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A multichannel autoencoder deep learning approach is developed to address the present intrusion detection systems’ detection
accuracy and false alarm rate. First, two separate autoencoders are trained with average traffic and assault traffic. )e original
samples and the two additional feature vectors comprise a multichannel feature vector. Next, a one-dimensional convolution
neural network (CNN) learns probable relationships across channels to better discriminate between ordinary and attack traffic.
Unaided multichannel characteristic learning and supervised cross-channel characteristic dependency are used to develop an
effective intrusion detection model. )e scope of this research is that the method described in this study may significantly
minimize false positives while also improving the detection accuracy of unknown attacks, which is the focus of this paper. )is
research was done in order to improve intrusion detection prediction performance. )e autoencoder can successfully reduce the
number of features while also allowing for easy integration with different neural networks; it can reduce the time it takes to train a
model while also improving its detection accuracy. An evolutionary algorithm is utilized to discover the ideal topology set of the
CNN model to maximize the hyperparameters and improve the network’s capacity to recognize interchannel dependencies. )is
paper is based on the multichannel autoencoder’s effectiveness; the fourth experiment is a comparative analysis, which proves the
benefits of the approach in this article by correlating it to the findings of various different intrusion detection methods. )is
technique outperforms previous intrusion detection algorithms in several datasets and has superior forecast accuracy.

1. Introduction

With the rise of the Internet, artificial intelligence, and big
data, network security is facing new and complicated threats.
At the moment, people need a more powerful and robust
network intrusion detection system (NIDS) because network
intrusions are becoming more diverse and complex [1].
Detecting network intrusions is the goal of network intru-
sion detection systems.)ey look at the network traffic to see

if there is any malicious activity that could be bad. To do this,
it needs to build a model that can tell the difference between
an attack and normal network traffic. )en, NIDS can turn
intrusion detection into pattern recognition and classifica-
tion, use the same kinds of algorithms to get data, clean it,
model it, and classify different network behaviors [2].

After years of research, the current NIDS methods can be
broken down into two groups: practises based on feature
detection and techniques based on anomaly detection based
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on different detection methods [3]. Feature detection is a
technique for computing representations of picture details
and determining even if there is not an image feature of a
certain kind at each image location. A limited image rec-
ognition procedure is feature detection. Anomaly detection
(also known as outlier detection) [1] is the process of
identifying unusual things, activities, or experiences that
differ considerably from the entire data. Such instances may
raise concerns that they were created by a separate method,
or they may emerge to be contradictory to the facts. In the
method based on feature detection [4], the first step is to look
at different ways of getting into your computer. )en, you
look for attack features, add them to the signature database,
and use them to find new attacks. When the samples found
match the information in the signature database, it can be
seen as an attack. Method: this one has a low chance of
making a false positive. It also has something called “hys-
teresis.” It can only find the attack patterns that are already in
the database. )e detection rate of new attacks is very low.
)e method based on anomaly detection [5] changes the way
standard information flow samples are taken and makes a
benchmark model by setting up a probability and statistical
model. When the pattern of the sample that was found does
not match the model, it can be called an “anomaly attack.”
)is type of method has a low false-negative rate and can be
very good at spotting new episodes, but it also has a problem
with not being able to find everything.Many researchers have
come up with ways to improve the accuracy and stability of
detection methods because of the current problems with
intrusion detection. Most of these methods will improve
observation accuracy by diminishing false-positive rates and
detecting unspecified attacks [6]. With the rise and devel-
opment of deep learning, features can be set up by hand and
replaced by multilayer networks that can be learned. In-
trusion detection tasks can be done with more accuracy and
less false positives than with traditional machine learning. So,
a lot of deep learning methods are used in NIDS. To optimize
the hyperparameters and increase the network’s capacity to
perceive interchannel dependencies, an evolutionary ap-
proach is used to find the optimum architecture set of the
CNNmodel.)e CNNmodel is a type of neural network that
allows us to derive higher depictions for image content.
Unlike traditional image processing, which requires the user
to specify the image characteristics, CNN receives the pic-
ture’s basic pixel data, develops the model, and then derives
the characteristics for improved categorization. )e con-
volutional neural networks (CNN) method was used by Li
et al. [6] to come up with a way to find network intrusions.
)e more training samples you have, the better this method
gets. Mehbodniya et al. [7] came up with an automatic in-
trusion detection system based on a multilayer recurrent
neural network to protect fog computing from network
attacks, which can be hard to stop. A person named 9 came
up with a way to find out if someone was trying to get into
your computer. )ey used a deep convolution neural net-
work to do this (dCNN).)emost important thing about this
method is that it turns one-dimensional intrusion data into
two-dimensional “image data” for training. Detection of
intrusions is more accurate because of the network. )e

