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ABSTRACT
This paper introduces a new class of distributions by compound-
ing the inverse Lindley distribution and power series distributions
which is called compound inverse Lindley power series (CILPS) distri-
butions. An important feature of this distribution is that the lifetime
of the component associated with a particular risk is not observable,
rather only theminimum lifetime value among all risks is observable.
Further, these distributions exhibit an unimodal failure rate. Various
properties of the distribution are derived. Besides, two special mod-
els of the new family are investigated. The model parameters of the
two sub-models of the new family are obtained by the methods of
maximum likelihood, least square, weighted least square and maxi-
mum product of spacing and compared them using theMonte Carlo
simulation study. Besides, the log compound inverse Lindley regres-
sion model for censored data is proposed. Three real data sets are
analyzed to illustrate the flexibility and importance of the proposed
models.
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1. Introduction

In the last 30 years or so, we see a spur in the efforts in constructing newunivariate distribu-
tions which are used widely in statistics and allied areas. These efforts are largely motivated
by the theoretical considerations or practical applications or both. However, probability
distributions proposed in recent times are different from those proposed before 1997.
Present-day researchers take a greater interest in formulating newgenerators or generalized
classes of univariate continuous distributions by adding one ormore parameters or by com-
pounding to generate new distributions to a baseline distribution to make the generated
distribution more flexible, especially for studying tail behavior. The utility of generating
distributions by compounding is that it produces a very flexible class of continuous dis-
tribution functions, which in turn can have some interesting physical interpretations also.
Besides, the suppleness of such compound distributions makes it possible to have one or
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more hazard rate shapes that may bemonotonic decreasing, increasing, bathtub or upside-
down bathtub shaped. Notable among such compound distributions introduced recently
are as follows: Tahmasbi and Rezaei [38] introduced exponential-logarithmic (EL) distri-
bution; Louzada et al. [20] introduced the complementary exponential-geometric (CEG)
distribution; Tojeiro et al. [39] introduced the complementaryWeibull geometric distribu-
tion; the Burr XII negative binomial distribution by Ramos et al. [31]; the complementary
Lindley-geometric distribution by Gui and Guo [15]; a new three-parameter extension of
the log-logistic distribution by Shakhatreh [32] and so on.

The power series class of distributions (PSCDs) was proposed and studied by Noack
[28]. This class of distributions has some special cases, namely, binomial, geometric,
logarithmic, Poisson and negative binomial distributions. For more details on these dis-
tributions, one may refer to [16]. Power series class of distributions have been used widely
in recent years to develop new distributions. Prominent among these distributions are the
exponential-power series (EPS) distribution by Chahkandi andGanjali [9];Weibull-power
series (WPS) distribution by Moraisa and Barreto-Souz [21]; compound class of extended
Weibull PSCDs by Silva et al. [35]; Lindley PSCDs by Warahena-Liyanage and Pararai
[40]; Burr XII PSCDs by Silva and Cordeiro [36]; generalized modified Weibull PSCDs
by Bagheri et al. [6]; exponentiated Burr XII PSCDs by Nasir et al. [24]; generalized Burr
XII PSCDs by Elbatal et al. [13] and the references cited therein.

Sharma et al. [34] introduced one-parameter inverse Lindley distribution (ILD) to
model data exhibiting an upside-down bathtub shaped hazard rate function. Note that
the one-parameter Lindley distribution (LD) possesses an increasing hazard rate function,
and hence, it cannot be used to fit non-monotone failure rate data. Additionally, it seems
that limited attention has been given to studying upside-down bathtub shaped hazard rate
function using LD. Even though various generalizations of the LD have been introduced
to cover a wide range of shapes of hazard rate function including the unimodal ones. How-
ever, these generalizations usually involve four to five parameters and hence complexity
arises for these distributions (see, e.g. [3,14] for further details on LD). The one-parameter
ILD can be obtained by applying an inverse transformation to the Lindley random vari-
able. The probability density function (PDF) and cumulative distribution function (CDF)
of one-parameter ILD (for x>0 and θ > 0) are given, respectively:

gILD(x; θ) = θ2

1 + θ

(
1 + x
x3

)
e−

θ
x and GILD(x; θ) =

(
1 + θ

(θ + 1)x

)
e−

θ
x .

The ILD distribution is quite amenable as the CDF has a closed form, which eases the
computation of the percentiles and the likelihood function for censored data. The hazard
rate function (HRF) for the one-parameter ILD is

hILD(x; θ) = θ2(1 + x)
x2[θ + x(1 + θ){exp(−θ/x)− 1}] .

It is worth mentioning that Sharma et al. [34] showed that the PDF and HRF functions of
the ILD are unimodal. For applications of this distribution in a variety of fields, one can
refer to [7,8].
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Our main goal of this note is to introduce a new class of lifetime distributions called
the compound inverse Lindley power series (CILPS) distributions. Several properties of
the new distributions are derived. This new class includes several known lifetime distri-
butions, such as the ILD, as a special case. The proposed distribution provides better fits
than somewell-known lifetime distributions.We aremotivated to introduce theCILPS dis-
tributions because (i) the upside-down bathtub shaped hazard rate function is frequently
encountered in real-life situations; (ii) this new class of distributions due to the stochastic
representation Z = min(X1,X2, . . . ,XN) may be suitable for modeling a complementary
risk problem in the presence of latent riskswhich arise in several areas such as public health,
actuarial science, biomedical studies, demography and industrial reliability; (iii) the CILPS
distribution can be used to model the first failure of a system that is in a series; and (iv)
three real data applications show that it compares well with other competing lifetime dis-
tributions in modeling survival and failure data. Besides, we discuss the estimation of the
model parameters by four frequentist methods, namely, maximum-likelihood estimators
(MLE), least-square estimators (LSE), weighted least-square estimators (WLSE) and max-
imum product of spacings estimators (MPSE) using two special submodels of the CILPS
distribution, namely, compound inverse Lindley Poisson (CILP) distribution and com-
pound inverse Lindley geometric (CILG) distribution, and compare them in terms of their
mean-squared errors using extensive numerical simulations and to develop a guideline
for choosing the best estimation method that gives better estimates for the model param-
eters, which we think would be of deep interest to applied statisticians. In this context,
many authors have examined various frequentist estimators for estimating the parameters
of different distributions. Recent among them, to cite a few, are Nassar et al. [25] for a new
extension of theWeibull distribution, Afify et al. [1] for the heavy-tailed exponential distri-
bution, Dey et al. [12] for the weighted inverted Weibull distribution, Al-Mofleh et al. [4]
for a new two-parameter generalized Ramos–Louzada distribution, Afify and Mohamed
[2] for the extended odd Weibull exponential distribution, Nassar et al. [26] for the alpha
power exponential distribution, Nassar et al. [27] for the logarithm transformed Weibull
distribution, and Kumar et al. [18] for the complementary exponentiated Lomax-Poisson
distribution. Further, we obtain the MLEs of the log compound inverse Lindley regres-
sion model for censored data to show the flexibility of the log compound inverse Lindley
regression model. To the best of our knowledge thus far, no attempt has been made to
study the aforementionedmethods of estimation for the considered distribution alongwith
regression model for censored and uncensored data.

The rest of the paper is organized as follows. The new family defined by compound-
ing the ILD and zero truncated power series distributions is presented in Section 2.
In Section 3, we discuss some of its properties including a mixture representation. In
Section 4, we introduce and study two special models of the CILPS family of distribution.
In Section 5, the estimation of the model parameters is performed by the methods of max-
imum likelihood, least square, weighted least square and maximum product of spacing. In
Section 6, a simulation study is carried out to compare the performance of the proposed
classical estimators (MLE, LSE, WLSE and MPSE) using two special submodels of CILPS
distribution, namely, the CILP and the CILG distributions. In Section 7, we present a new
regression model, called the log compound inverse Lindley regression model for censored
data. Three real data sets are analyzed and presented in Section 8. Finally, we conclude the
paper in Section 9.
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2. The new family of distributions

In this section, we propose a new family of probability distributions. The new family is
defined as follows. Let N be a discrete random variable following a power series (PS)
probability distribution with probability mass function (truncated at zero) given by

P(N = n) = bnλn

C(λ)
, n = 1, 2, . . . , (1)

where the coefficients bn’s depends only on n, C(λ) =∑∞
n=1 bnλ

n is a convergent series
and λ > 0. In Table 1, we give some power series distributions (truncated at zero) defined
by Equation (1). Let X1,X2, . . . be a sequence of i.i.d. random variables having ILD with
parameter θ . GivenN, letX(1) = min(X1, . . . ,XN), then the conditional CDF ofX(1) given
N = n is given as

GX(1)|N=n(x; θ) = 1 − (1 − G(x))n = 1 −
[
1 −

(
1 + θ

(θ + 1)x

)
e−

θ
x

]n

and

P(X(1) ≤ x,N = n) = bnλn

C(λ)

[
1 −

{
1 −

(
1 + θ

(θ + 1)x

)
e−

θ
x

}n]
.

