
found in [4, 20, 21]. In this work, we use a higher order (septic) B-spline col-
location scheme for the spatial approximation of the Rosenau-KdV equation.
Now the main importance of using collocation scheme is that it gives super-
convergence pointwise. Compared to the Galerkin inner product approach, the
collocation approach does not require an extra integral to evaluate. So this
approach is simpler and efficient to compute solutions.

Let Hr(Ω) be the space of r times differentiable functions and ‖.‖r be the stan-
dard Hr(Ω) norm. Let vh be an approximation to a function v(x) ∈ Hr(Ω)
in Ω. Let h be the distance between the grids and Ω = ∪iΩi, where Ωi =
[xi, xi+1], xi+1 = xi + h. We observe [20,21] that

‖v(x)− vh(x)‖ ≤ C∆xk+1‖v‖k+1, 1 ≤ k < r

and vh stands for interpolation by piecewise-polynomials of degree r (consi-
dering Ω = ∪iΩi). This error is preserved by the Galerkin finite element
approximation as well [21]. It can be easily observed [4] that if wh is a suitable
B splines defined by a polynomial of degree less or equal k then

‖w(x)− wh(x)‖ ≤ C∆xl+1‖w‖l+1, 1 ≤ l < k

for any w ∈ Hk(Ω). In our study we use septic B-splines for space integration.
The above discussion suggest a O(∆x8) accuracy for the spatial approximation
in L2(Ω) norm. Since for time we use the Crank-Nicolson scheme which is
of O(∆t2) accurate in L2([0 T ]) norm for some T > 0; followed by a forward
difference scheme which is accurate of O(∆t) accurate in L2([0 T ]) norm for
some T > 0 [21]. So we obtain the error bound as

‖u(x, t)− uh(x, t)‖ ≤ C1∆x
8 + C2∆t

2 + C3∆t = C1∆x
8 + C2∆t, (5.1)

for a suitable C1 ≥ 0 and C2 ≥ 0.

Math. Model. Anal., 22(3):373–388, 2017.
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6 Numerical simulations

Numerical results of the Rosenau-KdV equation are obtained for four test prob-
lems: the motion of single solitary wave, interaction of two and three solitary
waves, evolution of solitons with undular bore initial condition. We use the
error norm L2

L2 =
∥∥Uexact − UN∥∥2 '

√√√√h

N∑
j=1

∣∣∣Uexactj − (UN )j

∣∣∣2
and the error norm L∞

L∞ =
∥∥Uexact − UN∥∥∞ ' max

j

∣∣∣Uexactj − (UN )j

∣∣∣ , j = 1, 2, ..., N − 1

to calculate the difference between analytical and numerical solutions at some
specified times. The two conserved quantities that equation (1.1) possess are
given by

IM =

∫ b

a

Udx ' h
N∑
j=1

Unj ,

IE =

∫ b

a

[U2 + c(Uxx)
2
]dx ' h

N∑
j=1

[(Unj )2 + c (Uxx)
n
j ],

which represent the momentum and energy of the shallow water waves, respec-
tively [6]. In the simulation of solitary wave motion, the conserved quanti-
ties IM and IE are monitored to check the accuracy of the applied numerical
method.

6.1 The motion of single solitary wave

The single solitary wave solution of the Rosenau-KdV equation (1.1) is given
by being considered with the boundary conditions U → 0 as x→ ±∞

U(x, t) = Asech4 [B (x− vt)] ,

in which

A =
210bB2

13d
, B =

1

3

[
−13ac+

√
169a2c2 + 144b2c

32bc

] 1
2

, v =
b

52cB2
.

Also, a, b, c and d are arbitrary constants. The initial condition is taken as

U(x, 0) = Asech4 (Bx) .

Firstly, the motion of the single solitary wave is modelled with parameters
a = b = c = 1, d = 0.5 and v = 1.18 over the interval [−70, 100] for different
values of space step (h) and time step (∆t). When the computations are done
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Table 2. Comparison of conserved quantities for single solitary wave with a = b = c = 1,
d = 0.5, v = 1.18 and different values of h and ∆t.