accuracy and false alarm rate of NIDS research have always
been important, but real-time performance and detection
efficiency are also important. Because the autoencoder can
effectively reduce the number of features and can be easily
combined with other neural networks, it can shorten the time
it takes to train a model and improve its detection accuracy.
An autoencoder is a type of artificial neural network that can
be used for unsupervised learning. It has an encoder function
that maps the input to a hidden layer and a sort-out purpose
that produces the reconstructed learned information by
minimizing the loss purpose. A sort of artificial neural
network called an autoencoder is being used to devise ef-
fective encoding for unidentified input (unsupervised
learning). By seeking to recreate the input from the encoding,
the encoding is checked and enhanced. By training the
network to disregard inconsequential input (“noise”), the
autoencoder establishes a pattern (encoding) for a collection
of data, generally for feature extraction. Stacked autoen-
coders could be used to learn the features of standard
samples, and then a support vector machine (SVM) classifier
could be used to make the method more accurate [8].
Mahajan et al. [9] used a deep neural network to learn about
the features of input data and then used an autoencoder to
look for anomalies in the data. )is helped improve the
chances of correctly classifying a new type of attack.)en, the
LSTM network was used to deal with the sequential nature of
computer network data so that it can better deal with network
attacks that come up out of nowhere.)e above methods can
be used to get specific results, but they always lose infor-
mation when they use the autoencoder to compare the
original data. People who did this kind of research only used
standard samples to train one autoencoder. )ey did not use
attack samples at all. Novel attack samples are less likely to be
found. In order to resolve the problems of low detection
accuracy, high false alarm rates, and low detection efficiency
of new intrusion behaviors, a deep learning procedure based
on multichannel autoencoder is suggested. )is method
combines feature detection and anomaly detection methods
to find new intrusion behaviors. When two autoencoders are
trained in the unsupervised stage, they use a lot of different
types of traffic to make them better. )e two autoencoders
make two new feature vectors based on the input samples.
)en, the two reconstructed feature vectors and the original
illustrations are combined to make a multichannel repre-
sentation of the feature. Finally, a one-dimensional CNN
network processes the multichannel characteristic vector
representation to learn about the possible connections be-
tween channels, as shown in the figure. Our method is very
good at combining unsupervised multichannel feature
learning and supervised cross-channel feature dependencies
to make our models more accurate.

)e unique thing about our method is that we use
autoencoders to make multichannel representations of
traffic data. We use regular traffic and attack traffic to train
autoencoder models, and then we use these autoencoders to
make basic feature vector representations of network along
with features formed by these autoencoders’ vector. )en, a
convolutional deep learning architecture is used to show the
unseen dependencies in the cross-channel feature
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representation. )is feature representation helps the in-
trusion detection model separate the attack flow from the
normal flow, so the method in this paper can effectively
reduce false positives and improve the detection accuracy of
unknown attacks, which is what this paper is about.