So, the marginal CDF of X(1) is reduced to

FCILPS(x; θ , λ) = 1 −
C
[(

1 −
(
1 + θ

(θ+1)x

)
e−

θ
x

)
λ
]

C(λ)
, (2)

where x > 0, θ > 0 and λ > 0, and hence, we can clearly say that X follows compound
inverse Lindley power series family of distributions with parameter λ and θ and is denoted
by X ∼ CILPS(λ, θ). The PDF corresponding to Equation (2) is given by

fCILPS(x, θ , λ) = λθ2

θ + 1

(
1 + x
x3

)
e−

θ
x
C′
[(

1 −
(
1 + θ

(θ+1)x

)
e−

θ
x

)
λ
]

C(λ)
. (3)

The survival function (SF) and the HRF of CILPS distribution are given, respectively, by

SCILPS(x; θ , λ) =
C
[(

1 −
(
1 + θ

(θ+1)x

)
e−

θ
x

)
λ
]

C(λ)
,

Table 1. Useful quantities of some PS distributions.

Distribution bn C(λ) C′(λ) C′′(λ) C−1(λ) λ

Poisson n!−1 eλ − 1 eλ eλ log(λ+ 1) λ ∈ (0,∞)

Logarithmic n−1 − log(1 − λ) (1 − λ)−1 (1 − λ)−2 1 − e−λ λ ∈ (0, 1)
Geometric 1 λ(1 − λ)−1 (1 − λ)−2 2λ(1 − λ)−3 λ(λ+ 1)−1 λ ∈ (0, 1)
Binomial

(m
n

)
(λ+ 1)m − 1 m(λ+ 1)m−1 m(m−1)

(λ+1)2−m (λ− 1)
1
m − 1 λ ∈ (0,∞)

Negative binomial
(n−1
m−1

)
λm

(1−λ)m
mλm−1

(1−λ)m+1
m(m+2λ−1)
λ2−m(1−λ)m+2

λ
1
m

1+λ 1
m

λ ∈ (0, 1)
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and

hCILPS(x; θ , λ) =
λθ2

θ+1

(
1+x
x3

)
e−

θ
x C′
[(

1 −
(
1 + θ

(θ+1)x

)
e−

θ
x

)
λ
]

C
[(

1 −
(
1 + θ

(θ+1)x

)
e−

θ
x

)
λ
] . (4)

In addition to the above mathematical derivation, the proposed family of distributions,
i.e.CILPS distribution, has an interesting physical interpretation given as follows. Consider
the failure of a certain mechanical component due to an unknown number of risk factors
say, N, such that each risk factor can be determined once the failure has been occurred,
in which case it is fixed immediately. If we assume that the failure lifetimes of these risk
factors; X1,X2, . . . are independent and identically distributed (i.i.d.) ILD random vari-
ables independent ofN, which follows a PS distribution, then the time to the first failure is
appropriately modeled by the CILPS family.

3. General properties

3.1. Mathematical properties

In this section, we study some of themathematical properties of the CILPS family of distri-
bution. The following proposition shows that the proposed family of distribution includes
the ILD as a limiting distribution.

Proposition 3.1: If λ → 0, then the limiting case of the CILPS distribution is an ILD.

Proof: See Appendix. �

The following proposition reveals that the HRF of the CILPS distribution possesses an
upside-down bathtub shaped hazard rate function.

Proposition 3.2: The HR function of the CILPS distribution is unimodal.

Proof: See Appendix. �

Proposition 3.3: The PDF of the CILPS family of distribution can be expressed as an infinite
mixture of Lehmann type II (LTII) inverse Lindley densities with power parameter n and is
given by

fCILPS(x; θ , λ) = 1
C(λ)

∞∑
n=0

bnλnπn(x; θ), (5)

where πn(x; θ) = n ḠILD(x; θ)n−1gILD(x; θ) denotes the LTII inverse Lindley density func-
tion with power parameter n, and ḠILD(x; θ) = 1 − ḠILD(x; θ).

Proof: See Appendix. �

Notice that Proposition 3.3 provides a useful expansion for the density function given
in Equation (3), which can enable us to derive some statistical quantities of the CILPS dis-
tribution such as moments and generating function from those of the LTII inverse Lindley
distribution.
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The following proposition establishes the derivation for the mean residual life (MRL) of
the CILPS distribution. The MRL function is another important reliability measure used
in engineering reliability, particularly in maintenance scheduling.

Proposition 3.4: The mean residual life (MRL) of the CILPS distribution can be obtained
as follows:

m(x) = 1
C(λ)S(t)

∞∑
n=1

bn
n∑

k=0

k∑
m=0

∞∑
l=0

(−1)k+l θ
kklλk

l!

(
n
k

)(
k
m

)(
θ

1 + θ

)m

1
(m + l − 1)tm+l−1 .

Proof: See Appendix. �

3.2. Moments

Moments for any distribution function, especially the first four moments are important in
describing the distribution. In Proposition 3.5, we derive the kth moment of the CILPS
distribution.

Proposition 3.5: Let X ∼ CILPS(λ, θ). The kth moment of X is

μk = E(Xk) = θ2

θ + 1

∞∑
n=1

nanλn

C(λ)

n−1∑
i=0

(
n − 1
i

)
(−1)iψi,k, (6)

where

ψi,k =
i∑

m=0

(
i
m

)(
θ

θ + 1

)i−m (
�(k − m + i + 2)
((i + 1)θ)k−m+i+2 + �(i − k − m + 1)

((i + 1)θ)i−k−m+1

)
.

The proof of Proposition 3.5 can be obtained similar to the lines of the proof of
Proposition 3.4. Notice that the kth moments are given in terms of a convergent infinite
series. Therefore, in order to use these moments, one should consider some fixed terms
in Equation (6). In the case of the two special sub-models considered in the following
section, we use the first 50 terms in Equation (6). Alternatively, one may use Monte Carlo
methods or numerical integration methods to approximate these moments, see, for exam-
ple, Shakhatreh et al. [33] who used these methods to approximate the moments for the
generalized extended exponential-Weibull distribution.

4. Two special sub-models

4.1. The CILP distribution

The CILP distribution is defined from the CDF given via Equation (2) with C(λ) = eλ − 1
and is given by

FCILP(x; λ, θ) =
eλ − exp

[(
1 −

(
1 + θ

(θ+1)x

)
e

−θ
x

)
λ
]

eλ − 1
,
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Figure 1. Plots of the PDFs and HRFs of CILP distribution for some parameter values.

Table 2. Mean, variance, skewness, and kurtosis for CILP distribution.

θ λ Mean Variance Skewness Kurtosis

0.5 0.5 0.9371 12.2864 14.2616 274.4604
1.5 0.6473 7.0413 18.7528 474.2531
2.5 0.4502 3.7359 25.5623 884.1317
3.5 0.3257 1.8591 35.8833 1754.415

1 0.5 2.1137 34.1699 8.5584 100.7417
1.5 1.4694 20.0545 11.149 169.2361
2.5 1.024 10.8766 15.0107 306.6268
3.5 0.7385 5.5278 20.7429 590.374

1.5 0.5 3.2708 57.6727 6.5347 60.4529
1.5 2.3026 34.5751 8.4568 99.0846
2.5 1.6223 19.1373 11.2733 175.0051
3.5 1.1789 9.9238 15.368 327.7227

2.5 0.5 5.3967 102.7195 4.7771 34.591
1.5 3.8952 63.8246 6.1274 54.3548
2.5 2.8088 36.6015 8.0461 91.9044
3.5 2.0801 19.6748 10.7324 164.0487

where x>0. Notice that the PDF given in Equation (7) is well defined for λ ∈ R. The
associated PDF, SF, and HRF are, respectively, given by

fCILP(x; λ, θ) = θ2

θ + 1

(
x + 1
x3

)
λe

−θ
x
exp

[(
1 −

(
1 + θ

(θ+1)x

)
e

−θ
x

)
λ
]

eλ − 1
,

SCILP(x) =
exp

[
1 −

((
1 + θ

(θ+1)x

)
e

−θ
x

)
λ
]

− 1

eλ − 1
,

hCILP(x; λ, θ) =
θ2

θ+1λ e
− θ

x

(
x+1
x3

)
exp

[(
1 −

(
1 + θ

(θ+1)x

)
e−

θ
x

)
λ
]

exp
[(

1 −
(
1 + θ

(θ+1)x

)
e−

θ
x

)
λ
]

− 1
, (7)

x>0 and λ ∈ R. Figure 1 displays plots of PDFs and HRFs for the CILP distribution for
some selected values of λ and θ . The figure reveals that both PDF and HR functions of the
CILP distribution are unimodal.

Table 2 reports the mean, variance, skewness, and kurtosis for the CILP distribution
for some selected values of λ and θ . From Table 2, we observe that both mean and vari-
ance decrease when λ and θ increase, while skewness and kurtosis increase when λ and θ
increase.
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Figure 2. Plots of the PDFs and HRFs of CILG distribution for some parameters.