h = ∆t = 0.1
IM IE

t Present CLDS [7] SFEM [2] Present CLDS [7] SFEM [2]
0 5.4981750556 5.4977225480 5.4981750556 1.9897841615 1.9845533653 1.9897841614
10 5.4981750556 5.4977249365 5.4981749939 1.9897841624 1.9845950759 1.9897841614
20 5.4981750556 5.4977287449 5.4981749598 1.9897841629 1.9846459641 1.9897841614
30 5.4981750555 5.4977319638 5.4981749423 1.9897841633 1.9846798272 1.9897841614
40 5.4981750621 5.4977342352 5.4981749335 1.9897841635 1.9847015013 1.9897841614

h = ∆t = 0.05
IM IE

t Present CLDS [7] SFEM [2] Present CLDS [7] SFEM [2]
0 5.4981692134 5.4980606845 5.4981692134 1.9897831853 1.9843901753 1.9897831853
10 5.4981692136 5.4980608372 5.4981691962 1.9897831855 1.9844010295 1.9897831854
20 5.4981692136 5.4980610805 5.4981691829 1.9897831855 1.9844143675 1.9897831852
30 5.4981692134 5.4980612870 5.4981691736 1.9897831854 1.9844232703 1.9897831856
40 5.4981692116 5.4980613985 5.4981691629 1.9897831852 1.9844289740 1.9897831853

h = ∆t = 0.025
IM IE

t Present CLDS [7] SFEM [2] Present CLDS [7] SFEM [2]
0 5.4981698357 5.4981454184 5.4981698357 1.9897809062 1.9849493353 1.9897809061
10 5.4981698365 5.4981454791 5.4981697751 1.9897809077 1.9843521098 1.9897809063
20 5.4981698322 5.4981455454 5.4981697199 1.9897809038 1.9843555206 1.9897809028
30 5.4981698290 5.4981456095 5.4981696708 1.9897809019 1.9843578113 1.9897808998
40 5.4981698203 5.4981456591 5.4981696247 1.9897808975 1.9843592922 1.9897808987

up to t = 40, solitary wave has amplitude = 0.52632. The values of the
obtained conserved quantities IM , IE and some other earlier results are given
in Table 2. It can be observed from Table 2 that the percentage of relative
changes of IM and IE are obtained as 1.62 × 10−8 % and 1.00 × 10−10 % for
h = ∆t = 0.1; 7.28×10−8 % and 2.10×10−8 % for h = ∆t = 0.05; 1.08×10−7

% and 5.16 × 10−8 % for h = ∆t = 0.05, respectively. Since the changes of
the conserved quantities are less than 1 × 10−9, 2× 10−10, respectively, our
scheme is sensibly conservative. The error norms L2 and L∞ are satisfactorily
small for different values of h and ∆t. To make this observation, the error
norms are determined and listed in Table 3. Also, Table 3 shows a comparison
of the values of the obtained error norms with earlier results. We can say
that our method provides good results than others. Figure 1(a) illustrates the
motion of the single solitary wave profile from t = 0 to t = 40. In addition, the
motion of the solitary wave is depicted at specified times in Figure 1(b). It is
clearly seen that the solitary wave moves to the right with a constant speed.
Its amplitude and shape are preserved when time progresses, as expected. On
the other hand, error graphs at time t = 40 are plotted for different values of
h and ∆t in Figure 2.

6.2 Interaction of two solitary waves

Secondly, the interaction of two solitary waves is considered by using the initial
condition given by the linear sum of two well separated solitary waves having
different amplitudes

U(x, 0) =

2∑
i=1

Aisech4 [Bi (x− xi)] ,

Math. Model. Anal., 22(3):373–388, 2017.
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Table 3. Comparison of error norms for single solitary wave with a = b = c = 1, d = 0.5,
v = 1.18, different values of h and ∆t.

h=∆t=0.1 L2 × 103 L∞ × 103

t Present CLDS [7] SFEM [2] Present CLDS [7] SFEM [2]
0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
10 0.370348 1.641934 0.356724 0.149073 0.631419 0.141639
20 0.665684 3.045414 0.646705 0.253418 1.131442 0.244374
30 0.924741 4.241827 0.902514 0.336342 1.533771 0.326169
40 1.187411 5.297873 1.162489 0.422656 1.878952 0.411492

h=∆t=0.05 L2 × 104 L∞ × 104

t Present CLDS [7] SFEM [2] Present CLDS [7] SFEM [2]
0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
10 0.888927 4.113510 0.854386 0.362314 1.582641 0.343706
20 1.823510 7.631169 1.779040 0.649564 2.835874 0.627075
30 2.862236 10.62971 2.810186 1.000742 3.843906 0.975412
40 3.842086 13.27645 3.783328 1.320897 4.709118 1.293116

h=∆t=0.025 L2 × 104 L∞ × 105

t Present CLDS [7] SFEM [2] Present CLDS [7] SFEM [2]
0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
10 0.357059 1.028173 0.351702 1.421479 3.965867 1.420544
20 0.925408 1.905450 0.916735 3.264848 7.097948 3.258903
30 1.057023 2.650990 1.043479 4.742297 9.610332 4.681364
40 1.183710 3.306738 1.183139 4.846861 11.76011 4.847163

where Ai =
210bB2

i

13d , Bi =
∣∣∣√ b

52cvi

∣∣∣, i = 1, 2, vi and xi are arbitrary constants.