2. Multichannel Autoencoder Deep Learning

When an autoencoder [10] is used, it learns how to represent
data by using the data as a learning target. )is is how it does
this. )e autoencoder network has two parts: there are two
ways to get at the hidden representation: first, the encoder f uses
the mapping function that takes the input vector and makes it
look like the hidden representation h. )en, the decoder uses
the mapping function that takes the input vector and makes it
look like the hidden representation. When you put the hidden
representation into the input space, you obtain a reconstruction
vector that has the same parameter as that hidden represen-
tation, which is, generally, the functions h and f referring to two
dissimilar neural networks, one for each.M (y,h(f(y)))�M (y,y)
is the loss purpose of the autoencoder, which is made up of two
networks. )e loss function of the autoencoder is M(y,y). In
math, the penalty term can be written down as Mse (y,y)� |
y– 2y.

Neural networks called “convolutional” are a type of
feedforward neural network with deep structures and
convolutional computations. )ey are used to process data
with grid-like topologies, but they can also process data with
other types of topologies. CNNs can use correlation filters to
capture spatial or temporal dependencies in data, which
leads to good internal representations. CNNs are made up of
two parts: the feature extraction part, which has convolu-
tional layers and spatial pooling layers, and the prediction or
classification part, which has layers that can be trained and
classifiers. Most of the time, when the positional relationship
between local features is known, convolutional layers find
features with local correlations. Weights (called “convolu-
tion kernels”) are used to perform an inner product oper-
ation on the data in a certain area. )e output value is one of
the features that was found. )e kernel elements that make
up the multiplication operation are like the weight matrix in
a traditional neural network. All possible kernels that can be
trained to have different offsets are used to make feature
maps at the convolutional layers. G is the feature map that
the convolution layer makes from a linear convolution filter
and a nonlinear activation function g.

g(i,j,k) � σ w
T
k yij􏼐 􏼑. (1)

In the formula, (i,j) constitute the location in the feature
map; yij represents the input data whose center is (i,j); and k
constitutes the channel index in the feature map.

3. Architecture of Multichannel Autoencoder
Deep Learning

Unsupervised multichannel feature building using two
autoencoders and supervised cross-channel feature corre-
lations are used in this study to tackle the problem of

network intrusion detection, which is a multichannel deep
learning problem. )e deep learning takes a lot of data to do
well than other approaches, and it is quite expensive to train
because of the complicated data models. Deep learning also
necessitates the use of pricey GPUs and hundreds of
workstations. )e users’ costs will rise as a result of this.
Figure 1 depicts the suggested model’s general design.

3.1. Feature Learning of Autoencoders. As a result of this
work, single-channel samples may be converted to multi-
channel samples using a particular class of autoencoders.
Assume that P � (yi, xi)􏼈 􏼉

N

i�1. It is a collection of N training
samples, each of which represents an input sample specified on
D characteristics, and xi represents either a normal or an attack
sample. Y � [y1, y2, . . . , yN] ∈ SN∗D represents the data
matrix ofND-dimensional random irregular yi ∈ SD. In order
to differentiate in middle of usual samples and attack samples
within Y, we define the following notation: Yn�Y|yi� n and
Ya�Y|yi � a. A pair of independent auto encoders, hn•fn
(designated by An) and ga · fa (designated by Aa), may be
learned from samples inYn andYa. Decoder network activation
is viewed as a new learned feature because it corresponds to an
output vector that has been reconstructed in the same input
space. A new feature vector, y � h(f(y)) ∈ SD, may be
generated by each autoencoder using the samples y. )ese
characteristics can then be used to concatenate several channels
of samples. Consequently, a multichannel sample may be used
to substitute each sample yi ∈ SD:

yi
′ � yi, y

n̂
i , y

â
i􏽨 􏽩

T
∈ S

D∗3
, (2)

where yn̂
i � hn(fn(yi)) and yâ

i � ha(fa(yi)) represent the
reconstructed representation of the single-channel sample yi,
respectively. )erefore, a single-channel data matrix Y can
be extended to a multichannel data matrix:

Y′ � y1′, y2′, . . . , yn
′􏼂 􏼃

T ∈ S
N∗D∗3

. (3)

In this way, the features reconstructed by the autoen-
coder of standard samples and attack samples are synthe-
sized to enrich the information of pieces yi. When the works
belong to two different distributions, a sample yi marked as
usual should bemore similar to the representation of yn̂

i than
yâ

i ; that is, ||yi − yâ
i ||

2< ||yi − yn̂
a||

2, and vice versa. )e goal in
the autoencoder step is to exploit the influence of one
channel on every other track in the supervised stage to
greatly differentiate the difference between the two classes
ordinary and attack.