4.2. The CILG distribution

The CILG distribution is defined from the CDF given in Equation (2) with C(λ) = λ(1 −
λ)−1. Therefore, the CDF of the CILG distribution is

FCILG(x; λ, θ) =
(
1 −

(
1 + θ

(θ+1)x

)
e−

θ
x

)
(1 − λ)

1 −
(
1 −

(
1 + θ

(θ+1)x

)
e−

θ
x

)
λ

, (8)

x>0 and θ , λ > 0. However, the CDF of the CILG distribution in Equation (8) is well
defined for λ < 1. The associated PDF, SF and HRF are given for x>0, respectively, by

fCILG(x; λ, θ) =
(
θ2

1+θ
) (

1+x
x3

)
e−

θ
x (1 − λ)

[
1 −

(
1 −

(
1 + θ

(θ+1)x

)
e−

θ
x

)
λ
]2 ,

SCILG(x; λ, θ) =
1 − λ2

(
1 −

(
1 + θ

(θ+1)x

)
e−

θ
x

)

1 −
(
1 −

(
1 + θ

(θ+1)x

)
e−

θ
x

)
λ

and hCILG(x; λ, θ) =
(
θ2

1+θ
) (

1+x
x3

)
e−

θ
x (1 − λ)

1 − λ2
(
1 −

(
1 + θ

(θ+1)x

)
e−

θ
x

) ,

where x > 0; θ > 0, λ < 1. Figure 2 displays plots of PDF and HRF of the CILG distribu-
tion for some selected values ofλ and θ . Similarly, the figure reveals that both PDF andHRF
of the CILG distribution are unimodal. Table 3 reports some basic statistical measures such
as the mean, variance, skewness, and kurtosis for the CILG distribution for some selected
values of λ and θ . Similarly, we observe that both mean and variance decrease when λ and
θ increase, while skewness and kurtosis increase when λ and θ increase.

5. Parameter estimation

In this section, different classical methods of estimation, namely maximum likelihood,
weighted least square, ordinary least square and maximum product of spacing, are con-
sidered to get the estimates of the parameters of the model.
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Table 3. Mean, variance, skewness, and kurtosis for CILG distribution.

θ λ Mean Varinace Skewness Kurtosis

0.5 0.3 0.8754 11.2076 14.926 300.4469
0.5 0.6976 8.1173 17.5027 412.7296
0.7 0.5003 4.9514 22.333 672.0396
0.9 0.2624 1.6889 37.9566 1947.798

1 0.3 1.9761 31.2938 8.9481 109.7963
0.5 1.5783 22.9574 10.4493 148.6349
0.7 1.1313 14.2181 13.2553 237.7219
0.9 0.5858 4.9512 22.2947 671.2451

1.5 0.3 3.0633 53.0021 6.8287 65.6352
0.5 2.4617 39.3271 7.9533 87.7262
0.7 1.7761 24.6937 10.0478 138.1144
0.9 0.9244 8.7671 16.7621 380.919

3 0.3 5.993 114.432 4.4878 31.204
0.5 4.9061 87.2476 5.2062 40.3956
0.7 3.6205 56.6687 6.5312 61.1433
0.9 1.9431 21.1464 10.7126 158.8445

5.1. Maximum-likelihood estimators

Among the different statistical methods of estimation, the maximum-likelihood (ML)
method is widely used due to its desirable properties including consistency, asymptotic
efficiency, and invariance. Here, the unknown parameters of the CILPS distribution are
estimated by using the method of maximum likelihood. Suppose that X1,X2, . . . ,Xn is
a random sample from the CILPS distribution with unknown parameters θ and λ. The
likelihood function of CILPS is given by

L(θ , λ | x1, . . . , xn) =
(
λθ2

θ + 1

)n n∏
i=1

(
1 + xi
x3i

)
e−

θ
xi

C′
[(

1 −
(
1 + θ

(θ+1)xi

)
e−

θ
xi

)
λ

]

C(λ)
.

(9)
The corresponding log likelihood function (�(θ , λ) is given by

�(θ , λ) = n log λ+ 2n log θ − n log(θ + 1)+
n∑

i=1
log(1 + xi)−

n∑
i=1

log x3i

−
n∑

i=1

θ

xi
+

n∑
i=1

log

⎡
⎢⎢⎣
C′
((

1 −
(
1 + θ

(θ+1)xi

)
e−

θ
xi

)
λ

)

C(λ)

⎤
⎥⎥⎦ . (10)

The score functions are S = (
∂�(θ ,λ)
∂θ

, ∂�(θ ,λ)
∂λ

)T , where its elements are given by, respectively,

∂�(θ , λ)
∂θ

= 2n
θ

− n
1 + θ

−
n∑

i=1

1
xi

+
n∑
i=1

C′′
((

1 −
(
1 + θ

(θ+1)xi

)
e−

θ
xi

)
λ

)

C′
((

1 −
(
1 + θ

(θ+1)xi

)
e−

θ
xi

)
λ

)
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× λ

⎛
⎝e−

θ
xi

xi

(
− 1
(θ + 1)2

+ θ

(θ + 1)xi
+ 1
)⎞
⎠

and

∂�(θ , λ)
∂λ

= n
λ

− nc′(λ)
c(λ)

+
n∑

i=1

C′′
((

1 −
(
1 + θ

(θ+1)xi

)
e−

θ
xi

)
λ

)

C′
((

1 −
(
1 + θ

(θ+1)xi

)
e−

θ
xi

)
λ

)

×
(
1 −

(
1 + θ

(θ + 1)xi

)
e−

θ
xi

)
.

On equating the score equations to 0, i.e. S = 0, and solving these equations simultane-
ously, the ML estimates can be obtained.

5.2. Ordinary least-square estimators

Here, regression-based method estimators of the parameters are obtained: namely, the
ordinary least-square (OLS) estimators. This approach was suggested by Swain et al. [37]
to estimate the parameters of the beta distribution but of course it can be used to any other
continuous distribution aswell. TheOLSmethod is described as follows. LetX1:n < X2:n <

· · · < Xn:n denote the order statistics of a random sample of size n from a population
with CDF F(x). It is well known that E(F(Xi:n)) = i/(n + 1) (see, e.g. [37]). Therefore, the
OLS estimate can be obtained by minimizing the sum of the squared differences between
the CDF to each order statistic; F(Xi:n) and the corresponding expected value; E(F(Xi:n)),
i.e. by minimizing

∑n
i=1[F(xi:n)− i

n+1 ]
2. For the CILPS distribution with CDF given in

Equation (2), theOLS estimates θ̂OLS and λ̂OLS of θ andλ can be determined byminimizing
the following function:

S(λ, θ) =
n∑

i=1

[
FCILPS(xi:n; θ , λ)− i

n + 1

]2
, (11)

with respect to λ and θ . These estimates can be obtained by solving the following equations:

∂S(λ, θ)
∂θ

=
n∑

i=1

[
FCILPS(xi:n; θ , λ)− i

n + 1

]
ψ1(xi:n | λ, θ) = 0,

∂S(λ, θ)
∂λ

=
n∑

i=1

[
FCILPS(xi:n; θ , λ)− i

n + 1

]
ψ2(xi:n | λ, θ) = 0,

where ψ1(xi:n | λ, θ) and ψ2(xi:n | λ, θ) are given by

ψ1(xi:n | λ, θ) =
C′
((

1 −
(
1 + θ

(θ+1)xi:n

)
e−

θ
xi:n

)
λ

)

C(λ)
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×
⎡
⎣−λ

⎛
⎝e−

θ
xi:n

xi:n

(
1

(θ + 1)2
− θ

(θ + 1)xi:n
− 1
)⎞
⎠
⎤
⎦ , (12)

ψ2(xi:n | λ, θ) =

(
1 + θ

(θ+1)xi:n

)
e−

θ
xi:n C′

[(
1 −

(
1 + θ

(θ+1)xi:n

)
e−

θ
xi:n

)
λ

]

[C(λ)]

−
C′(λ)C

[(
1 −

(
1 + θ

(θ+1)xi:n

)
e−

θ
xi:n

)
λ

]

[C(λ)]2
. (13)

5.3. Weighted least-squares estimators

Similar to the OLS method and on using the same notation, the weighted least-squares
(WLS) estimators can be obtained by minimizing

∑n
i=1 w(n, i)[F(xi:n)− i

n+1 ]
2, where

w(n, i) is a weight function. Note that the only difference between OLS and WLS is the
weight function. This weight function is taken to be the inverse of the variance of F(xi:n)
(see [37] for further details). So theWLS estimates ofλ and θ denoted by λ̂WLS and θ̂WLS for
the CILPS distribution can be obtained by minimizing the following function with respect
to λ and θ

W(λ, θ) =
n∑

i=1

(n + 1)2(n + 2)
i(n − i + 1)

[
FCILPS(xi:n; θ , λ)− i

n + 1

]2
. (14)

The WLS estimates, namely, λ̂WLS and θ̂WLS of the parameters can be obtained by solving
the following nonlinear equations:

∂W(λ, θ)
∂θ

=
n∑

i=1

(n + 1)2(n + 2)
i(n − i + 1)

[
FCILPS(xi:n; θ , λ)− i

n + 1

]
ψ1(xi:n | λ, θ) = 0,

∂W(λ, θ)
∂λ

=
n∑

i=1

(n + 1)2(n + 2)
i(n − i + 1)

[
FCILPS(xi:n; θ , λ)− i

n + 1

]
ψ2(xi:n | λ, θ) = 0,

where ψ1(xi:n | λ, θ) and ψ2(xi:n | λ, θ) are provided in Equations (12) and (13), respec-
tively.