For the simulation, the parameters are taken to be a = b = c = 1, d = 0.5,
h = 0.1, ∆t = 0.1, v1 = 0.3, v2 = 0.5, x1 = −70 and x2 = −35 over the
interval [−100, 400]. Computations are carried out up to t = 250. Numerical
values of the conserved quantities IM and IE are computed. Obtained results
are compared with earlier result in Table 4.

Table 4. Comparison of conserved quantities for the interaction of two solitary waves with
a = b = c = 1, d = 0.5, h = ∆t = 0.1, v1 = 0.3, v2 = 0.5, x1 = −70 and x2 = −35.

IM IE
t Present SFEM [2] Present SFEM [2]
0 19.3547763167 19.3547763167 23.4555195115 23.4555195111
50 18.6623337576 18.6976052814 23.4536464802 23.4623857679
100 18.5390343997 18.6524580290 23.7608289302 23.4627919923
150 18.4552610055 18.6849314916 23.2253266413 23.4648227878
200 18.5431101281 18.6798456059 23.6865522135 23.4658462283
250 18.8263024425 18.6670839625 23.7667431211 23.4662281908

It is seen that the obtained values of the conserved quantities remain constant
sensibly during the computation. Figure 3(a) shows the interaction of two
solitary waves profile from t = 0 to t = 250. Also, the interaction of two
solitary waves is illusrated at specified times in Figure 3(b).



Numerical Study of Rosenau-KdV Equation 383

a) b)

Figure 1. Results for a = b = c = 1, d = 0.5, v = 1.18 and h = ∆t = 0.1: a) single
solitary wave profile, b) motion of single solitary wave at specified times.

Figure 2. Errors for a = b = c = 1, d = 0.5, v = 1.18, different values of h and ∆t at
t = 40.

It is clear from the figure that, at t = 0 the greater soliton at the left position
of the smaller soliton, at the begining of the run. With the increases of the
time the greater soliton catches up the smaller until at time t = 80, then
smaller soliton is absorbed. The overlapping process continues until t = 150,
greater soliton has overtaken the smaller soliton and get in the process of the
separating. At time t = 250, the interaction is completed and the greater
soliton has separated completely. At the end of this process, the solitary waves
preserve their original shapes.

6.3 Interaction of three solitary waves

Thirdly, the behavior of the interaction of three solitary waves is studied for
different amplitudes. So, the equation (1.1) is considered with initial condi-
tion given by the linear sum of three well-separated solitary waves of different
amplitudes

U(x, 0) =

3∑
i=1

Aisech4 [Bi (x− xi)] ,

where Ai =
210bB2

i

13d , Bi =
∣∣∣√ b

52cvi

∣∣∣, i = 1, 2, 3, vi and xi are arbitrary constants.

For the computational work, parameters a = b = c = 1, d = 0.5, h = 0.1,

Math. Model. Anal., 22(3):373–388, 2017.
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a) b)

Figure 3. Two solitary waves for a = b = c = 1, d = 0.5, h = ∆t = 0.1, v1 = 0.3, v2 = 0.5,
x1 = −70 and x2 = −35: a) profiles of waves, b) interaction of waves at specified times.

∆t = 0.1, v1 = 0.3, v2 = 0.5, v3 = 0.8, x1 = −70, x2 = −40 and x3 = −15 are
used over the interval [−100, 400]. Computations are done up to time t = 250.
Table 5 displays a comparison of the values of the obtained conserved quantities
with earlier result.

Table 5. Comparison of conserved quantities for the interaction of three solitary waves
with a = b = c = 1, d = 0.5, h = ∆t = 0.1, v1 = 0.3, v2 = 0.5, v3 = 0.8, x1 = −70, x2 = −40
and x3 = −15.