)ree-channel representations can be learned in two ways:
there are several ways to resolve this problem, one of them is to
employ a filter with a (11) convolution kernel for cross-channel
parameter convolution. An alternative technique is to con-
catenate the learned components into the space S3D instead of
SD × 3 and then feed them a fully linked layer in SD × 3 (three-
channel expression). In contrast, because the training output is
unaffected by the order of the input features, the input topology
is totally disregarded in a fully connected layer. Channel-based
ranking and new cross-channel attributesmay be lost as a result
of utilizing this technique.
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According to this paper’s autoencoder, there are three
layers where each includes 40 neurons. Place a dropout layer
before the decoding layer in sequence to do data regulari-
zation and intercept overfitting.

s
l ∼ Bernnoulli(p),

x
x

� s
l ∗ x

l
,

a
l+1
i � v

l+1
i ∗x

c
+ ci,

x
l+1
i � f a

i+1
i􏼐 􏼑.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(4)

In the formula, l represents the layer number of the
neural network, sl represents the random vector satisfying
the Bernoulli distribution, p represents the retention
probability, xl and yl′ represent the output vector of the
neuron in the first layer of the neural network and the
random block after random blocking, respectively. vl+1

i and
ai+1

i represent the weight coefficient and bias of the ith
neuron in the lth layer, respectively, f represents the acti-
vation function, and al+1

i and xl+1
i represent the input of the

activation function of the ith neuron in the lth layer, re-
spectively, value and output value. )e use of dropout in the
training process of the autoencoder network is to randomly
reset the weights of some neurons to 0 according to the
probability p in each training process, that is, to drop some
neurons, which can reduce the number of parameters and
make the local data clusters different, more noticeable, thus
avoiding overfitting.)e dropout layer generally chooses the

value of the retention probability p to be 0.5 because the
dropout layer has the best effect at this time, and the gen-
erated network structure is the most abundant. Standard
activation functions in neural networks include Sigmoid,
tanh, and ReLU. We choose rectified linear unit (ReLU) as
the activation purpose for each unseen layer, while for the
last layer, we use the linear activation purpose Sigmoid.
Multichannel autoencoders use mean square error (MSE) as
the loss function.

3.2. Internal Structures of the Network. Since CNN was
widely used in image processing at first, most of the net-
work’s input is in the form of a two-dimensional matrix, so
the internal structures of the network, such as feature maps
and convolution kernels, are set to two-dimensional. With
the introduction of CNN in language recognition, one-di-
mensional CNN came into being to adapt to the one-di-
mensional characteristics of language signals. One-
dimensional CNNs process one-dimensional input vectors
and the filters in the convolution only slide along one di-
mension. )is paper adopts one-dimensional CNN for
feature processing to better utilize the feature combination
information across channels. For 1E CNNmodels, to reduce
the dimensionality of the filter size and reduce the amount of
computation in the training process, the kernel size of the
filter can be limited to 1; that is, a (1× 1) convolution kernel
is used to reduce the spatial extent. Meanwhile, (1× 1)

Y

Input Layer (Y)

Za Zn

Ya Yn

ID-Conv

Flatten layer

Fully Connected Layer

Fully Connected Layer

Soft Max

………………

Figure 1: Architecture of the proposed model.
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convolution also combines existing knowledge in the
channel dimension to obtain more abstract channel
knowledge [10]. Convolution layers with a filter size of 1 will
be used in this research to boost cross-channel knowledge,
i.e., input the three-channel representation
yi
′ � [yi, yn̂

i , yâ
i ]T ∈ SD∗3. )e nonlinear cross-channel de-

pendencies are then increased by using more than three filter
banks. )e flexible field of the one-dimensional complexity
is indicated as yi,j,z