5.4. Maximumproduct of spacing estimators

Cheng and Amin [10,11] presented an alternative method to the MLE method to estimate
the parameters of continuous univariate distributions. The MPS method gives consis-
tent estimators and they are asymptotically normal and efficient as the ML estimates.
Additionally, Anatolyev and Kosenok [5] investigated the invariance property of the MPS
estimators and showed that they have the same property as theML estimates. For theCILPS
distribution define

Di(λ, θ) = FCILPS(xi:n; θ , λ)− FCILPS(xi−1:n; θ , λ), i = 1, . . . , n,
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where FCILPS(x0:n; θ , λ) = 0 and FCILPS(xn+1:n; θ , λ) = 1. The MPS estimates λ̂MPS and
θ̂MPS of λ and θ can be determined by maximizing the function

M(λ, θ) = 1
n + 1

n+1∑
i=1

logDi(λ, θ), (15)

in relation to λ and θ . Equivalently, these estimates can also be obtained by solving the
equations

∂M(λ, θ)
∂θ

= 1
n + 1

n+1∑
i=1

ψ1(xi:n | λ, θ)− ψ1(xi−1:n | λ, θ)
Di(λ, θ)

= 0,

∂M(λ, θ)
∂λ

= 1
n + 1

n+1∑
i=1

ψ2(xi:n | λ, θ)− ψ2(xi−1:n | λ, θ)
Di(λ, θ)

= 0,

where ψ1(xi:n | λ, θ) and ψ2(xi:n | λ, θ) are given in Equations (12) and (13), respectively.

5.5. Computational issues

Apparently, solutions to the equations (10), (11), (14), and (15) cannot be obtained in
closed forms. Thus, we utilize the differential evolution technique (see [29]), which is
operated in the R software to obtain the estimates for all considered estimation methods.

6. Simulation study

In this section, we provide two algorithms for simulating random samples from the CILPS
distribution given via Equation (3). Additionally, Monte Carlo simulation experiments are
conducted in order to evaluate the performance of the parameters of CILPS.

6.1. Generation algorithm

Algorithm 6.1: In this algorithm, generating random samples from the CILPS distribution
can be carried out based on the mixture form of the ILD. Observe that the pdf of the ILD is
composed of a two-component mixture of an inverse gamma distribution with shape 2 and
scale θ parameters, denoted as INGAMMAD(2, θ) and by an inverse exponential distribu-
tion with scale parameter θ , denoted as IED(θ). Specifically, g(x) = γ g1(x)+ (1 − γ )g2(x),
where γ = θ/(1 + θ), g1 = IED(θ) and g2 = INGAMMAD(2, θ). (1) generate Ni from the
PS(λ) given via Equation (1), for i = 1, . . . , n; (2) for j = 1, . . . ,Ni, and i = 1, . . . , n, do;
generate Ui,j ∼ Uniform(0, 1); generate Ei,j ∼ IED(θ); generate Gi,j ∼ INGAMMAD(2, θ);
if Ui,j ≤ γ , then set Xi,j = Ei,j, else set Xi,j = Gi,j; (3) put Yi = min(Xi,1, . . . ,Xi,Ni),
i = 1, . . . , n.

Algorithm 6.2: This algorithm can be used for generating random samples from CILPS
using quantile functions of the CILPS distribution. (1) Generate ui ∼ Uniform(0, 1), for
i = 1, . . . , n; (2) solve

xi − 1
θ
ln
[
1 + θ

(1 + θ)xi

]
= 1
θ

(
1
λ
[1 − C−1(C(λ)(1 − ui))] − 1

)
.
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6.2. Monte Carlo simulation study

In this subsection, we assess the behavior of the estimators obtained from the four differ-
ent estimationmethods in estimating parameters of the CILPS distribution, by conducting
simulation experiments. The R function DEoptim given in [22], which takes into account
the procedure called differential evolution, is used in order to obtain the estimates from the
objective functions given in Equations (10), (11), (14) and (15). Steps of the simulation
studies are explained as follows: (i) set initial values for the parameters λ and θ , and des-
ignate the sample size n; (ii) use Algorithm 6.1 to obtain a random sample of size n from
the CILPS model; (iii) compute the estimates of the CILPS distribution parameters; and
(iv) redo steps (ii) and (iii) N times. We take n = 20, 50, 80, 100, 150, and 200 and dif-
ferent values for the distribution parameters. Additionally, we take N = 1000. The finite
sample behavior of the ML, OLS, WLS, and MPS estimates are assessed based on the fol-
lowing quantities for each sample size: the average estimate (AE) and the root-mean-square
error (RMSE). Table 4 report the results of the Monte Carlo simulation for the sub-model
CILP distribution, whereas Table 5 list the results of the Monte Carlo simulation for the
sub-model CILG distribution. The average values of estimates and RMSEs of ML, LSE,
WLSE and MPSE estimates corresponding to the submodels namely, CILP and CILG are
obtained and reported in Tables 4 and 5, respectively. These findings demonstrate interest-
ing facts. The behavior of the estimates of the parameters for the two sub-models namely,
CILP and CILG distributions obtained from the four estimation methods is quite satisfac-
tory, showing little bias and satisfactory RMSEs in all cases studied; that is, these estimates
are reliable, and particularly quite near to the true values, indicating that these estimates
behaved asymptotically unbiased. Moreover, the RMSE decays to zero as n → ∞. Hence,
it implies that these estimates are consistent. It is worth mentioning that further compu-
tational effort is necessary for universal results regarding the behavior of these estimators
for the submodels. This sort of study is outside the scope of this paper and will be pursued
in future papers.

7. The log compound inverse Lindley regressionmodel with censored data

Let X be a random variable that follows the CILPS(λ, θ) distribution. Then, the random
variable Y = log(X) delineates the log-compound inverse Lindley power series (LCIPS).
Putting θ = eμ, the PDF of Y is given by

f (y) = λ[exp(−μ)+ exp(y − μ)]
1 + exp(−μ) exp[−2(y − μ)− exp(−(y − μ))]

×
C′
[
λ
{
1 −

{
1 + exp(−(y−μ))

exp(μ)+1

}
exp[− exp(−(y − μ))]

}]
C[λ]

, (16)

where y ∈ R, λ > 0, and μ ∈ R is a location parameter. From now and on, we use the
notation Y ∼ LCILPS(λ,μ) for a random variable Y with PDF given via Equation (16).
The corresponding SF is given by

S(y) =
C
[
λ
{
1 −

{
1 + exp(−(y−μ))

exp(μ)+1

}
exp[− exp(−(y − μ))]

}]
C[λ]

. (17)
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Table 4. AEs and the corresponding RMSEs (in parenthesis) for the sub-model CILP distribution.

n Parameters ML OLS WLS MPS

20 λ = 0.5 0.4300 (0.1884) 0.3676 (0.1896) 0.3755 (0.1909) 0.3433 (0.1847)
θ = 0.5 0.5034 (0.0683) 0.4903 (0.0713) 0.4912 (0.0700) 0.4776 (0.0708)
λ = 1 0.9803 (0.3221) 0.8852 (0.3206) 0.8991 (0.3234) 0.8436 (0.3121)
θ = 0.5 0.5059 (0.0675) 0.4930 (0.0718) 0.4939 (0.0705) 0.4782 (0.0707)
λ = 0.5 0.4306 (0.1888) 0.3892 (0.1887) 0.3949 (0.1913) 0.3636 (0.1868)
θ = 2 1.9983 (0.2451) 1.9501 (0.2532) 1.9536 (0.2501) 1.9042 (0.2493)
λ = 3 2.9934 (0.3192) 2.9270 (0.3162) 2.9299 (0.3186) 2.8679 (0.3097)
θ = 3 2.9909 (0.2644) 2.9469 (0.2688) 2.9500 (0.2667) 2.8903 (0.2619)