IM IE
t Present SFEM [2] Present SFEM [2]
0 26.0335670001 26.0335670001 27.0338255161 27.0338255158
50 25.3550323831 25.3912010200 27.0293369619 27.0410243545
100 25.0758817203 25.1890637167 27.3444359582 27.0421570504
150 25.0488953506 25.1729836835 27.7513876823 27.0438944266
200 25.0782292892 25.1975503011 27.0055964599 27.0448261554
250 25.3776582117 25.1823024487 27.7938004912 27.0452250712

It is clear from Table 5 that the obtained values for IM and IE are remain almost
during the computer run. In Figure 4(a), the interaction of three solitary waves
profile is depicted from t = 0 to t = 250. Also, the interaction of three solitary
waves is shown at specified times in Figure 4(b). As it is seen from the Figure 4,
interaction started about time t = 50, overlapping processes occured between
time t = 50 and t = 170 and waves started to resume their original shapes after
the time t = 250. At the end of this process, the solitary waves preserve their
original shapes.

6.4 Evolution of solitons

In this section, we observe the evolution of solitons for the Rosenau-KdV equa-
tion (1.1) by using the undular bore initial condition. The evolution of a train
of solitons for Rosenau-KdV equation is studied by using the undular bore
initial condition

U(x, 0) = 0.5U0 [1− tanh ((|x| − x0)/d)]
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a) b)

Figure 4. Three solitary waves for a = b = c = 1, d = 0.5, h = ∆t = 0.1, v1 = 0.3,
v2 = 0.5, v3 = 0.8, x1 = −70, x2 = −40 and x3 = −15: a) profiles of waves, b) interaction

of waves at specified times.

and boundary condition

U(−50, t) = U(350, t) = 0, t > 0

to produce a train of solitons depending upon the value c. U(x, 0) denotes
the elevation of the water above the equilibrium surface at time t = 0. The
change in water level of magnitude U0 is centered on x = x0 and d measures
the steepness of the change. The smaller the value of d the steeper is the slope.
Parameters are taken as a = b = c = 1, d = 0.5, v = 1.18, h = 0.1, ∆t = 0.1,
U0 = 1, x0 = 25 and d = 5. Calculations with these parameters are carried out
up to the time t = 150. The computed two conserved quantities are compared
with earlier result in Table 6.

Table 6. Comparison of conserved quantities for undular bore initial condition with
a = b = c = 1, d = 0.5, v = 1.18 and h = ∆t = 0.1.

IM IE
t Present SFEM [2] Present SFEM [2]
0.0 50.0000031022 50.0000031022 45.0046265340 45.0046240676
25 49.9949769132 49.9962032980 45.0046302283 45.0046392765
50 49.9912936179 49.9953438219 45.0047336077 45.0046467879
75 49.9825407041 49.9926519881 45.0059017563 45.0046494681
100 49.9728554453 49.9947407323 45.0104670928 45.0046572374
125 49.9513627796 49.9933952569 45.0284774099 45.0046645828
150 49.9183079349 49.9916251623 48.0853413051 45.0046688213

It is seen from the table that the values of the invariants are virtually pre-
served. Figure 5(a) shows that the evolution of solitons profiles with undular
bore initial condition from t = 0 to t = 150. Also, evolution of solitons is
depicted at specified times in Figure 5(b). As it is seen from these figures, the
initial perturbation evolves into a good developed train of solitons. As the time
progresses, six solitons moving to the right are observed.

Math. Model. Anal., 22(3):373–388, 2017.



386 T. Ak, S. Dhawan, S.B.G. Karakoc, S.K. Bhowmik and K.R. Raslan

a) b)

Figure 5. Developed train for a = b = c = 1, d = 0.5, v = 1.18 and h = ∆t = 0.1 of:
a) solitons profile, b) solitons at specified times.

7 Conclusions

In this paper, to study the dynamics of the dispersive shallow water waves,
it is studied on Rosenau-KdV equation with various test problems. Numerical
simulations for Rosenau-KdV equation are proposed using a collocation method
with the septic B-spline interpolation functions. The accuracy of obtained
schemes schemes is shown by calculating error norms L2 and L∞. The stability
analysis of the method is shown to be unconditionally stable. The obtained
schemes are tested through a single solitary wave in which the analytic solution
is known, then extend it to study the interaction of solitary waves and evolution
of solitons where no analytic solution is known. The obtained numerical results
and simulations show that applied method is an efficient method to analyze
behaviors of the dispersive shallow water waves.
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