′, and every one filter k is utilized to
construct the feature map for the supplied sample yi. )e
following is the formula for the medium signals fi,j,k:

fi,j,k � σ v
T
k yi,j,z
′ + ck􏼐 􏼑. (5)

To simplify, the weight and bias coefficients are denoted
as vkand the nonlinear activation function as ck ∈ S3, re-
spectively, in the formula [11]. )e channels of every one
feature in y (i,j,z)ʹ are mapped to the feature map using the
same shared weight coefficients. It is possible to turn SD × 3

samples into feature maps with SD × K filters in the con-
volutional layers. Two fully attached layers are then placed
on peak of the 1D convolutional layer’s output. For the final
classifier module to fulfill its classification function, it
connects neurons formed in the convolutional and pooling
layers to all other neurons in the upper layers, resulting in
the classification probability being output. For this study, the
final classification module is the Softmax classifier, and the
likelihood of categorizing y in the regression model as class j
is

t � x
i

� j|y
i
; θ􏼐 􏼑

�
e
θiy

i

􏽐ke
θiy

i .

(6)

In the formula, θj represents the jth weight vector, and xi
is the data sample.

3.3. Chromosome Structure in CNN Optimization Model.
Deep learning approaches based on CNNs have made major
strides in a variety of disciplines of study. )is is despite the
fact that deep learning is capable of learning features and
optimizing weight parameters using data. Human interac-
tion is required to alter the network architecture of input and
output variables and learnt parameters [12]. It is, however,
difficult to analyze all conceivable network structures to
derive ideal weight values since the number of structures
rises exponentially with the network’s depth. According to
this study, an approach based on a genetic algorithm may be
used to automatically determine a CNN model’s best to-
pology (GA).

For the most part, the GA algorithm is used in this phase,
which optimizes the topology while focusing on the CNN’s
feature extraction process [13]. )e convolution and pooling
layers of the CNN recognize patterns and extract essential
characteristics for the given input as the kernel passes over
the raw data. )e performance of large networks can be

improved by choosing the right weight parameters for these
layers. Hyperparameters such as these might change over
time; thus, it is essential to employ a methodical technique to
determine them. When the convolution kernel is large, it is
difficult for the network to take into account the specific
properties of the input data [14]. Too much information
might be confusing for a little seed. Kernels in each con-
volutional layer have an effect on feature learning since each
seed generates a distinct feature map and acts as a detector of
features with respect to different points of view. A new
perspective emerges when the number of processing cores
grows. In addition, when the number of cores grows, it is
vital to identify an appropriate value that allows the input
data to learn features well and reduces computational cost.
Empirical performance rather than theory is used to make
the decision for network topology in most CNN research
[13]. )e topology of the one-dimensional CNN model is
optimized using a genetic algorithm in this study in order to
increase prediction performance for intrusion detection. In
order to develop a CNN structure that is optimum, all ar-
chitectural factors must be tweaked at the same time.)eGA
method optimizes the number of kernels, the size of the
kernels, and the size of the pooling window for convolution
and pooling layer operations. Each layer component’s size
should be encoded as a binary string, as seen in the second
image.

)ese are the steps that make up the CNN optimization
process for GA-based CNNs:

(a) Make a fresh start with the population: to begin with,
the genetic algorithm generates a list of potential
outcomes. As a result, the most important role of a
genetic algorithm is to articulate possible solutions to
the issue that chromosomes are tackling and to set
performance standards. Each chromosome should
accurately reflect the features of the target problem
because the expression of viable solutions influences
all genetic changes. As a result, the number of kernels
per convolutional layer, the size of the kernel, and
the potential value associated with the window size
are all encoded in each chromosome.