50 λ = 0.5 0.4348 (0.1850) 0.3985 (0.1921) 0.4050 (0.1911) 0.3604 (0.1868)
θ = 0.5 0.4975 (0.0492) 0.4896 (0.0490) 0.4903 (0.0478) 0.4804 (0.0482)
λ = 1 0.9841 (0.3114) 0.9098 (0.3204) 0.9298 (0.3208) 0.8589 (0.3084)
θ = 0.5 0.5039 (0.0507) 0.4944 (0.0517) 0.4965 (0.0506) 0.4841(0.0506)
λ = 0.5 0.4294 (0.1839) 0.3827 (0.1865) 0.3974 (0.1856) 0.3532 (0.1810)
θ = 2 1.9860 (0.1888) 1.9511 (0.1990) 1.9585 (0.1919) 1.9104 (0.1865)
λ = 3 2.9859 (0.3076) 2.9246 (0.3085) 2.9424 (0.3111) 2.8830 (0.3076)
θ = 3 2.9913 (0.2142) 2.9545 (0.2233) 2.9635 (0.2192) 2.9158 (0.2163)

80 λ = 0.5 0.4378 (0.1809) 0.4030 (0.1903) 0.4121 (0.1875) 0.3731 (0.1873)
θ = 0.5 0.4991 (0.0424) 0.4921 (0.0438) 0.4937 (0.0422) 0.4860 (0.0424)
λ = 1 1.0072 (0.3035) 0.9510 (0.3105) 0.9740 (0.3061) 0.9043 (0.3041)
θ = 0.5 0.5033 (0.0433) 0.4956 (0.0439) 0.4981 (0.0425) 0.4883 (0.0429)
λ = 0.5 0.4430 (0.1792) 0.4043 (0.1868) 0.4174 (0.1843) 0.3794 (0.1831)
θ = 2 1.9859 (0.1706) 1.9528 (0.1741) 1.9610 (0.1707) 1.9280 (0.1712)
λ = 3 2.9777 (0.3019) 2.9233 (0.3071) 2.9429(0.3034) 2.8827( 0.2955)
θ = 3 3.0037(0.1851) 2.9745 (0.1904) 2.9849 (0.1855) 2.9400 (0.1883)

100 λ = 0.5 0.4335 (0.1824) 0.4039 (0.1890) 0.4136 (0.1856) 0.3723 (0.1848)
θ = 0.5 0.4996 (0.0384) 0.4939 (0.0383) 0.4953 (0.0375) 0.4878 (0.0382)
λ = 1 0.9780 (0.2978) 0.9382 (0.3084) 0.9509 (0.3039) 0.8774 (0.2959)
θ = 0.5 0.5017 (0.0405) 0.4966 (0.0417) 0.4981 (0.0401) 0.4878 (0.0400)
λ = 0.5 0.4186 (0.1826) 0.3946 (0.1851) 0.4049 (0.1857) 0.3616 (0.1824)
θ = 2 1.9841 (0.1537) 1.9644 (0.1561) 1.9696 (0.1494) 1.9328 (0.1526)
λ = 3 2.9896 (0.2930) 2.9438 (0.2972) 2.9599 (0.2936) 2.8997 (0.2903)
θ = 3 2.9971 (0.1846) 2.9735 (0.1839) 2.9808 (0.1807) 2.9403 (0.1841)

150 λ = 0.5 0.4320 (0.1778) 0.4048 (0.1844) 0.4158 (0.1843) 0.3752 (0.1808)
θ = 0.5 0.4961 (0.0317) 0.4911 (0.0323) 0.4925 (0.0314) 0.4865 (0.0313)
λ = 1 0.9981 (0.2904) 0.9661 (0.2963) 0.9828 (0.2927) 0.9159 (0.292)
θ = 0.5 0.5015 (0.0350) 0.4972 (0.0356) 0.4990 (0.0344) 0.4907 (0.035)
λ = 0.5 0.4413 (0.1746) 0.4135 (0.1811) 0.4236 (0.1778) 0.3868 (0.1789)
θ = 2 1.9889 (0.1428) 1.9661 (0.1391) 1.9725 (0.1359) 1.9467 (0.1426)
λ = 3 2.9881 (0.2829) 2.9469 (0.2894) 2.9670 (0.2858) 2.9110 (0.2854)
θ = 3 3.0038 (0.1624) 2.9813 (0.1643) 2.9911 (0.1600) 2.9577 (0.1639)

200 λ = 0.5 0.4355 (0.1772) 0.4117 (0.1847) 0.4208 (0.1819) 0.3883 (0.1791)
θ = 0.5 0.4980 (0.0281) 0.4939 (0.0287) 0.4952 (0.0275) 0.4902 (0.0282)
λ = 1 0.9950 (0.2743) 0.9673 (0.2853) 0.9771 (0.2804) 0.9167 (0.2783)
θ = 0.5 0.5005 (0.0317) 0.4967 (0.0320) 0.4978 (0.0309) 0.4910 (0.0318)
λ = 0.5 0.4363 (0.1730) 0.4134 (0.1784) 0.4217 (0.1769) 0.3871 (0.1766)
θ = 2 1.9805 (0.1267) 1.9611 (0.1294) 1.9672 (0.1260) 1.9447 (0.1266)
λ = 3 3.0104 (0.2686) 2.9755 (0.2769) 2.9935 (0.2718) 2.9426 (0.2731)
θ = 3 3.0148 (0.1468) 2.9952 (0.1523) 3.0038 (0.1462) 2.9760 (0.1478)

We define the standardized rv Z = (Y − μ) having density function

φ(z; λ,μ) = λ[exp(−μ)+ exp(z)]
1 + exp(−μ) exp[−2z − exp(−z)]

×
C′
[
λ
{
1 −

{
1 + exp(−z)

exp(μ)+1

}
exp[− exp(−z)]

}]
C[λ]

. (18)
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Table 5. AEs and the corresponding RMSEs (in parenthesis) for the sub-model CILG distribution.

n Parameters ML OLS WLS MPS

20 λ = 0.5 0.4533 (0.1682) 0.3926 (0.1794) 0.4017 (0.1789) 0.3695 (0.1745)
θ = 0.5 0.5004 (0.0716) 0.4740 (0.0731) 0.4767 (0.0715) 0.4606 (0.0752)
λ = 0.5 0.4910 (0.1289) 0.4439 (0.1383) 0.4510 (0.1386) 0.4259 (0.1352)
θ = 1 1.0252(0.1512) 0.9767 (0.1501) 0.9812 (0.1476) 0.9462 (0.1528)
λ = 0.7 0.4662 (0.1033) 0.4432 (0.0863) 0.4483 (0.0904) 0.4374 (0.0822)
θ = 2 2.1622 (0.2008) 2.1487 (0.2111) 2.1517 (0.2066) 2.0600 (0.2448)
λ = 0.9 0.6407 (0.0658) 0.6358 (0.0636) 0.6375 (0.0648) 0.6353 (0.0632)
θ = 1.5 1.4852 (0.0894) 1.5170 (0.0891) 1.5129 (0.0892) 1.4582 (0.0813)

50 λ = 0.5 0.4645 (0.1544) 0.4247 (0.1684) 0.4373 (0.1640) 0.3955 (0.1659)
θ = 0.5 0.4998 (0.0584) 0.4830 (0.0606) 0.4874 (0.0587) 0.4713 (0.0606)
λ = 0.5 0.4814 (0.1245) 0.4531 (0.1326) 0.4604 (0.1306) 0.4289 (0.1292)
θ = 1 1.0159 (0.1194) 0.9880 (0.1197) 0.9934 (0.1169) 0.9623 (0.1181)
λ = 0.7 0.4498 (0.0763) 0.4401 (0.0726) 0.4422 (0.0724) 0.4306 (0.0636)
θ = 2 2.1679 (0.1626) 2.1795 (0.1599) 2.1788 (0.1567) 2.1038 (0.1822)
λ = 0.9 0.6186 (0.0393) 0.6180 (0.0383) 0.6189 (0.0394) 0.6165 (0.0367)
θ = 1.5 1.4600 (0.0765) 1.5133 (0.0829) 1.5047 (0.0837) 1.4435 (0.0677)

80 λ = 0.5 0.4689 (0.1476) 0.4340 (0.1625) 0.4471 (0.1582) 0.4140 (0.1583)
θ = 0.5 0.4987 (0.0532) 0.4846 (0.0555) 0.4893 (0.0541) 0.4765 (0.0542)
λ = 0.5 0.4801 (0.1185) 0.4550 (0.1250) 0.4650 (0.1215) 0.4334 (0.1213)
θ = 1 1.0040 (0.1068) 0.9823 (0.1097) 0.9891 (0.1061) 0.9606 (0.1058)
λ = 0.7 0.4361 (0.0617) 0.4292 (0.0578) 0.4305 (0.0581) 0.4211 (0.0488)
θ = 2 2.1497 (0.1447) 2.1728 (0.1445) 2.1686 (0.1412) 2.0991 (0.1545)
λ = 0.9 0.6110 (0.0262) 0.6116 (0.0278) 0.6123 (0.0279) 0.6097 (0.0241)
θ = 1.5 1.4433 (0.0655) 1.5081 (0.0801) 1.4975 (0.0804) 1.4319 (0.0577)

100 λ = 0.5 0.4696(0.1375) 0.4388 (0.1570) 0.4525 (0.1489) 0.4157 (0.1507)
θ = 0.5 0.5001 (0.0501) 0.4887 (0.0554) 0.4929 (0.0521) 0.4792 (0.0519)
λ = 0.5 0.4880 (0.1092) 0.4600 (0.1215) 0.4718 (0.1175) 0.4474 (0.1176)
θ = 1 1.0034(0.0862) 0.9813 (0.1005) 0.9907 (0.0960) 0.9691 (0.0966)
λ = 0.7 0.4314 (0.0568) 0.4271 (0.0538) 0.4291 (0.0548) 0.4189 (0.0460)
θ = 2 2.1560 (0.1354) 2.1795 (0.1317) 2.1768 (0.1289) 2.1126 (0.1416)
λ = 0.9 0.6080 (0.0215) 0.6079 (0.0219) 0.6085 (0.0224) 0.6074 (0.0208)
θ = 1.5 1.4399 (0.0591) 1.5104 (0.0767) 1.4986 (0.0767) 1.4301 (0.0527)

150 λ = 0.5 0.4816 (0.1222) 0.4520 (0.1427) 0.4654 (0.1329) 0.4394 (0.1352)
θ = 0.5 0.5009 (0.0439) 0.4896 (0.0487) 0.4941 (0.0453) 0.4848 (0.0459)
λ = 0.5 0.4882 (0.1087) 0.4688 (0.1167) 0.4781 (0.1142) 0.4543 (0.1149)
θ = 1 1.0008 (0.0872) 0.9866 (0.0902) 0.9936 (0.0863) 0.9738 (0.0868)
λ = 0.7 0.4270 (0.0487) 0.4241 (0.0471) 0.4247 (0.0469) 0.4182 (0.0408)
θ = 2 2.1561 (0.1195) 2.1872 (0.1128) 2.1812 (0.1119) 2.1243 (0.1229)
λ = 0.9 0.6047 (0.0142) 0.6049 (0.0157) 0.6054 (0.0159) 0.6045 (0.0137)
θ = 1.5 1.4319 (0.0521) 1.5086 (0.0724) 1.4950 (0.0723) 1.4253 (0.0462)

200 λ = 0.5 0.4782 (0.1164) 0.4561 (0.1355) 0.4665 (0.1264) 0.4421 (0.1285)
θ = 0.5 0.4996 (0.0402) 0.4915 (0.0462) 0.4949 (0.0424) 0.4860 (0.0420)
λ = 0.5 0.4916 (0.1001) 0.4761 (0.1121) 0.4832 (0.1066) 0.4619 (0.1057)
θ = 1 1.0041 (0.0776) 0.9915 (0.0846) 0.9965 (0.0795) 0.9786 (0.0786)
λ = 0.7 0.4210 (0.0424) 0.4211 (0.0436) 0.4211 (0.0427) 0.4137 (0.0351)
θ = 2 2.1381 (0.1146) 2.1722 (0.1100) 2.1650 (0.1090) 2.1115 (0.1146)
λ = 0.9 0.6030 (0.0109) 0.6032 (0.0130) 0.6033 (0.0126) 0.6028 (0.0106)
θ = 1.5 1.4235 (0.0409) 1.5101 (0.0672) 1.4945 (0.0658) 1.4183 (0.0366)

Figure 3 displays the density function for some selected parameter values using the log-
compound inverse Lindley Poisson (LCILP), log-compound inverse Lindley geometric
(LCILG), and log-compound inverse Lindley logarithm (LCILL) distributions. Based on
theCILPSdensity, we propose a linear location regressionmodel connecting the dependent
variable yi and a set of covariate variables vTi = (vi1, . . . , vip) as given below:

yi = vTi β + zi, i = 1, . . . , n, (19)
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Figure 3. Plots of the LCILPS PDF for some parameter values of λ with μ = 0. (a) LCILG; (b) LCILP; (c)
LCILL.

where zi is a random error with PDF given via Equation (18), β = (β1, . . . ,βp)T , λ and μ
are unknown parameters. The position of the ith observation, response (yi) is defined as
ξi = vTi β , i = 1, . . . , n. In matrix notation, the vector ξ = (ξ1, . . . , ξn)T is represented by
a linear model ξ = Vβ , where V = (v1, . . . , vn)T is a known model matrix.

7.1. The LCILPS regressionmodel for censored data

Let (y1, v1), . . . , (yn, vn) be a random sample of size n, where yi = min{log(Xi), log(Di)}. In
such situations, the most realistic assumption is that the lifetimes and censoring times are
independent. Denote by F to be the set of observations for which yi is the log-lifetime,
and the set D to be the set of observations for which yi is the log-censoring. The log-
likelihood function for the vector of parameters θ = (λ,μ,βT)T from the model given
via Equation (19) is given by

�(θ) = r[log(λ)− log(1 + exp(−μ))] − n log(C[λ])

+
∑
i∈F

log[exp(−μ)+ zi] −
∑
i∈F

[2zi − exp(−zi)]

+
∑
i∈F

log
(
C′
[
λ

{
1 −

{
1 + exp(−zi)

exp(μ)+ 1

}
exp[− exp(−zi)]

}])

+
∑
i∈D

log
(
C
[
λ

{
1 −

{
1 + exp(−zi)

exp(μ)+ 1

}
exp[− exp(−zi)]

}])
, (20)

where zi = (yi − vTi β), and r be the number of uncensored observations (failures). The
MLE θ̂ of the vector of unknown parameters can be determined by maximizing the log-
likelihood by Equation (20). The fitted CILPSmodel yields the estimated survival function
for yi (ẑi = yi − vTi β̂) which is given by

S(yi; λ̂, μ̂, β̂) =
C
[
λ̂

{
1 −

{
1 + exp(−(yi−vTi β̂))

exp(μ)+1

}
exp[− exp(−(yi − vTi β̂))]

}]

C[λ̂]
. (21)
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For interval estimation of the parameters, we can evaluate numerically the elements of the
(p + 2)× (p + 2) observed information matrix −L̈(θ̂). The multivariate normal distribu-
tion Np+2(0,−L̈(θ̂)−1) for θ̂ can be used to provide approximate confidence intervals for
the unknown parameters.

8. Empirical applications

In this section, we shall demonstrate the potentiality of the CILPS model by
means of three real data sets, first one is uncensored, the second one is cen-
sored, and the third one is a censored data with regression. The fits of the sub-
models of CILPS distribution will be compared with some competitive models namely
the Weibull (WE), inverse gamma (IGM), generalized inverse exponential (GIE),
inverse Gaussian (IG), log-logistic (LL), and log-normal (LN) distributions, whose
CDFs (for x>0) are given by FWE(x, λ, θ) = exp[−(λx )θ ]; FIGM(x, λ, θ) = TG(λx ; θ),
where TG(x; θ) = 1

�(θ)

∫∞
x tθ−1e−t dt; FGIE(x, λ, θ) = [1 − exp(−λ

x )]
θ ; FIG(x, λ, θ) =

�(z1)+ exp( 2λ
θ
)�(z2), where z1 =

√
β
x (

x
α

− 1) and z2 = −
√
β
x (

x
α

+ 1); FLL(x, λ, θ) =
1 − 1

1+(x/λ)θ ; FLN(x, λ, θ) = �(
log(x)−λ

θ
). The competitive models are compared by using

goodness-of-fit criteria and information theoretic criteria including the Kolmogorov–
Smirnov (KS) statistic with its p-value, Akaike information criterion (AIC) and Bayesian
information criterion (BIC). All statistical computation andmodeling are carried out using
the statistical software R [30].

8.1. Uncensored data: failure ofmechanical components

For the first example, we consider a data set fromMurthy et al. [23] consisting of the failure
times of 20 mechanical components. The data are 0.067, 0.068, 0.076, 0.081, 0.084, 0.085,
0.085, 0.086, 0.089, 0.098, 0.098, 0.114, 0.114, 0.115, 0.121, 0.125, 0.131, 0.149, 0.160 and
0.485. The current data are positively skewed and the data exhibit an upside-down hazard
rate as explained by the TTT plot given in Figure 4(a). So the proposed model can be used
to model these data. Numerical values of the ML, �, AIC and BIC are reported in Table 6.
Additionally, the table includes the most commonly used non-parametric goodness-of-fit
test statistic; K–S test statistic along with its p-value. Based on the K–S test statistics, we
may say that all considered models can be used to model the current data except the sub-
model CILL and IGG. Table 4 also reveals that the sub-model CILG distribution possesses
the lowest values of �, AIC and BIC in comparison to all other fitted models. Furthermore,
Figure 4 (c) (estimated CDFs) shows that the fitted CILG CDF is so near to the empirical
distribution. Also, Figure 4(d) (estimatedHRFs) demonstrates that the estimatedHRF is an
upside-down bathtub shape, which reflects the actual behavior of the data. Finally, Figure 5
shows the P–P plot for the proposed model along with some competing models.