(b) To determine how well each chromosome performs,
a fitness function must be established. Intrusion
detection categorization accuracy is used as the
fitness function in this work. It is predicted that
chromosomes with better classification accuracy
would replicate more often than those with lower
classification accuracy.

(c) In order to create a new generation, the genetic
operators of selection, crossover, and mutation are
used once the fitness value of the entire population
has been computed. Genetic operators offer indi-
viduals with more knowledge, and the GA tends to
arrive at an optimal or near-optimal solution as a
result of these operations. )e other optimization
techniques may be more efficient in terms of fast
convergence for particular optimization issues and
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problem cases than genetic algorithms. Evolutionary
techniques, evolutionary programming, simulated
annealing, Gaussian adaptation, hill climbing, and
swarm optimization (e.g., ant colony optimization,
particle swarm optimization), as well as integer
linear programming approaches, are examples of
alternative and complimentary algorithms. Genetic
algorithms’ applicability is determined by how well
the problem is understood; well-known issues
commonly have superior, more specialized
techniques.

(d) Get the final subset of CNN’s hyperparameters using
GA search to produce the optimum solution.

3.4. Intrusion Detection Method. As shown in Figure 2, the
intrusion detection method based on a multichannel
autoencoder mainly comprises a multichannel autoencoder
and one-dimensional CNN. )e model combines the ad-
vantages of feature-based detection and anomaly detection
methods, using regular traffic and attack traffic to train the
autoencoder models of their respective channels, and then
utilizes a 1D CNN network to extract the hidden interre-
lationships in the multichannel description, thereby re-
ducing the imbalance [15]. )e influence of data on the
model dramatically improves the detection accuracy of the
sample, and because the model uses an unsupervised
autoencoder and a lightweight 1D CNN network, the de-
tection efficiency of the model is effectively improved. )e
specific training process is given below:

(a) Use data preprocessing to initialize the training
sample set.

(b) Use the processed sample set to train the autoen-
coder of each channel.

(c) Reconstruct the feature vectors calculated by dif-
ferent channel autoencoders and use them as the
input of 1D CNN.

(d) Use the reconstructed vector to train the CNN, and
use the GA algorithm to optimize the hyper-
parameters of the CNN.

(e) Use the trained model to detect the samples and
output the classification results based on the Softmax
classifier.

4. Performance Evaluation

)e overall performance of the proposed method is mea-
sured by analyzing the perfection and F-score of the trained
intrusion detection model, which can be obtained from the
obfuscation table, where perfection is the ratio of accurately
tagged traffic, defined as

ACC �
UQ + UM

UQ + UM + GQ + GM
. (7)

In the formula, UQ and UM represent the number of
samples that correctly predict traffic as usual and attack
types, respectively, GQ and GM represent the number of

models that incorrectly predict traffic as usual and attack
types, and UQ + UM + GQ + GM is the total number of
samples [16]. )e higher the accuracy of the test results, the
higher the algorithm’s performance incorrectly predicting
the type of traffic.

)e F-score is the harmonic mean of precision and recall,
where precision p measures the capability of the intrusion
detection system to recognize only attacks, and recall r can
be seen as the system’s capability to detect all attacks, which
is defined as

P �
UQ

UQ + GQ
,

R �
UQ

UQ + GM
,

F score �
2∗ q∗ s

s + q
.

(8)

)e higher the F-score, the better the balance between
precision and recall achieved by the method.

4.1. Experiment on Multichannel Autoencoder. )e method
in this paper uses four experiments to verify the superiority
of the performance. )e first experiment is the ablation
study, by setting up four network structures: neural network
(NN), artificial neural network (ANN), CNN, and artificial
convolution neural network (ACNN) to verify the multi-
channel in this paper. )e effectiveness of the deep learning
algorithm: the second experiment is robustness, and the
robustness of the method in this paper is verified by testing
in an unbalanced dataset; the third experiment is to explore
the process of reconstructing samples from autoencoders zn
and za, and analyze [17]. )e effectiveness of the multi-
channel autoencoder; the fourth experiment is a compara-
tive study, which verifies the advantages of the method in
this paper by comparing it with the results of several other
intrusion detection algorithms.