8.2. Censored data: cancer data

The second data set refers to the survival times (in years) for 45 patients who were ran-
domized to Chemotherapy plus Radiotherapy for about 8 years. Survival times for the
current data as reported in [17] are given as 17, 42, 44, 48, 60, 72, 74, 95, 103, 108, 122,
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Figure 4. (a) TTT-plot; (b) estimated PDFs along with histogram; (c) estimated CDFs; and (d) estimated
HRFs for the failure of mechanical components data.

Table 6. MLEs, standard deviation (in parenthesis) and goodness-of-fit measures for failure data.

Distribution Estimates K−S p-value −� AIC BIC

CILG(λ, θ) 0.9936 (0.0065) 0.6617 (0.1043) 0.13295 0.8714 −38.93 −73.86 −71.87
CILP(λ, θ) 8.5271 (3.1235) 0.3945 (0.0509) 0.1161 0.9503 −36.57 −69.14 −67.15
CILL(λ, θ ) 0.0348 (0.1066) 0.1872 (0.0814) 0.3296 < 0.05 −28.38 −52.76 −50.77
WE(λ, θ) 0.1376 (0.0200) 1.6421 ( 0.2312) 0.2641 0.1227 −26.42 −48.84 −46.85
IGM(λ, θ) 0.1444 (0.0407) 0.6790 (0.0897) 0.5569 < 0.05 −29.28 −54.56 −52.569
GIE(λ, θ) 0.2716 (0.0485) 8.5799 (3.5195) 0.1655 0.6438 −34.40 −64.8 −62.81
IG(λ, θ) 0.5804 (0.1835) 0.1216 (0.0125) 0.1991 0.4061 −33.08 −62.16 −60.17
LL(λ, θ) 0.1016 (0.0075) 5.0860 (0.9630) 0.1124 0.9623 −36.18 −68.36 −66.37
LN(λ, θ) −2.2298 (0.0939) 0.4201 (0.066) 0.1693 0.6151 −33.56 −63.12 −61.128

144, 167, 170, 183, 185, 193,195, 197, 208, 234, 235, 254, 307, 315, 401, 445, 464, 484, 528,
542, 547, 577,580, 795, 855,1366, 1577, 2060, 2412+, 2486+, 2796+, 2802+, 2934+, 2988+,
where+ sign indicates a censored observation. The TTT plot for the current data given in
Figure 6(a) reveals an upside-down shaped HRF. Specifically, the graph indicates that HRF
has a spiked upside down. Interestingly, the estimated HRF shows a spiked upside down,
see Figure 6(c) which reflects the actual behavior of the empirical data. Table 7 reports the
ML estimates of the model parameters along with the �, AIC, and BIC measures for some
fittedmodels to these data. It is evident that the smallest values of these criteria correspond
to the CILG distribution. In order to assess if the proposed model is appropriate, the plots
of the fitted CDFs of these distributions and the empirical ones are displayed in Figure 6(b).
They indicate that the CILG distribution provides a good fit for these data.

8.3. Censored LCILPS regressionmodel: cancer tongue data

We demonstrate the proposed regression model using censored cancer data, specifically
cancer tongue data. The following analysis refers to data from [17], in which a study was
conducted on the effects of ploidy on the prognosis of patients with cancers of the mouth.
Patients were selected who had a paraffin-embedded sample of the cancerous. The total
sample size is n = 80. The response variable in the experiment is the lifetime of the adult
flies in days after exposure to the treatments. So, we have the variables used in this study
are yi: log-lifetime of a patient in weeks; δi: censoring indicator; vi1: group (0 = Aneuploid
Tumor, 1 = Diploid Tumor), i = 1, . . . , 80. This analysis aims to compare between sur-
vival curves for the two groups. There are a variety of models that can be used such as
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Figure 5. P–P plots for some candidate distributions. (a) CILG, (b) CILP, (c) CILL, (d) W, (e) IGG, (f ) GIE, (g)
IG, (h) LL and (i) LN.

Figure 6. Left: TTT-plot; middle: estimated SFs; and right: estimated HRFs for the cancer data.

the Log-Weibull (LW), Log-loglogistic (LLL) and Log-lognormal (LLN) regression mod-
els. We adopt these classical regression models as an example to illustrate that the LCILPS
regression model can provide better fits. Therefore, we present the results by fitting the
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Table 7. MLEs, standard deviations (in parenthesis) and goodness-of-fit measures for cancer data.

Distribution Estimates −� AIC BIC

CILG(λ, θ) −2.8473 (2.5208) 70.8268 (35.5127) 287.81 579.62 583.23
CILP(λ, θ) −3.5589 (2.5040) 59.2642 (39.9365) 287.83 579.66 583.273
CILL(λ, θ) −7.5228 (7.5153) 87.8241 ( 27.5671) 288.00 580 583.61
WE(λ, θ) 692.7380 (160.999) 0.6998 (0.0875) 295.06 594.12 597.733
IGM(λ, θ) 0.5491 (0.314187) 0.1697 (0.04131) 335.58 675.16 678.77
GIE(λ, θ) 108.1483 (25.4413) 0.6265 (0.12804) 288.08 580.16 583.77
IG(λ, θ) 163.8594 (0.0285) 1771.1575 (0.0006) 288.05 580.1 583.71
LL(λ, θ) 317.6856 (69.3983) 1.1819 (0.1581) 289.36 582.72 586.33
LN(λ, θ) 5.8536 (0.2211) 1.464 (0.1726) 289.49 582.98 586.59

following model

yi = βvi + εi, i = 1, 2 . . . , 80, (22)

where εi is a random error with PDF given via Equation (18), and hence Yi is a random
variable that can follow LCILG, LCILP, or LCILL distributions using the appropriate C(·).
Notice that if the regression model given in Equation (22) represents the LW regression,
then the errors (εi) should follow the standard extreme distribution; if it represents the LLL
regression model, then the errors (εi) should follow the standard logistic distribution; and
if it represents the LLN regression model, then the errors (εi) should follow the standard
normal distribution. Before we start fitting the proposed log-linear models along with the
other models to the current data, it is desirable to provide preliminary analysis that does
not depend on a certain functional form or by assuming that the data follow a specific dis-
tribution. So, we perform a popular non-parametric test called the log-rank test for testing
no difference in survival between Aneuploid and Diploid groups. We find that the value of
this test statistic is χ2 = 2.8 with 1 degree of freedom and a p-value of.09, which implies
that the null hypothesis (equality of survival rates) is not rejected at level α = 0.05. Table 8
lists the ML estimates for the fitted regression models for these data along with the �, AIC
and BIC statistics. It can be seen clearly that the LCILG model for the current data is the
best one in terms of possessing the lowest �, AIC and BIC statistics values among those

Table 8. MLEs of the parameters from the fitted LCILG, LCILP, LCILL, LW, LLL, and LLN regression models
alongwith the standard errors (betweenparentheses) and p-values [betweenbrackets] to tongue cancer
data.

Model λ θ β −� AIC BIC

LCILG −58.4743 (85.5835) 2.1236 (2.2461) −0.7766 (0.4099) 123.28 252.56 259.706
[0.0582]

LCILP −4.86373 (0.97318) 9.0662 (1.8958) −0.7334 (0.2938) 136.24 278.48 285.63
[ 0.0124]

LCILL −126.1720 (89.0655) 6.6338 (1.7933) −0.6308 (0.4192) 127.57 261.14 268.29
[0.1336]

LW 144.2510 (32.7167) 0.8059 (0.0932) −0.6690 (0.3510) 123.8 253.6 260.75
[0.0574]

LLL 87.3141 (21.1712) 1.0422 (0.1210) −0.7905 (0.4042) 123.6 253.2 260.35
[0.0505]

LLN 4.4504 (0.2586) 1.6802 (0.1726) −0.80566 (0.4146) 123.61 253.22 260.37
[0.0524]
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values of the fitted regression models followed by the LLL model as a second close. Addi-
tionally, all the consideredmodels except the LCILPmodel are agreed that the survival rate
curves are in difference since the covariate v is insignificant at the 5% level.

In order to provide further assessment whether the proposed model is appropriate,
Figure 7 displays the plots of the empirical SF and the estimated SFs from the fitted LCILPS

Figure 7. Plots for estimated LCILG, LCILP, LCILL, LW, LLL, and LLN survival functions along with their
corresponding HR functions for the tongue data.
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Figure 8. Cox–Snell residuals to assess the fit of LCILG, LCILP, LCILL, LLW, LLL, and LLN regressionmodels
for the tongue data.

regressionmodels along with the other competing regressionmodels. The plots reveal that
the LCILG regression provides a good fit compared to the considered regression models.
An interesting point is that HRFs for patients suffering from diploid and aneuploid tumor
using the LCILG regression model reveal a spiked upside-down shape. In contrast, the
other competing regression models reveal a fast increasing shape at the early events then
start decreasing slowly except for the LLW regression model.