4.1.1. Architectures of Networks’ Structures. First, the ar-
chitectures of 4 networks’ structures, NN, ANN, CNN, and
ACNN, are given:

(1) )e NN network model consists of an input layer
and the last four layers of the architecture in Figure 2
(1 flatten layer, 2 FC layers, and 1 Softmax layer), and
the input samples are xi ∈RD; namely,Z(D)⟶
Flatten (320)⟶GE (160)⟶GE (2)⟶ Softmax.

(2) )e architecture of the ANN network is the same as
that of the NN, but the input samples use the
combined information of two autoencoders
zi⊕zn̂

i ⊕zâ
i ∈ S3E.

(3) )e architecture of the CNN network is to add a one-
dimensional convolutional layer to the NN, and the
architecture is:

(4) )e architecture of the ACNN network is the same as
that of the CNN, but the input data adopts the
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combined information of the autoencoder, and the
architecture is X(3D)⟶ Flatten (320)⟶ FC
(160)⟶ FC (2)⟶ Softmax.

(5) )e architecture of the CNN network is to add a one-
dimensional convolutional layer to the NN, and the
architecture isZ(D)⟶ Flatten (320)⟶ GE (160)
⟶ GE (2)⟶ Softmax.

(6) )e architecture of the ACNN network is the same as
that of the CNN, but the input data adopts the
combined information of the autoencoder, and the
architecture is Z(D)⟶Conv1E (64)⟶ Flatten
(320)⟶GE (160)⟶GE (2)⟶ Softmax.
Figures 3 and 4 along with Tables 1 and 2 illustrate
the accuracy and F-scores of the proposed technique
and four networks NN, ANN, CNN, and ACNN.
With our technique, we exceed all baseline methods
in terms of accuracy and F-score, proving the use-
fulness of using autoencoders in conjunction with 1E
convolution and multichannel input to increase the
accuracy of intrusion detection tasks [18]. It is vital to
remember that autoencoders that are not tied to
convolutions do not always produce better results.
Dense convolutional layers, instead of autoencoders,
may typically enhance intrusion detection accuracy.
In any scenario, great accuracy and F-scores may be
reached when using convolutions on data rich in
autoencoders. Using many channels to compute
convolutions rather than a single channel built by
concatenation, the investigation indicated that the
model superiority resulting from convolution relied
on finding both the original variable and its
autoencoder-based counterpart feature.

In addition, this paper also compares the number of
parameters estimated by several networks, as shown in
Table 3. As can be seen from the table, the higher accuracy of
our method usually comes at the expense of a more sig-
nificant number of estimated parameters. At the same time,
the smaller the proportion of attack samples, the more
parameters are required.

4.1.2. Robustness Measurement of the Proposed Method.
)e second experiment is mainly used to analyze the ro-
bustness of our method in solving the problem of imbal-
anced data. For the analysis data of this experiment, this

paper uses the CICIDS2017 dataset, which is based on
unbalanced data collected from real-world network sce-
narios, including 80% regular traffic and 20% attack traffic
[19]. To verify the robustness of the method in this paper to
imbalanced data, the usual traffic and attack traffic in the
dataset are combined to obtain 5 subsamples that account
for 100%, 75%, 50%, 25%, and 5% of the total sample. Set for
testing Figure 5 with table presents the F-score test results of
our method and four networks NN, ANN, CNN, and ACNN
in 5 sample subsets. It can be seen from the figure that the F-
score corresponding to the method in this paper has a minor
decrease, and the F-score is still the highest among all forms,
which shows that the manner in this paper is suitable for
intrusion detection of unbalanced data.

4.1.3. Reconstruction Error Analysis. )e third experiment is
an analysis of multichannel autoencoders to explore the
process by which autoencoders Zn and Za accurately re-
construct samples from both normal and attack classes. It
can be seen from the autoencoder that Zn is more accurate in
reconstructing standard samples than attacking samples,
while Za has the opposite effect performance [20]. )us, it is
demonstrated that using a multichannel autoencoder to
train standard samples and attack samples separately can
launch information that helps to distinguish the two classes.
Furthermore, it is also observed from the figure that our
method has superior advantage to the number of autoen-
coder-based samples in both categories.

4.1.4. Intrusion Detection Algorithms. )e fourth experi-
ment compares the method in this paper with several in-
trusion detection algorithms, such as DNN, AIDA, CNN-
1D, Gray-scale, WnD, and MDPCA-DBN.

Figures 6–8 show the different intrusion detection al-
gorithms in three data along with Tables 4 and 5.

Comparison of test results on the set: as can be seen from
the figure, the accuracy and F-score results of the method in
this paper are generally better than those of the comparison
methods on the three datasets, which fully demonstrates the
effectiveness and superiority of the way in this paper.
Furthermore, the only exception observed from the figure is
on the KDDCUP99 dataset, where the results of our method
are in suboptimal solutions, and the DNNmodel has the best
accuracy and F-score.

1 0 1 … 1 0 0 1 … 1 1 1 0 … 1 1 0 1 … 0

Best Chromosome from Phase 0

1 0 1 … 1 0 0 1 … 1 1 1 0 … 1 1 0 1 … 1

……….

1 0 1 … 1 0 0 1 … 1 1 1 0 … 1 1 0 1 … 0

A Phase 1 Chromosome

Figure 2: Chromosome structure in CNN optimization model.
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)is is because DNN learns an intrusion detection model
through a deep neural network and text representation and
then captures context- and sequence-related knowledge in
system calls. )e model goes through an optimization
process to find the network’s best parameters and topology.

)erefore, the higher accuracy of DNNs on the KDDCUP99
dataset can be attributed to the text representation method
and the topology and parameter settings of the determined
architectures. )ese accuracy and F-score values are shown
in Table 6.
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Figure 3: Accuracy of different network models on 3 datasets.
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Figure 4: F-score of different network models on 3 datasets.

Table 1: Accuracy of different network models on 3 datasets.

Network ACNN CNN ANN NN
KDDCUP99 95 88 86 85
UNSW-NB15 92 85 75 87
CICIDS2017 98 95 93 90

Table 2: F-score of different network models on 3 datasets.

Network ACNN CNN ANN NN
KDDCUP99 100 98 96 95
UNSW-NB15 102 95 85 97
CICIDS2017 88 85 83 80

Table 3: F-score of different network models on unbalanced data.

Network ACNN CNN ANN NN
KDDCUP99 95 88 76 67
UNSW-NB15 98 95 65 68
CICIDS2017 85 68 75 80
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Figure 5: F-score of different network models on unbalanced data.
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Figure 6: Comparison of different algorithms on KDDCUP99.
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Figure 7: Comparison of different algorithms on UNSW-NB15.
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Figure 8: Comparison of different algorithms on CICIDS2017.
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5. Conclusion

Multichannel autoencoder deep learning is proposed here as
an intrusion detection approach to address the low accuracy
and high false-positive rate that currently plague intrusion
detection systems. A successful detection model is built by
combining an unsupervised stage in which two autoen-
coders are trained with average traffic and an attack traffic
stage in which cross-channel feature dependency is super-
vised. )e architecture of a one-dimensional CNN model is
improved using a genetic technique in this study. As a result
of the experiments detailed in this article, the accuracy of this
method in intrusion detection systems was greatly enhanced
when compared to other methods studied. )e encoders
then generate new feature vectors, which are combined into
a multichannel feature vector representation and fed into a
one-dimensional CNN network to learn about any channel-
to-channel correlations. For improved intrusion detection
performance while preserving the model’s flexibility, this
research employs a genetic approach to optimize the one-
dimensional CNN model’s topology. Compared to other
approaches tested, this one’s accuracy in intrusion detection
systems was significantly improved as a consequence of the
experiments described in this study.
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