Additionally, we provide further assessment for the adequacy of the fitted log-linear
regression model by examining the Cox–Snell residuals to these fitted models. The
Cox–Snell residual is defined as the estimated cumulative hazard rate function. Note that
the cumulative hazard rate function H is defined as HY(y) = − ln SY(y), where SY(·) is
the survival function of the random variable Y. Therefore, the Cox–Snell residuals of
the LCILPS regression model is ri = − ln[S(yi; λ̂, μ̂, β̂)], where S(yi; λ̂, μ̂, β̂) is given via
Equation (21). The plot of the Cox–Snell residuals for the fitted LCLIPS regression models
can be constructed by graphing ri against the Nelson–Aalen estimator of ri. Now, if the
LCILPS regression models fit the data, then the plot should produce a straight line. It is
worth mentioning that the Cox–Snell residuals are useful for checking the overall fit of the
model (for further details regarding these residuals, see [17]). The graphs in Figure 8 reveal
good performance for the LCILG, LLL, and LLN regression models but are suspect for the
LCILP, LCILL and LWmodels.

9. Conclusion

In this work, we introduce a new inverse Lindley power series class of distributions, which
is obtained by compounding inverse Lindley and power series distributions. The new
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distribution contains several important lifetime models. We obtain some of its mathemat-
ical/statistical properties including moments, moment generating function, mean residual
life and order statistics. The model parameters are obtained by the methods of maximum
likelihood, least square, weighted least square and maximum product of spacing and com-
pared using Monte Carlo simulation study. Besides, two special models of the new family
are investigated. Further, to cater to censored data, we introduce the log compound inverse
Lindley regressionmodel. One important aspect of this newmodel is that it provides better
fits than some well-known models using three real data sets.

As for future research, this paper can be extended in several ways. For instance, the new
compound family of distribution introduced in this paper can be studied under Type-II
progressive censoring sampling schemes to solve real problems related to engineering relia-
bility. Moreover, additional different methods of estimation can be considered particularly,
the Bayesian analysis using subjective and objective priors, since thismethod is effective for
small sample sizes. Furthermore, the proposed LCILPS regression model for survival data
in presence of a survival fraction can be considered in a future study, as well as by consider-
ing the shape parameter depending on covariates. In particular, influential diagnostics and
outliers can be investigated further in this context. Additionally, the Bayesian analysis of the
censored LCILPS regressionmodel can also be considered includingmodel selection using
the conditional predictive ordinate (CPO) statistic, and influential observations using q-
divergence measure between two densities which include the Kullback–Leibler divergence
and �1-distance divergence measures as special cases.
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Appendix

Proof of Proposition 3.1: Using the CDF of the CILPS distribution along with the definition of the
C[·] function and then taking the limit of the CDF as λ approaches to 0, we have

lim
λ→0

FCILPS(x; θ , λ)

= 1 − lim
λ→0

∑∞
n=1 bn

[
1 −

{(
1 −

((
1 + θ

(θ+1)x

)
e−

θ
x

))
λ
}n]

∑∞
n=1 bnλn

= 1 −
(
1 −

(
1 + θ

(θ+1)x

)
e−

θ
x

)
+ b−1

1 limλ→0
∑∞

n=2 bnnλ
n
(
1 −

((
1 + θ

(θ+1)x

)
e−

θ
x

))n
1 + b−1

1 limλ→0
∑∞

n=2 bnnλn
.

Since the limit of the second term in the denominator and numerator vanishes as λ approaches to 0,
it follows that FCILPS(x; θ , λ) = (1 + θ

(θ+1)x ) e
− θ

x which is the CDF of ILD as desired. �

Proof of Proposition 3.2: We need the following facts about the PDF and CDF of the ILD. It
is not difficult to show that limx→0 gILD(x; θ) = limx→0 hILD(x; θ) = 0 and limx→∞ gILD(x; θ) =
limx→∞ hILD(x; θ) = 0. Additionally, the first derivative of the gILD(x; θ) is g′

ILD(x; θ) =
− θ2

(1+θ)x5 exp(−θ/x)[2x2 − (θ − 3)x − θ], and limx→0 g′
ILD(x; θ) = +∞, limx→∞ g′

ILD(x; θ) =
−∞ and limx→0

C′[x]
C[x] = λ−1. Therefore, we have that

lim
x→0

hCILPS(x; θ , λ) = lim
x→0

⎧⎨
⎩

λθ2

θ+1

(
1+x
x3

)
e−

θ
x C′
[(

1 −
(
1 + θ

(θ+1)x

)
e−

θ
x

)
λ
]

C
[(

1 −
(
1 + θ

(θ+1)x

)
e−

θ
x

)
λ
]

⎫⎬
⎭

= λC′ (λ)
C (λ)

lim
x→0

gILD(x; θ) = 0.
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Similarly, as x → ∞, we have limx→∞ h(x; θ , λ) = limx→∞ λC′(0)
C(0) gILD(x; θ) = limx→∞ gILD(x; θ)

= 0. To show that theHRF of theCILDPS distribution is unimodal, we differentiate Equation (4) and
examine the behavior of the resulting equation. Note that the HRF of the CILDPS distribution given
via Equation (4) can be written as hCILPS(x; θ , λ) = λgILD(x; θ)C

′[λ(1−GILD(x;θ))]
C[λ(1−GILD(x;θ))] . So, the derivative

of hCILPS(x; θ , λ) and after some algebra reduces to

h′
CILPS(x; θ , λ) = −λ[λhIL(x; θ)gILD(x; θ){C′′

[λ(1 − GILD(x; θ))] − (C′[λ(1 − GIL(x; θ))])2}
− ρ(C′[x],C[x])g′

ILD(x; θ)],

where ρ(C′[x],C[x]) = C′[λ(1−GILD(x;θ))]
C[λ(1−GILD(x;θ))] . Observe that limx→∞ ρ(C′[x],C[x]) = C′[0]

C[0] = λ−1. The
modal, say x0, is the value such that h′

CILPS(x0; θ , λ) = 0. To verify that x0 is the value thatmaximizes
hCILPS(x; θ , λ), we examine the behavior of h′

CILPS(x; θ , λ). Note that x0 ∈ (0,∞). Therefore, as x →
∞, we have

lim
x→∞ h′

CILPS(x; θ , λ) = −λ
[
0 − 1

λ
lim
x→∞ g′

ILD(x; θ)
]

= lim
x→∞ g′

ILD(x; θ) = −∞ < 0.

Similarly, it can be readily seen that limx→0 h′
CILPS(x; θ , λ) = C′[λ]

C[λ] limx→0 g′
ILD(x; θ) = +∞ > 0,

and hence, x0 is a mode for hCILPS(x; θ , λ) as required. �

Proof of Proposition 3.3: We have from Equation (2) that

FCILPS(x; θ , λ) = 1 − 1
C(λ)

∞∑
n=0

bnλn
[
1 −

(
1 + θ

(1 + θ)x

)
e−

θ
x

]n

= 1 − 1
C(λ)

∞∑
n=0

bnλn[ḠILD(x, θ)]n, (A1)

where ḠILD(x, θ) = 1 − GILD(x; ). Consider the Lehmann type II (LTII) CDF; �c(x) = 1 − {1 −
G(x)}c [19] with power parameter c> 0 defined from the baseline G(x). Thus, the LTII density is
given byπc(x) = cḠ(x)c−1g(x), where g(x) = dG(x)/dx. By differentiating the last equation of F(x),
the pdf of X follows as given in Equation (5). �

Proof of Proposition 3.4: We have thatm(t) = 1
SCILPS(t)C(λ)

∫∞
t C((1 − (1 + θ

(θ+1)x )e
− θ

x )λ) dx. On
using Equation (A1), the above equation reduces to

m(t) = 1
SCILPS(t)C(λ)

∞∑
n=1

bn
∫ ∞

t

[{
1 −

(
1 + θ

(θ + 1)x

)
e−

θ
x

}
λ

]n
dx.

Now applying the binomial expansion to the integrand term in the above equation, we have that

m(t) = 1
SCILPS(t)C(λ)

∞∑
n=1

bn
n∑

k=0

(−1)kλk
(
n
k

)∫ ∞

t

(
1 + θ

(θ + 1)x

)k
e−

θk
x dx.

On using the binomial and exponential expansions followed by rearranging the terms, the following
expression is obtained:

m(t) = 1
SCILPS(t)C(λ)

∞∑
n=1

bn
n∑

k=0

k∑
m=0

∞∑
l=0

(−1)k+l λ
k (θk)l

l!

(
n
k

)(
k
m

)
k
(

θ

θ + 1

)m

1
(m + l − 1)tm+l−1 dx,

and hence, the result. �
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